1993-12-31 04:03:34 +08:00
|
|
|
|
/* linker.c -- BFD linker routines
|
|
|
|
|
Copyright 1993 Free Software Foundation, Inc.
|
|
|
|
|
Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
|
|
|
|
|
|
|
|
|
|
This file is part of BFD
|
|
|
|
|
|
|
|
|
|
GLD is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
|
|
|
any later version.
|
|
|
|
|
|
|
|
|
|
GLD is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with GLD; see the file COPYING. If not, write to
|
|
|
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
|
|
|
|
|
|
#include "bfd.h"
|
|
|
|
|
#include "sysdep.h"
|
|
|
|
|
#include "libbfd.h"
|
|
|
|
|
#include "bfdlink.h"
|
|
|
|
|
#include "genlink.h"
|
|
|
|
|
|
1994-01-19 04:51:15 +08:00
|
|
|
|
/*
|
|
|
|
|
SECTION
|
|
|
|
|
Linker Functions
|
|
|
|
|
|
|
|
|
|
@cindex Linker
|
|
|
|
|
The linker uses three special entry points in the BFD target
|
|
|
|
|
vector. It is not necessary to write special routines for
|
|
|
|
|
these entry points when creating a new BFD back end, since
|
|
|
|
|
generic versions are provided. However, writing them can
|
|
|
|
|
speed up linking and make it use significantly less runtime
|
|
|
|
|
memory.
|
|
|
|
|
|
|
|
|
|
The first routine creates a hash table used by the other
|
|
|
|
|
routines. The second routine adds the symbols from an object
|
|
|
|
|
file to the hash table. The third routine takes all the
|
|
|
|
|
object files and links them together to create the output
|
|
|
|
|
file. These routines are designed so that the linker proper
|
|
|
|
|
does not need to know anything about the symbols in the object
|
|
|
|
|
files that it is linking. The linker merely arranges the
|
|
|
|
|
sections as directed by the linker script and lets BFD handle
|
|
|
|
|
the details of symbols and relocs.
|
|
|
|
|
|
|
|
|
|
The second routine and third routines are passed a pointer to
|
|
|
|
|
a <<struct bfd_link_info>> structure (defined in
|
|
|
|
|
<<bfdlink.h>>) which holds information relevant to the link,
|
|
|
|
|
including the linker hash table (which was created by the
|
|
|
|
|
first routine) and a set of callback functions to the linker
|
|
|
|
|
proper.
|
|
|
|
|
|
|
|
|
|
The generic linker routines are in <<linker.c>>, and use the
|
|
|
|
|
header file <<genlink.h>>. As of this writing, the only back
|
|
|
|
|
ends which have implemented versions of these routines are
|
|
|
|
|
a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
|
|
|
|
|
routines are used as examples throughout this section.
|
|
|
|
|
|
|
|
|
|
@menu
|
|
|
|
|
@* Creating a Linker Hash Table::
|
|
|
|
|
@* Adding Symbols to the Hash Table::
|
|
|
|
|
@* Performing the Final Link::
|
|
|
|
|
@end menu
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
|
|
|
|
|
SUBSECTION
|
|
|
|
|
Creating a linker hash table
|
|
|
|
|
|
|
|
|
|
@cindex _bfd_link_hash_table_create in target vector
|
|
|
|
|
@cindex target vector (_bfd_link_hash_table_create)
|
|
|
|
|
The linker routines must create a hash table, which must be
|
|
|
|
|
derived from <<struct bfd_link_hash_table>> described in
|
|
|
|
|
<<bfdlink.c>>. @xref{Hash Tables} for information on how to
|
|
|
|
|
create a derived hash table. This entry point is called using
|
|
|
|
|
the target vector of the linker output file.
|
|
|
|
|
|
|
|
|
|
The <<_bfd_link_hash_table_create>> entry point must allocate
|
|
|
|
|
and initialize an instance of the desired hash table. If the
|
|
|
|
|
back end does not require any additional information to be
|
|
|
|
|
stored with the entries in the hash table, the entry point may
|
|
|
|
|
simply create a <<struct bfd_link_hash_table>>. Most likely,
|
|
|
|
|
however, some additional information will be needed.
|
|
|
|
|
|
|
|
|
|
For example, with each entry in the hash table the a.out
|
|
|
|
|
linker keeps the index the symbol has in the final output file
|
|
|
|
|
(this index number is used so that when doing a relocateable
|
|
|
|
|
link the symbol index used in the output file can be quickly
|
|
|
|
|
filled in when copying over a reloc). The a.out linker code
|
|
|
|
|
defines the required structures and functions for a hash table
|
|
|
|
|
derived from <<struct bfd_link_hash_table>>. The a.out linker
|
|
|
|
|
hash table is created by the function
|
|
|
|
|
<<NAME(aout,link_hash_table_create)>>; it simply allocates
|
|
|
|
|
space for the hash table, initializes it, and returns a
|
|
|
|
|
pointer to it.
|
|
|
|
|
|
|
|
|
|
When writing the linker routines for a new back end, you will
|
|
|
|
|
generally not know exactly which fields will be required until
|
|
|
|
|
you have finished. You should simply create a new hash table
|
|
|
|
|
which defines no additional fields, and then simply add fields
|
|
|
|
|
as they become necessary.
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
|
|
|
|
|
SUBSECTION
|
|
|
|
|
Adding symbols to the hash table
|
|
|
|
|
|
|
|
|
|
@cindex _bfd_link_add_symbols in target vector
|
|
|
|
|
@cindex target vector (_bfd_link_add_symbols)
|
|
|
|
|
The linker proper will call the <<_bfd_link_add_symbols>>
|
|
|
|
|
entry point for each object file or archive which is to be
|
|
|
|
|
linked (typically these are the files named on the command
|
|
|
|
|
line, but some may also come from the linker script). The
|
|
|
|
|
entry point is responsible for examining the file. For an
|
|
|
|
|
object file, BFD must add any relevant symbol information to
|
|
|
|
|
the hash table. For an archive, BFD must determine which
|
|
|
|
|
elements of the archive should be used and adding them to the
|
|
|
|
|
link.
|
|
|
|
|
|
|
|
|
|
The a.out version of this entry point is
|
|
|
|
|
<<NAME(aout,link_add_symbols)>>.
|
|
|
|
|
|
|
|
|
|
@menu
|
|
|
|
|
@* Differing file formats::
|
|
|
|
|
@* Adding symbols from an object file::
|
|
|
|
|
@* Adding symbols from an archive::
|
|
|
|
|
@end menu
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
|
|
|
|
|
SUBSUBSECTION
|
|
|
|
|
Differing file formats
|
|
|
|
|
|
|
|
|
|
Normally all the files involved in a link will be of the same
|
|
|
|
|
format, but it is also possible to link together different
|
|
|
|
|
format object files, and the back end must support that. The
|
|
|
|
|
<<_bfd_link_add_symbols>> entry point is called via the target
|
|
|
|
|
vector of the file to be added. This has an important
|
|
|
|
|
consequence: the function may not assume that the hash table
|
|
|
|
|
is the type created by the corresponding
|
|
|
|
|
<<_bfd_link_hash_table_create>> vector. All the
|
|
|
|
|
<<_bfd_link_add_symbols>> function can assume about the hash
|
|
|
|
|
table is that it is derived from <<struct
|
|
|
|
|
bfd_link_hash_table>>.
|
|
|
|
|
|
|
|
|
|
Sometimes the <<_bfd_link_add_symbols>> function must store
|
|
|
|
|
some information in the hash table entry to be used by the
|
|
|
|
|
<<_bfd_final_link>> function. In such a case the <<creator>>
|
|
|
|
|
field of the hash table must be checked to make sure that the
|
|
|
|
|
hash table was created by an object file of the same format.
|
|
|
|
|
|
|
|
|
|
The <<_bfd_final_link>> routine must be prepared to handle a
|
|
|
|
|
hash entry without any extra information added by the
|
|
|
|
|
<<_bfd_link_add_symbols>> function. A hash entry without
|
|
|
|
|
extra information will also occur when the linker script
|
|
|
|
|
directs the linker to create a symbol. Note that, regardless
|
|
|
|
|
of how a hash table entry is added, all the fields will be
|
|
|
|
|
initialized to some sort of null value by the hash table entry
|
|
|
|
|
initialization function.
|
|
|
|
|
|
|
|
|
|
See <<ecoff_link_add_externals>> for an example of how to
|
|
|
|
|
check the <<creator>> field before saving information (in this
|
|
|
|
|
case, the ECOFF external symbol debugging information) in a
|
|
|
|
|
hash table entry.
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
|
|
|
|
|
SUBSUBSECTION
|
|
|
|
|
Adding symbols from an object file
|
|
|
|
|
|
|
|
|
|
When the <<_bfd_link_add_symbols>> routine is passed an object
|
|
|
|
|
file, it must add all externally visible symbols in that
|
|
|
|
|
object file to the hash table. The actual work of adding the
|
|
|
|
|
symbol to the hash table is normally handled by the function
|
|
|
|
|
<<_bfd_generic_link_add_one_symbol>>. The
|
|
|
|
|
<<_bfd_link_add_symbols>> routine is responsible for reading
|
|
|
|
|
all the symbols from the object file and passing the correct
|
|
|
|
|
information to <<_bfd_generic_link_add_one_symbol>>.
|
|
|
|
|
|
|
|
|
|
The <<_bfd_link_add_symbols>> routine should not use
|
|
|
|
|
<<bfd_canonicalize_symtab>> to read the symbols. The point of
|
|
|
|
|
providing this routine is to avoid the overhead of converting
|
|
|
|
|
the symbols into generic <<asymbol>> structures.
|
|
|
|
|
|
|
|
|
|
@findex _bfd_generic_link_add_one_symbol
|
|
|
|
|
<<_bfd_generic_link_add_one_symbol>> handles the details of
|
|
|
|
|
combining common symbols, warning about multiple definitions,
|
|
|
|
|
and so forth. It takes arguments which describe the symbol to
|
|
|
|
|
add, notably symbol flags, a section, and an offset. The
|
|
|
|
|
symbol flags include such things as <<BSF_WEAK>> or
|
|
|
|
|
<<BSF_INDIRECT>>. The section is a section in the object
|
|
|
|
|
file, or something like <<bfd_und_section>> for an undefined
|
|
|
|
|
symbol or <<bfd_com_section>> for a common symbol.
|
|
|
|
|
|
|
|
|
|
If the <<_bfd_final_link>> routine is also going to need to
|
|
|
|
|
read the symbol information, the <<_bfd_link_add_symbols>>
|
|
|
|
|
routine should save it somewhere attached to the object file
|
|
|
|
|
BFD. However, the information should only be saved if the
|
|
|
|
|
<<keep_memory>> field of the <<info>> argument is true, so
|
|
|
|
|
that the <<-no-keep-memory>> linker switch is effective.
|
|
|
|
|
|
|
|
|
|
The a.out function which adds symbols from an object file is
|
|
|
|
|
<<aout_link_add_object_symbols>>, and most of the interesting
|
|
|
|
|
work is in <<aout_link_add_symbols>>. The latter saves
|
|
|
|
|
pointers to the hash tables entries created by
|
|
|
|
|
<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
|
|
|
|
|
so that the <<_bfd_final_link>> routine does not have to call
|
|
|
|
|
the hash table lookup routine to locate the entry.
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
|
|
|
|
|
SUBSUBSECTION
|
|
|
|
|
Adding symbols from an archive
|
|
|
|
|
|
|
|
|
|
When the <<_bfd_link_add_symbols>> routine is passed an
|
|
|
|
|
archive, it must look through the symbols defined by the
|
|
|
|
|
archive and decide which elements of the archive should be
|
|
|
|
|
included in the link. For each such element it must call the
|
|
|
|
|
<<add_archive_element>> linker callback, and it must add the
|
|
|
|
|
symbols from the object file to the linker hash table.
|
|
|
|
|
|
|
|
|
|
@findex _bfd_generic_link_add_archive_symbols
|
|
|
|
|
In most cases the work of looking through the symbols in the
|
|
|
|
|
archive should be done by the
|
|
|
|
|
<<_bfd_generic_link_add_archive_symbols>> function. This
|
|
|
|
|
function builds a hash table from the archive symbol table and
|
|
|
|
|
looks through the list of undefined symbols to see which
|
|
|
|
|
elements should be included.
|
|
|
|
|
<<_bfd_generic_link_add_archive_symbols>> is passed a function
|
|
|
|
|
to call to make the final decision about adding an archive
|
|
|
|
|
element to the link and to do the actual work of adding the
|
|
|
|
|
symbols to the linker hash table.
|
|
|
|
|
|
|
|
|
|
The function passed to
|
|
|
|
|
<<_bfd_generic_link_add_archive_symbols>> must read the
|
|
|
|
|
symbols of the archive element and decide whether the archive
|
|
|
|
|
element should be included in the link. If the element is to
|
|
|
|
|
be included, the <<add_archive_element>> linker callback
|
|
|
|
|
routine must be called with the element as an argument, and
|
|
|
|
|
the elements symbols must be added to the linker hash table
|
|
|
|
|
just as though the element had itself been passed to the
|
|
|
|
|
<<_bfd_link_add_symbols>> function.
|
|
|
|
|
|
|
|
|
|
When the a.out <<_bfd_link_add_symbols>> function receives an
|
|
|
|
|
archive, it calls <<_bfd_generic_link_add_archive_symbols>>
|
|
|
|
|
passing <<aout_link_check_archive_element>> as the function
|
|
|
|
|
argument. <<aout_link_check_archive_element>> calls
|
|
|
|
|
<<aout_link_check_ar_symbols>>. If the latter decides to add
|
|
|
|
|
the element (an element is only added if it provides a real,
|
|
|
|
|
non-common, definition for a previously undefined or common
|
|
|
|
|
symbol) it calls the <<add_archive_element>> callback and then
|
|
|
|
|
<<aout_link_check_archive_element>> calls
|
|
|
|
|
<<aout_link_add_symbols>> to actually add the symbols to the
|
|
|
|
|
linker hash table.
|
|
|
|
|
|
|
|
|
|
The ECOFF back end is unusual in that it does not normally
|
|
|
|
|
call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
|
|
|
|
|
archives already contain a hash table of symbols. The ECOFF
|
|
|
|
|
back end searches the archive itself to avoid the overhead of
|
|
|
|
|
creating a new hash table.
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
|
|
|
|
|
SUBSECTION
|
|
|
|
|
Performing the final link
|
|
|
|
|
|
|
|
|
|
@cindex _bfd_link_final_link in target vector
|
|
|
|
|
@cindex target vector (_bfd_final_link)
|
|
|
|
|
When all the input files have been processed, the linker calls
|
|
|
|
|
the <<_bfd_final_link>> entry point of the output BFD. This
|
|
|
|
|
routine is responsible for producing the final output file,
|
|
|
|
|
which has several aspects. It must relocate the contents of
|
|
|
|
|
the input sections and copy the data into the output sections.
|
|
|
|
|
It must build an output symbol table including any local
|
|
|
|
|
symbols from the input files and the global symbols from the
|
|
|
|
|
hash table. When producing relocateable output, it must
|
|
|
|
|
modify the input relocs and write them into the output file.
|
|
|
|
|
There may also be object format dependent work to be done.
|
|
|
|
|
|
|
|
|
|
The linker will also call the <<write_object_contents>> entry
|
|
|
|
|
point when the BFD is closed. The two entry points must work
|
|
|
|
|
together in order to produce the correct output file.
|
|
|
|
|
|
|
|
|
|
The details of how this works are inevitably dependent upon
|
|
|
|
|
the specific object file format. The a.out
|
|
|
|
|
<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
|
|
|
|
|
|
|
|
|
|
@menu
|
|
|
|
|
@* Information provided by the linker::
|
|
|
|
|
@* Relocating the section contents::
|
|
|
|
|
@* Writing the symbol table::
|
|
|
|
|
@end menu
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
|
|
|
|
|
SUBSUBSECTION
|
|
|
|
|
Information provided by the linker
|
|
|
|
|
|
|
|
|
|
Before the linker calls the <<_bfd_final_link>> entry point,
|
|
|
|
|
it sets up some data structures for the function to use.
|
|
|
|
|
|
|
|
|
|
The <<input_bfds>> field of the <<bfd_link_info>> structure
|
|
|
|
|
will point to a list of all the input files included in the
|
|
|
|
|
link. These files are linked through the <<link_next>> field
|
|
|
|
|
of the <<bfd>> structure.
|
|
|
|
|
|
|
|
|
|
Each section in the output file will have a list of
|
|
|
|
|
<<link_order>> structures attached to the <<link_order_head>>
|
|
|
|
|
field (the <<link_order>> structure is defined in
|
|
|
|
|
<<bfdlink.h>>). These structures describe how to create the
|
|
|
|
|
contents of the output section in terms of the contents of
|
|
|
|
|
various input sections, fill constants, and, eventually, other
|
|
|
|
|
types of information.
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
|
|
|
|
|
SUBSUBSECTION
|
|
|
|
|
Relocating the section contents
|
|
|
|
|
|
|
|
|
|
The <<_bfd_final_link>> function should look through the
|
|
|
|
|
<<link_order>> structures attached to each section of the
|
|
|
|
|
output file. Each <<link_order>> structure should either be
|
|
|
|
|
handled specially, or it should be passed to the function
|
|
|
|
|
<<_bfd_default_link_order>> which will do the right thing
|
|
|
|
|
(<<_bfd_default_link_order>> is defined in <<linker.c>>).
|
|
|
|
|
|
|
|
|
|
For efficiency, a <<link_order>> of type
|
|
|
|
|
<<bfd_indirect_link_order>> whose associated section belongs
|
|
|
|
|
to a BFD of the same format as the output BFD must be handled
|
|
|
|
|
specially. This type of <<link_order>> describes part of an
|
|
|
|
|
output section in terms of a section belonging to one of the
|
|
|
|
|
input files. The <<_bfd_final_link>> function should read the
|
|
|
|
|
contents of the section and any associated relocs, apply the
|
|
|
|
|
relocs to the section contents, and write out the modified
|
|
|
|
|
section contents. If performing a relocateable link, the
|
|
|
|
|
relocs themselves must also be modified and written out.
|
|
|
|
|
|
|
|
|
|
@findex _bfd_relocate_contents
|
|
|
|
|
@findex _bfd_final_link_relocate
|
|
|
|
|
The functions <<_bfd_relocate_contents>> and
|
|
|
|
|
<<_bfd_final_link_relocate>> provide some general support for
|
|
|
|
|
performing the actual relocations, notably overflow checking.
|
|
|
|
|
Their arguments include information about the symbol the
|
|
|
|
|
relocation is against and a <<reloc_howto_type>> argument
|
|
|
|
|
which describes the relocation to perform. These functions
|
|
|
|
|
are defined in <<reloc.c>>.
|
|
|
|
|
|
|
|
|
|
The a.out function which handles reading, relocating, and
|
|
|
|
|
writing section contents is <<aout_link_input_section>>. The
|
|
|
|
|
actual relocation is done in <<aout_link_input_section_std>>
|
|
|
|
|
and <<aout_link_input_section_ext>>.
|
|
|
|
|
|
|
|
|
|
INODE
|
|
|
|
|
Writing the symbol table, , Relocating the section contents, Performing the Final Link
|
|
|
|
|
SUBSUBSECTION
|
|
|
|
|
Writing the symbol table
|
|
|
|
|
|
|
|
|
|
The <<_bfd_final_link>> function must gather all the symbols
|
|
|
|
|
in the input files and write them out. It must also write out
|
|
|
|
|
all the symbols in the global hash table. This must be
|
|
|
|
|
controlled by the <<strip>> and <<discard>> fields of the
|
|
|
|
|
<<bfd_link_info>> structure.
|
|
|
|
|
|
|
|
|
|
The local symbols of the input files will not have been
|
|
|
|
|
entered into the linker hash table. The <<_bfd_final_link>>
|
|
|
|
|
routine must consider each input file and include the symbols
|
|
|
|
|
in the output file. It may be convenient to do this when
|
|
|
|
|
looking through the <<link_order>> structures, or it may be
|
|
|
|
|
done by stepping through the <<input_bfds>> list.
|
|
|
|
|
|
|
|
|
|
The <<_bfd_final_link>> routine must also traverse the global
|
|
|
|
|
hash table to gather all the externally visible symbols. It
|
|
|
|
|
is possible that most of the externally visible symbols may be
|
|
|
|
|
written out when considering the symbols of each input file,
|
|
|
|
|
but it is still necessary to traverse the hash table since the
|
|
|
|
|
linker script may have defined some symbols that are not in
|
|
|
|
|
any of the input files. The <<written>> field in the
|
|
|
|
|
<<bfd_link_hash_entry>> structure may be used to determine
|
|
|
|
|
which entries in the hash table have not already been written
|
|
|
|
|
out.
|
|
|
|
|
|
|
|
|
|
The <<strip>> field of the <<bfd_link_info>> structure
|
|
|
|
|
controls which symbols are written out. The possible values
|
|
|
|
|
are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
|
|
|
|
|
then the <<keep_hash>> field of the <<bfd_link_info>>
|
|
|
|
|
structure is a hash table of symbols to keep; each symbol
|
|
|
|
|
should be looked up in this hash table, and only symbols which
|
|
|
|
|
are present should be included in the output file.
|
|
|
|
|
|
|
|
|
|
If the <<strip>> field of the <<bfd_link_info>> structure
|
|
|
|
|
permits local symbols to be written out, the <<discard>> field
|
|
|
|
|
is used to further controls which local symbols are included
|
|
|
|
|
in the output file. If the value is <<discard_l>>, then all
|
|
|
|
|
local symbols which begin with a certain prefix are discarded;
|
|
|
|
|
this prefix is described by the <<lprefix>> and
|
|
|
|
|
<<lprefix_len>> fields of the <<bfd_link_info>> structure.
|
|
|
|
|
|
|
|
|
|
The a.out backend handles symbols by calling
|
|
|
|
|
<<aout_link_write_symbols>> on each input BFD and then
|
|
|
|
|
traversing the global hash table with the function
|
|
|
|
|
<<aout_link_write_other_symbol>>. It builds a string table
|
|
|
|
|
while writing out the symbols, which is written to the output
|
|
|
|
|
file at the end of <<NAME(aout,final_link)>>.
|
|
|
|
|
*/
|
|
|
|
|
|
1993-12-31 04:03:34 +08:00
|
|
|
|
static struct bfd_hash_entry *generic_link_hash_newfunc
|
|
|
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *,
|
|
|
|
|
const char *));
|
|
|
|
|
static boolean generic_link_add_object_symbols
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
|
static boolean generic_link_check_archive_element
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
|
|
|
|
|
static boolean generic_link_add_symbol_list
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **));
|
|
|
|
|
static boolean generic_add_output_symbol
|
|
|
|
|
PARAMS ((bfd *, size_t *psymalloc, asymbol *));
|
|
|
|
|
static boolean default_fill_link_order
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
|
|
|
|
struct bfd_link_order *));
|
1994-01-07 04:01:42 +08:00
|
|
|
|
static boolean default_indirect_link_order
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
|
|
|
|
struct bfd_link_order *));
|
1993-12-31 04:03:34 +08:00
|
|
|
|
|
|
|
|
|
/* The link hash table structure is defined in bfdlink.h. It provides
|
|
|
|
|
a base hash table which the backend specific hash tables are built
|
|
|
|
|
upon. */
|
|
|
|
|
|
|
|
|
|
/* Routine to create an entry in the link hash table. */
|
|
|
|
|
|
|
|
|
|
struct bfd_hash_entry *
|
|
|
|
|
_bfd_link_hash_newfunc (entry, table, string)
|
|
|
|
|
struct bfd_hash_entry *entry;
|
|
|
|
|
struct bfd_hash_table *table;
|
|
|
|
|
const char *string;
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
|
|
|
|
|
|
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
|
|
|
subclass. */
|
|
|
|
|
if (ret == (struct bfd_link_hash_entry *) NULL)
|
|
|
|
|
ret = ((struct bfd_link_hash_entry *)
|
|
|
|
|
bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
|
|
|
|
|
|
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
|
|
|
ret = ((struct bfd_link_hash_entry *)
|
|
|
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
|
|
|
|
|
|
|
|
|
/* Initialize the local fields. */
|
|
|
|
|
ret->type = bfd_link_hash_new;
|
|
|
|
|
ret->written = false;
|
|
|
|
|
ret->next = NULL;
|
|
|
|
|
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize a link hash table. The BFD argument is the one
|
|
|
|
|
responsible for creating this table. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_link_hash_table_init (table, abfd, newfunc)
|
|
|
|
|
struct bfd_link_hash_table *table;
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
|
|
|
|
|
struct bfd_hash_table *,
|
|
|
|
|
const char *));
|
|
|
|
|
{
|
|
|
|
|
table->creator = abfd->xvec;
|
|
|
|
|
table->undefs = NULL;
|
|
|
|
|
table->undefs_tail = NULL;
|
|
|
|
|
return bfd_hash_table_init (&table->table, newfunc);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look up a symbol in a link hash table. If follow is true, we
|
|
|
|
|
follow bfd_link_hash_indirect and bfd_link_hash_warning links to
|
|
|
|
|
the real symbol. */
|
|
|
|
|
|
|
|
|
|
struct bfd_link_hash_entry *
|
|
|
|
|
bfd_link_hash_lookup (table, string, create, copy, follow)
|
|
|
|
|
struct bfd_link_hash_table *table;
|
|
|
|
|
const char *string;
|
|
|
|
|
boolean create;
|
|
|
|
|
boolean copy;
|
|
|
|
|
boolean follow;
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_hash_entry *ret;
|
|
|
|
|
|
|
|
|
|
ret = ((struct bfd_link_hash_entry *)
|
|
|
|
|
bfd_hash_lookup (&table->table, string, create, copy));
|
|
|
|
|
|
|
|
|
|
if (follow && ret != (struct bfd_link_hash_entry *) NULL)
|
|
|
|
|
{
|
|
|
|
|
while (ret->type == bfd_link_hash_indirect
|
|
|
|
|
|| ret->type == bfd_link_hash_warning)
|
|
|
|
|
ret = ret->u.i.link;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Traverse a generic link hash table. The only reason this is not a
|
|
|
|
|
macro is to do better type checking. This code presumes that an
|
1994-01-19 04:51:15 +08:00
|
|
|
|
argument passed as a struct bfd_hash_entry * may be caught as a
|
1993-12-31 04:03:34 +08:00
|
|
|
|
struct bfd_link_hash_entry * with no explicit cast required on the
|
|
|
|
|
call. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
bfd_link_hash_traverse (table, func, info)
|
|
|
|
|
struct bfd_link_hash_table *table;
|
|
|
|
|
boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
|
|
|
|
|
PTR info;
|
|
|
|
|
{
|
|
|
|
|
bfd_hash_traverse (&table->table,
|
|
|
|
|
((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
|
|
|
|
|
func),
|
|
|
|
|
info);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add a symbol to the linker hash table undefs list. */
|
|
|
|
|
|
|
|
|
|
INLINE void
|
|
|
|
|
bfd_link_add_undef (table, h)
|
|
|
|
|
struct bfd_link_hash_table *table;
|
|
|
|
|
struct bfd_link_hash_entry *h;
|
|
|
|
|
{
|
|
|
|
|
BFD_ASSERT (h->next == NULL);
|
|
|
|
|
if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
|
|
|
|
|
table->undefs_tail->next = h;
|
|
|
|
|
if (table->undefs == (struct bfd_link_hash_entry *) NULL)
|
|
|
|
|
table->undefs = h;
|
|
|
|
|
table->undefs_tail = h;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Routine to create an entry in an generic link hash table. */
|
|
|
|
|
|
|
|
|
|
static struct bfd_hash_entry *
|
|
|
|
|
generic_link_hash_newfunc (entry, table, string)
|
|
|
|
|
struct bfd_hash_entry *entry;
|
|
|
|
|
struct bfd_hash_table *table;
|
|
|
|
|
const char *string;
|
|
|
|
|
{
|
|
|
|
|
struct generic_link_hash_entry *ret =
|
|
|
|
|
(struct generic_link_hash_entry *) entry;
|
|
|
|
|
|
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
|
|
|
subclass. */
|
|
|
|
|
if (ret == (struct generic_link_hash_entry *) NULL)
|
|
|
|
|
ret = ((struct generic_link_hash_entry *)
|
|
|
|
|
bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
|
|
|
|
|
|
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
|
|
|
ret = ((struct generic_link_hash_entry *)
|
|
|
|
|
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
|
|
|
|
table, string));
|
|
|
|
|
|
|
|
|
|
/* Set local fields. */
|
|
|
|
|
ret->sym = NULL;
|
|
|
|
|
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create an generic link hash table. */
|
|
|
|
|
|
|
|
|
|
struct bfd_link_hash_table *
|
|
|
|
|
_bfd_generic_link_hash_table_create (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct generic_link_hash_table *ret;
|
|
|
|
|
|
|
|
|
|
ret = ((struct generic_link_hash_table *)
|
|
|
|
|
bfd_xmalloc (sizeof (struct generic_link_hash_table)));
|
|
|
|
|
if (! _bfd_link_hash_table_init (&ret->root, abfd,
|
|
|
|
|
generic_link_hash_newfunc))
|
|
|
|
|
{
|
|
|
|
|
free (ret);
|
|
|
|
|
return (struct bfd_link_hash_table *) NULL;
|
|
|
|
|
}
|
|
|
|
|
return &ret->root;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generic function to add symbols from an object file to the global
|
|
|
|
|
hash table. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_generic_link_add_symbols (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
boolean ret;
|
|
|
|
|
|
|
|
|
|
switch (bfd_get_format (abfd))
|
|
|
|
|
{
|
|
|
|
|
case bfd_object:
|
|
|
|
|
ret = generic_link_add_object_symbols (abfd, info);
|
|
|
|
|
break;
|
|
|
|
|
case bfd_archive:
|
|
|
|
|
ret = _bfd_generic_link_add_archive_symbols
|
|
|
|
|
(abfd, info, generic_link_check_archive_element);
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
bfd_error = wrong_format;
|
|
|
|
|
ret = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we might be using the C based alloca function, make sure we
|
|
|
|
|
have dumped the symbol tables we just allocated. */
|
|
|
|
|
#ifndef __GNUC__
|
|
|
|
|
#ifndef alloca
|
|
|
|
|
alloca (0);
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add symbols from an object file to the global hash table. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
generic_link_add_object_symbols (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
size_t symsize;
|
|
|
|
|
asymbol **symbols;
|
|
|
|
|
bfd_size_type symbol_count;
|
|
|
|
|
|
|
|
|
|
symsize = get_symtab_upper_bound (abfd);
|
|
|
|
|
symbols = (asymbol **) alloca (symsize);
|
|
|
|
|
symbol_count = bfd_canonicalize_symtab (abfd, symbols);
|
|
|
|
|
|
|
|
|
|
return generic_link_add_symbol_list (abfd, info, symbol_count, symbols);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We build a hash table of all symbols defined in an archive. */
|
|
|
|
|
|
|
|
|
|
/* An archive symbol may be defined by multiple archive elements.
|
|
|
|
|
This linked list is used to hold the elements. */
|
|
|
|
|
|
|
|
|
|
struct archive_list
|
|
|
|
|
{
|
|
|
|
|
struct archive_list *next;
|
|
|
|
|
int indx;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* An entry in an archive hash table. */
|
|
|
|
|
|
|
|
|
|
struct archive_hash_entry
|
|
|
|
|
{
|
|
|
|
|
struct bfd_hash_entry root;
|
|
|
|
|
/* Where the symbol is defined. */
|
|
|
|
|
struct archive_list *defs;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* An archive hash table itself. */
|
|
|
|
|
|
|
|
|
|
struct archive_hash_table
|
|
|
|
|
{
|
|
|
|
|
struct bfd_hash_table table;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static struct bfd_hash_entry *archive_hash_newfunc
|
|
|
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
|
static boolean archive_hash_table_init
|
|
|
|
|
PARAMS ((struct archive_hash_table *,
|
|
|
|
|
struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
|
|
|
|
|
struct bfd_hash_table *,
|
|
|
|
|
const char *)));
|
|
|
|
|
|
|
|
|
|
/* Create a new entry for an archive hash table. */
|
|
|
|
|
|
|
|
|
|
static struct bfd_hash_entry *
|
|
|
|
|
archive_hash_newfunc (entry, table, string)
|
|
|
|
|
struct bfd_hash_entry *entry;
|
|
|
|
|
struct bfd_hash_table *table;
|
|
|
|
|
const char *string;
|
|
|
|
|
{
|
|
|
|
|
struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
|
|
|
|
|
|
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
|
|
|
subclass. */
|
|
|
|
|
if (ret == (struct archive_hash_entry *) NULL)
|
|
|
|
|
ret = ((struct archive_hash_entry *)
|
|
|
|
|
bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
|
|
|
|
|
|
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
|
|
|
ret = ((struct archive_hash_entry *)
|
|
|
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
|
|
|
|
|
|
|
|
|
/* Initialize the local fields. */
|
|
|
|
|
ret->defs = (struct archive_list *) NULL;
|
|
|
|
|
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize an archive hash table. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
archive_hash_table_init (table, newfunc)
|
|
|
|
|
struct archive_hash_table *table;
|
|
|
|
|
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
|
|
|
|
|
struct bfd_hash_table *,
|
|
|
|
|
const char *));
|
|
|
|
|
{
|
|
|
|
|
return bfd_hash_table_init (&table->table, newfunc);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look up an entry in an archive hash table. */
|
|
|
|
|
|
|
|
|
|
#define archive_hash_lookup(t, string, create, copy) \
|
|
|
|
|
((struct archive_hash_entry *) \
|
|
|
|
|
bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
|
|
|
|
|
|
|
|
|
|
/* Free an archive hash table. */
|
|
|
|
|
|
|
|
|
|
#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
|
|
|
|
|
|
|
|
|
|
/* Generic function to add symbols from an archive file to the global
|
|
|
|
|
hash file. This function presumes that the archive symbol table
|
|
|
|
|
has already been read in (this is normally done by the
|
|
|
|
|
bfd_check_format entry point). It looks through the undefined and
|
|
|
|
|
common symbols and searches the archive symbol table for them. If
|
|
|
|
|
it finds an entry, it includes the associated object file in the
|
|
|
|
|
link.
|
|
|
|
|
|
|
|
|
|
The old linker looked through the archive symbol table for
|
|
|
|
|
undefined symbols. We do it the other way around, looking through
|
|
|
|
|
undefined symbols for symbols defined in the archive. The
|
|
|
|
|
advantage of the newer scheme is that we only have to look through
|
|
|
|
|
the list of undefined symbols once, whereas the old method had to
|
|
|
|
|
re-search the symbol table each time a new object file was added.
|
|
|
|
|
|
|
|
|
|
The CHECKFN argument is used to see if an object file should be
|
|
|
|
|
included. CHECKFN should set *PNEEDED to true if the object file
|
|
|
|
|
should be included, and must also call the bfd_link_info
|
|
|
|
|
add_archive_element callback function and handle adding the symbols
|
|
|
|
|
to the global hash table. CHECKFN should only return false if some
|
|
|
|
|
sort of error occurs.
|
|
|
|
|
|
|
|
|
|
For some formats, such as a.out, it is possible to look through an
|
|
|
|
|
object file but not actually include it in the link. The
|
|
|
|
|
archive_pass field in a BFD is used to avoid checking the symbols
|
|
|
|
|
of an object files too many times. When an object is included in
|
|
|
|
|
the link, archive_pass is set to -1. If an object is scanned but
|
|
|
|
|
not included, archive_pass is set to the pass number. The pass
|
|
|
|
|
number is incremented each time a new object file is included. The
|
|
|
|
|
pass number is used because when a new object file is included it
|
|
|
|
|
may create new undefined symbols which cause a previously examined
|
|
|
|
|
object file to be included. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
|
|
|
|
|
boolean *pneeded));
|
|
|
|
|
{
|
|
|
|
|
carsym *arsyms;
|
|
|
|
|
carsym *arsym_end;
|
|
|
|
|
register carsym *arsym;
|
|
|
|
|
int pass;
|
|
|
|
|
struct archive_hash_table arsym_hash;
|
|
|
|
|
int indx;
|
|
|
|
|
struct bfd_link_hash_entry **pundef;
|
|
|
|
|
|
|
|
|
|
if (! bfd_has_map (abfd))
|
|
|
|
|
{
|
|
|
|
|
bfd_error = no_symbols;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
arsyms = bfd_ardata (abfd)->symdefs;
|
|
|
|
|
arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
|
|
|
|
|
|
|
|
|
|
/* In order to quickly determine whether an symbol is defined in
|
|
|
|
|
this archive, we build a hash table of the symbols. */
|
|
|
|
|
if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
|
|
|
|
|
return false;
|
|
|
|
|
for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
|
|
|
|
|
{
|
|
|
|
|
struct archive_hash_entry *arh;
|
|
|
|
|
struct archive_list *l;
|
|
|
|
|
|
|
|
|
|
arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
|
|
|
|
|
if (arh == (struct archive_hash_entry *) NULL)
|
|
|
|
|
return false;
|
|
|
|
|
l = (struct archive_list *) alloca (sizeof (struct archive_list));
|
|
|
|
|
l->next = arh->defs;
|
|
|
|
|
arh->defs = l;
|
|
|
|
|
l->indx = indx;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pass = 1;
|
|
|
|
|
|
|
|
|
|
/* New undefined symbols are added to the end of the list, so we
|
|
|
|
|
only need to look through it once. */
|
|
|
|
|
pundef = &info->hash->undefs;
|
|
|
|
|
while (*pundef != (struct bfd_link_hash_entry *) NULL)
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_hash_entry *h;
|
|
|
|
|
struct archive_hash_entry *arh;
|
|
|
|
|
struct archive_list *l;
|
|
|
|
|
|
|
|
|
|
h = *pundef;
|
|
|
|
|
|
|
|
|
|
/* When a symbol is defined, it is not necessarily removed from
|
|
|
|
|
the list. */
|
|
|
|
|
if (h->type != bfd_link_hash_undefined
|
|
|
|
|
&& h->type != bfd_link_hash_common)
|
|
|
|
|
{
|
|
|
|
|
/* Remove this entry from the list, for general cleanliness
|
|
|
|
|
and because we are going to look through the list again
|
|
|
|
|
if we search any more libraries. We can't remove the
|
|
|
|
|
entry if it is the tail, because that would lose any
|
|
|
|
|
entries we add to the list later on. */
|
|
|
|
|
if (*pundef != info->hash->undefs_tail)
|
|
|
|
|
*pundef = (*pundef)->next;
|
|
|
|
|
else
|
|
|
|
|
pundef = &(*pundef)->next;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look for this symbol in the archive symbol map. */
|
|
|
|
|
arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
|
|
|
|
|
if (arh == (struct archive_hash_entry *) NULL)
|
|
|
|
|
{
|
|
|
|
|
pundef = &(*pundef)->next;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look at all the objects which define this symbol. */
|
|
|
|
|
for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
|
|
|
|
|
{
|
|
|
|
|
bfd *element;
|
|
|
|
|
boolean needed;
|
|
|
|
|
|
|
|
|
|
/* If the symbol has gotten defined along the way, quit. */
|
|
|
|
|
if (h->type != bfd_link_hash_undefined
|
|
|
|
|
&& h->type != bfd_link_hash_common)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
element = bfd_get_elt_at_index (abfd, l->indx);
|
|
|
|
|
if (element == (bfd *) NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* If we've already included this element, or if we've
|
|
|
|
|
already checked it on this pass, continue. */
|
|
|
|
|
if (element->archive_pass == -1
|
|
|
|
|
|| element->archive_pass == pass)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* If we can't figure this element out, just ignore it. */
|
|
|
|
|
if (! bfd_check_format (element, bfd_object))
|
|
|
|
|
{
|
|
|
|
|
element->archive_pass = -1;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* CHECKFN will see if this element should be included, and
|
|
|
|
|
go ahead and include it if appropriate. */
|
|
|
|
|
if (! (*checkfn) (element, info, &needed))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (! needed)
|
|
|
|
|
element->archive_pass = pass;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
element->archive_pass = -1;
|
|
|
|
|
|
|
|
|
|
/* Increment the pass count to show that we may need to
|
|
|
|
|
recheck object files which were already checked. */
|
|
|
|
|
++pass;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pundef = &(*pundef)->next;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
archive_hash_table_free (&arsym_hash);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* See if we should include an archive element. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
generic_link_check_archive_element (abfd, info, pneeded)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
boolean *pneeded;
|
|
|
|
|
{
|
|
|
|
|
size_t symsize;
|
|
|
|
|
asymbol **symbols;
|
|
|
|
|
bfd_size_type symbol_count;
|
|
|
|
|
asymbol **pp, **ppend;
|
|
|
|
|
|
|
|
|
|
*pneeded = false;
|
|
|
|
|
|
|
|
|
|
symsize = get_symtab_upper_bound (abfd);
|
|
|
|
|
symbols = (asymbol **) alloca (symsize);
|
|
|
|
|
symbol_count = bfd_canonicalize_symtab (abfd, symbols);
|
|
|
|
|
|
|
|
|
|
pp = symbols;
|
|
|
|
|
ppend = symbols + symbol_count;
|
|
|
|
|
for (; pp < ppend; pp++)
|
|
|
|
|
{
|
|
|
|
|
asymbol *p;
|
|
|
|
|
struct bfd_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
p = *pp;
|
|
|
|
|
|
|
|
|
|
/* We are only interested in globally visible symbols. */
|
|
|
|
|
if (! bfd_is_com_section (p->section)
|
|
|
|
|
&& (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* We are only interested if we know something about this
|
|
|
|
|
symbol, and it is undefined or common. An undefined weak
|
|
|
|
|
symbol (type bfd_link_hash_weak) is not considered to be a
|
|
|
|
|
reference when pulling files out of an archive. See the SVR4
|
|
|
|
|
ABI, p. 4-27. */
|
|
|
|
|
h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
|
|
|
|
|
false, true);
|
|
|
|
|
if (h == (struct bfd_link_hash_entry *) NULL
|
|
|
|
|
|| (h->type != bfd_link_hash_undefined
|
|
|
|
|
&& h->type != bfd_link_hash_common))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* P is a symbol we are looking for. */
|
|
|
|
|
|
|
|
|
|
if (! bfd_is_com_section (p->section))
|
|
|
|
|
{
|
|
|
|
|
/* This object file defines this symbol, so pull it in. */
|
|
|
|
|
if (! (*info->callbacks->add_archive_element) (info, abfd,
|
|
|
|
|
bfd_asymbol_name (p)))
|
|
|
|
|
return false;
|
|
|
|
|
if (! generic_link_add_symbol_list (abfd, info, symbol_count,
|
|
|
|
|
symbols))
|
|
|
|
|
return false;
|
|
|
|
|
*pneeded = true;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* P is a common symbol. */
|
|
|
|
|
|
|
|
|
|
if (h->type == bfd_link_hash_undefined)
|
|
|
|
|
{
|
|
|
|
|
bfd *symbfd;
|
|
|
|
|
|
|
|
|
|
symbfd = h->u.undef.abfd;
|
|
|
|
|
if (symbfd == (bfd *) NULL)
|
|
|
|
|
{
|
|
|
|
|
/* This symbol was created as undefined from outside
|
|
|
|
|
BFD. We assume that we should link in the object
|
|
|
|
|
file. This is for the -u option in the linker. */
|
|
|
|
|
if (! (*info->callbacks->add_archive_element)
|
|
|
|
|
(info, abfd, bfd_asymbol_name (p)))
|
|
|
|
|
return false;
|
|
|
|
|
*pneeded = true;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Turn the symbol into a common symbol but do not link in
|
|
|
|
|
the object file. This is how a.out works. Object
|
|
|
|
|
formats that require different semantics must implement
|
|
|
|
|
this function differently. This symbol is already on the
|
1994-01-07 04:01:42 +08:00
|
|
|
|
undefs list. We add the section to a common section
|
|
|
|
|
attached to symbfd to ensure that it is in a BFD which
|
|
|
|
|
will be linked in. */
|
1993-12-31 04:03:34 +08:00
|
|
|
|
h->type = bfd_link_hash_common;
|
|
|
|
|
h->u.c.size = bfd_asymbol_value (p);
|
1994-01-07 04:01:42 +08:00
|
|
|
|
if (p->section == &bfd_com_section)
|
|
|
|
|
h->u.c.section = bfd_make_section_old_way (symbfd, "COMMON");
|
|
|
|
|
else
|
|
|
|
|
h->u.c.section = bfd_make_section_old_way (symbfd,
|
|
|
|
|
p->section->name);
|
1993-12-31 04:03:34 +08:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Adjust the size of the common symbol if necessary. This
|
|
|
|
|
is how a.out works. Object formats that require
|
|
|
|
|
different semantics must implement this function
|
|
|
|
|
differently. */
|
|
|
|
|
if (bfd_asymbol_value (p) > h->u.c.size)
|
|
|
|
|
h->u.c.size = bfd_asymbol_value (p);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This archive element is not needed. */
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add the symbol from an object file to the global hash table. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
generic_link_add_symbol_list (abfd, info, symbol_count, symbols)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd_size_type symbol_count;
|
|
|
|
|
asymbol **symbols;
|
|
|
|
|
{
|
|
|
|
|
asymbol **pp, **ppend;
|
|
|
|
|
|
|
|
|
|
pp = symbols;
|
|
|
|
|
ppend = symbols + symbol_count;
|
|
|
|
|
for (; pp < ppend; pp++)
|
|
|
|
|
{
|
|
|
|
|
asymbol *p;
|
|
|
|
|
|
|
|
|
|
p = *pp;
|
|
|
|
|
|
|
|
|
|
if ((p->flags & (BSF_INDIRECT
|
|
|
|
|
| BSF_WARNING
|
|
|
|
|
| BSF_GLOBAL
|
|
|
|
|
| BSF_CONSTRUCTOR
|
|
|
|
|
| BSF_WEAK)) != 0
|
|
|
|
|
|| bfd_get_section (p) == &bfd_und_section
|
|
|
|
|
|| bfd_is_com_section (bfd_get_section (p))
|
|
|
|
|
|| bfd_get_section (p) == &bfd_ind_section)
|
|
|
|
|
{
|
|
|
|
|
const char *name;
|
|
|
|
|
const char *string;
|
|
|
|
|
struct generic_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
name = bfd_asymbol_name (p);
|
|
|
|
|
if ((p->flags & BSF_INDIRECT) != 0
|
|
|
|
|
|| p->section == &bfd_ind_section)
|
|
|
|
|
string = bfd_asymbol_name ((asymbol *) p->value);
|
|
|
|
|
else if ((p->flags & BSF_WARNING) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* The name of P is actually the warning string, and the
|
|
|
|
|
value is actually a pointer to the symbol to warn
|
|
|
|
|
about. */
|
|
|
|
|
string = name;
|
|
|
|
|
name = bfd_asymbol_name ((asymbol *) p->value);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
string = NULL;
|
1994-01-07 04:01:42 +08:00
|
|
|
|
|
|
|
|
|
/* We pass the constructor argument as false, for
|
|
|
|
|
compatibility. As backends are converted they can
|
|
|
|
|
arrange to pass the right value (the right value is the
|
|
|
|
|
size of a function pointer if gcc uses collect2 for the
|
|
|
|
|
object file format, zero if it does not).
|
|
|
|
|
FIXME: We pass the bitsize as 32, which is just plain
|
|
|
|
|
wrong, but actually doesn't matter very much. */
|
1993-12-31 04:03:34 +08:00
|
|
|
|
if (! (_bfd_generic_link_add_one_symbol
|
|
|
|
|
(info, abfd, name, p->flags, bfd_get_section (p),
|
1994-01-07 04:01:42 +08:00
|
|
|
|
p->value, string, false, 0, 32,
|
1993-12-31 04:03:34 +08:00
|
|
|
|
(struct bfd_link_hash_entry **) &h)))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Save the BFD symbol so that we don't lose any backend
|
|
|
|
|
specific information that may be attached to it. We only
|
|
|
|
|
want this one if it gives more information than the
|
|
|
|
|
existing one; we don't want to replace a defined symbol
|
|
|
|
|
with an undefined one. This routine may be called with a
|
|
|
|
|
hash table other than the generic hash table, so we only
|
|
|
|
|
do this if we are certain that the hash table is a
|
|
|
|
|
generic one. */
|
|
|
|
|
if (info->hash->creator == abfd->xvec)
|
|
|
|
|
{
|
|
|
|
|
if (h->sym == (asymbol *) NULL
|
|
|
|
|
|| (bfd_get_section (p) != &bfd_und_section
|
|
|
|
|
&& (! bfd_is_com_section (bfd_get_section (p))
|
|
|
|
|
|| (bfd_get_section (h->sym) == &bfd_und_section))))
|
|
|
|
|
h->sym = p;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We use a state table to deal with adding symbols from an object
|
|
|
|
|
file. The first index into the state table describes the symbol
|
|
|
|
|
from the object file. The second index into the state table is the
|
|
|
|
|
type of the symbol in the hash table. */
|
|
|
|
|
|
|
|
|
|
/* The symbol from the object file is turned into one of these row
|
|
|
|
|
values. */
|
|
|
|
|
|
|
|
|
|
enum link_row
|
|
|
|
|
{
|
|
|
|
|
UNDEF_ROW, /* Undefined. */
|
|
|
|
|
UNDEFW_ROW, /* Weak undefined. */
|
|
|
|
|
DEF_ROW, /* Defined. */
|
|
|
|
|
DEFW_ROW, /* Weak defined. */
|
|
|
|
|
COMMON_ROW, /* Common. */
|
|
|
|
|
INDR_ROW, /* Indirect. */
|
|
|
|
|
WARN_ROW, /* Warning. */
|
|
|
|
|
SET_ROW /* Member of set. */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* The actions to take in the state table. */
|
|
|
|
|
|
|
|
|
|
enum link_action
|
|
|
|
|
{
|
|
|
|
|
FAIL, /* Abort. */
|
|
|
|
|
UND, /* Mark symbol undefined. */
|
|
|
|
|
WEAK, /* Mark symbol weak undefined. */
|
|
|
|
|
DEF, /* Mark symbol defined. */
|
|
|
|
|
COM, /* Mark symbol common. */
|
|
|
|
|
CREF, /* Possibly warn about common reference to defined symbol. */
|
|
|
|
|
CDEF, /* Define existing common symbol. */
|
|
|
|
|
NOACT, /* No action. */
|
|
|
|
|
BIG, /* Mark symbol common using largest size. */
|
|
|
|
|
MDEF, /* Multiple definition error. */
|
|
|
|
|
IND, /* Make indirect symbol. */
|
|
|
|
|
SET, /* Add value to set. */
|
|
|
|
|
MWARN, /* Make warning symbol. */
|
|
|
|
|
WARN, /* Issue warning. */
|
|
|
|
|
CYCLE, /* Repeat with symbol pointed to. */
|
|
|
|
|
WARNC /* Issue warning and then CYCLE. */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* The state table itself. The first index is a link_row and the
|
|
|
|
|
second index is a bfd_link_hash_type. */
|
|
|
|
|
|
|
|
|
|
static const enum link_action link_action[8][7] =
|
|
|
|
|
{
|
|
|
|
|
/* current\prev new undef weak def com indr warn */
|
|
|
|
|
/* UNDEF_ROW */ {UND, NOACT, NOACT, NOACT, NOACT, CYCLE, WARNC },
|
|
|
|
|
/* UNDEFW_ROW */ {WEAK, WEAK, NOACT, NOACT, NOACT, CYCLE, WARNC },
|
|
|
|
|
/* DEF_ROW */ {DEF, DEF, DEF, MDEF, CDEF, CYCLE, CYCLE },
|
|
|
|
|
/* DEFW_ROW */ {DEF, DEF, DEF, NOACT, NOACT, CYCLE, CYCLE },
|
|
|
|
|
/* COMMON_ROW */ {COM, COM, COM, CREF, BIG, CYCLE, WARNC },
|
|
|
|
|
/* INDR_ROW */ {IND, IND, IND, MDEF, MDEF, MDEF, WARNC },
|
|
|
|
|
/* WARN_ROW */ {MWARN, WARN, WARN, MWARN, MWARN, MWARN, NOACT },
|
|
|
|
|
/* SET_ROW */ {SET, SET, SET, SET, SET, CYCLE, WARNC }
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Add a symbol to the global hash table.
|
|
|
|
|
ABFD is the BFD the symbol comes from.
|
|
|
|
|
NAME is the name of the symbol.
|
|
|
|
|
FLAGS is the BSF_* bits associated with the symbol.
|
|
|
|
|
SECTION is the section in which the symbol is defined; this may be
|
|
|
|
|
bfd_und_section or bfd_com_section.
|
|
|
|
|
VALUE is the value of the symbol, relative to the section.
|
|
|
|
|
STRING is used for either an indirect symbol, in which case it is
|
|
|
|
|
the name of the symbol to indirect to, or a warning symbol, in
|
|
|
|
|
which case it is the warning string.
|
|
|
|
|
COPY is true if NAME or STRING must be copied into locally
|
|
|
|
|
allocated memory if they need to be saved.
|
1994-01-07 04:01:42 +08:00
|
|
|
|
CONSTRUCTOR is true if we should automatically collect gcc
|
|
|
|
|
constructor or destructor names.
|
|
|
|
|
BITSIZE is the number of bits in constructor or set entries.
|
1993-12-31 04:03:34 +08:00
|
|
|
|
HASHP, if not NULL, is a place to store the created hash table
|
|
|
|
|
entry. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
|
1994-01-07 04:01:42 +08:00
|
|
|
|
string, copy, constructor, bitsize, hashp)
|
1993-12-31 04:03:34 +08:00
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
const char *name;
|
|
|
|
|
flagword flags;
|
|
|
|
|
asection *section;
|
|
|
|
|
bfd_vma value;
|
|
|
|
|
const char *string;
|
|
|
|
|
boolean copy;
|
1994-01-07 04:01:42 +08:00
|
|
|
|
boolean constructor;
|
|
|
|
|
unsigned int bitsize;
|
1993-12-31 04:03:34 +08:00
|
|
|
|
struct bfd_link_hash_entry **hashp;
|
|
|
|
|
{
|
|
|
|
|
enum link_row row;
|
|
|
|
|
struct bfd_link_hash_entry *h;
|
|
|
|
|
boolean cycle;
|
|
|
|
|
|
|
|
|
|
if (section == &bfd_ind_section
|
|
|
|
|
|| (flags & BSF_INDIRECT) != 0)
|
|
|
|
|
row = INDR_ROW;
|
|
|
|
|
else if ((flags & BSF_WARNING) != 0)
|
|
|
|
|
row = WARN_ROW;
|
|
|
|
|
else if ((flags & BSF_CONSTRUCTOR) != 0)
|
|
|
|
|
row = SET_ROW;
|
|
|
|
|
else if (section == &bfd_und_section)
|
|
|
|
|
{
|
|
|
|
|
if ((flags & BSF_WEAK) != 0)
|
|
|
|
|
row = UNDEFW_ROW;
|
|
|
|
|
else
|
|
|
|
|
row = UNDEF_ROW;
|
|
|
|
|
}
|
|
|
|
|
else if ((flags & BSF_WEAK) != 0)
|
|
|
|
|
row = DEFW_ROW;
|
|
|
|
|
else if (bfd_is_com_section (section))
|
|
|
|
|
row = COMMON_ROW;
|
|
|
|
|
else
|
|
|
|
|
row = DEF_ROW;
|
|
|
|
|
|
|
|
|
|
h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
|
|
|
|
|
if (h == (struct bfd_link_hash_entry *) NULL)
|
|
|
|
|
{
|
|
|
|
|
if (hashp != (struct bfd_link_hash_entry **) NULL)
|
|
|
|
|
*hashp = NULL;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (info->notice_hash != (struct bfd_hash_table *) NULL
|
|
|
|
|
&& (bfd_hash_lookup (info->notice_hash, name, false, false)
|
|
|
|
|
!= (struct bfd_hash_entry *) NULL))
|
|
|
|
|
{
|
|
|
|
|
if (! (*info->callbacks->notice) (info, name, abfd, section, value))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (hashp != (struct bfd_link_hash_entry **) NULL)
|
|
|
|
|
*hashp = h;
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
enum link_action action;
|
|
|
|
|
|
|
|
|
|
cycle = false;
|
|
|
|
|
action = link_action[(int) row][(int) h->type];
|
|
|
|
|
switch (action)
|
|
|
|
|
{
|
|
|
|
|
case FAIL:
|
|
|
|
|
abort ();
|
|
|
|
|
case UND:
|
|
|
|
|
h->type = bfd_link_hash_undefined;
|
|
|
|
|
h->u.undef.abfd = abfd;
|
|
|
|
|
bfd_link_add_undef (info->hash, h);
|
|
|
|
|
break;
|
|
|
|
|
case WEAK:
|
|
|
|
|
h->type = bfd_link_hash_weak;
|
|
|
|
|
h->u.undef.abfd = abfd;
|
|
|
|
|
break;
|
|
|
|
|
case CDEF:
|
|
|
|
|
BFD_ASSERT (h->type == bfd_link_hash_common);
|
|
|
|
|
if (! ((*info->callbacks->multiple_common)
|
|
|
|
|
(info, name,
|
|
|
|
|
h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
|
|
|
|
|
abfd, bfd_link_hash_defined, (bfd_vma) 0)))
|
|
|
|
|
return false;
|
|
|
|
|
/* Fall through. */
|
|
|
|
|
case DEF:
|
|
|
|
|
h->type = bfd_link_hash_defined;
|
|
|
|
|
h->u.def.section = section;
|
|
|
|
|
h->u.def.value = value;
|
1994-01-07 04:01:42 +08:00
|
|
|
|
|
|
|
|
|
/* If we have been asked to, we act like collect2 and
|
|
|
|
|
identify all functions that might be global constructors
|
|
|
|
|
and destructors and pass them up in a callback. We only
|
|
|
|
|
do this for certain object file types, since many object
|
|
|
|
|
file types can handle this automatically. */
|
|
|
|
|
if (constructor && name[0] == '_')
|
|
|
|
|
{
|
|
|
|
|
const char *s;
|
|
|
|
|
|
|
|
|
|
/* A constructor or destructor name starts like this:
|
|
|
|
|
_+GLOBAL_[_.$][ID][_.$]
|
|
|
|
|
where the first [_.$] and the second are the same
|
|
|
|
|
character (we accept any character there, in case a
|
|
|
|
|
new object file format comes along with even worse
|
|
|
|
|
naming restrictions). */
|
|
|
|
|
|
|
|
|
|
#define CONS_PREFIX "GLOBAL_"
|
|
|
|
|
#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
|
|
|
|
|
|
|
|
|
|
s = name + 1;
|
|
|
|
|
while (*s == '_')
|
|
|
|
|
++s;
|
|
|
|
|
if (s[0] == 'G'
|
|
|
|
|
&& strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
|
|
|
|
|
{
|
|
|
|
|
char c;
|
|
|
|
|
|
|
|
|
|
c = s[CONS_PREFIX_LEN + 1];
|
|
|
|
|
if ((c == 'I' || c == 'D')
|
|
|
|
|
&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
|
|
|
|
|
{
|
|
|
|
|
if (! ((*info->callbacks->constructor)
|
|
|
|
|
(info,
|
|
|
|
|
c == 'I' ? true : false, bitsize,
|
|
|
|
|
name, abfd, section, value)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
1993-12-31 04:03:34 +08:00
|
|
|
|
break;
|
|
|
|
|
case COM:
|
|
|
|
|
if (h->type == bfd_link_hash_new)
|
|
|
|
|
bfd_link_add_undef (info->hash, h);
|
|
|
|
|
h->type = bfd_link_hash_common;
|
|
|
|
|
h->u.c.size = value;
|
|
|
|
|
if (section == &bfd_com_section)
|
|
|
|
|
h->u.c.section = bfd_make_section_old_way (abfd, "COMMON");
|
|
|
|
|
else if (section->owner != abfd)
|
|
|
|
|
h->u.c.section = bfd_make_section_old_way (abfd, section->name);
|
|
|
|
|
else
|
|
|
|
|
h->u.c.section = section;
|
|
|
|
|
break;
|
|
|
|
|
case NOACT:
|
|
|
|
|
break;
|
|
|
|
|
case BIG:
|
|
|
|
|
BFD_ASSERT (h->type == bfd_link_hash_common);
|
|
|
|
|
if (! ((*info->callbacks->multiple_common)
|
|
|
|
|
(info, name,
|
|
|
|
|
h->u.c.section->owner, bfd_link_hash_common, h->u.c.size,
|
|
|
|
|
abfd, bfd_link_hash_common, value)))
|
|
|
|
|
return false;
|
|
|
|
|
if (value > h->u.c.size)
|
|
|
|
|
h->u.c.size = value;
|
|
|
|
|
break;
|
|
|
|
|
case CREF:
|
|
|
|
|
BFD_ASSERT (h->type == bfd_link_hash_defined);
|
|
|
|
|
if (! ((*info->callbacks->multiple_common)
|
|
|
|
|
(info, name,
|
|
|
|
|
h->u.def.section->owner, bfd_link_hash_defined, (bfd_vma) 0,
|
|
|
|
|
abfd, bfd_link_hash_common, value)))
|
|
|
|
|
return false;
|
|
|
|
|
break;
|
|
|
|
|
case MDEF:
|
|
|
|
|
{
|
|
|
|
|
asection *msec;
|
|
|
|
|
bfd_vma mval;
|
|
|
|
|
|
|
|
|
|
switch (h->type)
|
|
|
|
|
{
|
|
|
|
|
case bfd_link_hash_defined:
|
|
|
|
|
msec = h->u.def.section;
|
|
|
|
|
mval = h->u.def.value;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_common:
|
|
|
|
|
msec = &bfd_com_section;
|
|
|
|
|
mval = h->u.c.size;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_indirect:
|
|
|
|
|
msec = &bfd_ind_section;
|
|
|
|
|
mval = 0;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! ((*info->callbacks->multiple_definition)
|
|
|
|
|
(info, name, msec->owner, msec, mval, abfd, section,
|
|
|
|
|
value)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case IND:
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_hash_entry *inh;
|
|
|
|
|
|
|
|
|
|
/* STRING is the name of the symbol we want to indirect
|
|
|
|
|
to. */
|
|
|
|
|
inh = bfd_link_hash_lookup (info->hash, string, true, copy,
|
|
|
|
|
false);
|
|
|
|
|
if (inh == (struct bfd_link_hash_entry *) NULL)
|
|
|
|
|
return false;
|
|
|
|
|
if (inh->type == bfd_link_hash_new)
|
|
|
|
|
{
|
|
|
|
|
inh->type = bfd_link_hash_undefined;
|
|
|
|
|
inh->u.undef.abfd = abfd;
|
|
|
|
|
bfd_link_add_undef (info->hash, inh);
|
|
|
|
|
}
|
|
|
|
|
h->type = bfd_link_hash_indirect;
|
|
|
|
|
h->u.i.link = inh;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case SET:
|
1994-01-07 04:01:42 +08:00
|
|
|
|
if (! (*info->callbacks->add_to_set) (info, h, bitsize, abfd,
|
|
|
|
|
section, value))
|
1993-12-31 04:03:34 +08:00
|
|
|
|
return false;
|
|
|
|
|
break;
|
|
|
|
|
case WARN:
|
|
|
|
|
case WARNC:
|
|
|
|
|
if (h->u.i.warning != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! (*info->callbacks->warning) (info, h->u.i.warning))
|
|
|
|
|
return false;
|
|
|
|
|
/* Only issue a warning once. */
|
|
|
|
|
h->u.i.warning = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (action == WARN)
|
|
|
|
|
break;
|
|
|
|
|
/* Fall through. */
|
|
|
|
|
case CYCLE:
|
|
|
|
|
h = h->u.i.link;
|
|
|
|
|
cycle = true;
|
|
|
|
|
break;
|
|
|
|
|
case MWARN:
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_hash_entry *sub;
|
|
|
|
|
|
|
|
|
|
/* STRING is the warning to give. */
|
|
|
|
|
sub = ((struct bfd_link_hash_entry *)
|
|
|
|
|
bfd_hash_allocate (&info->hash->table,
|
|
|
|
|
sizeof (struct bfd_link_hash_entry)));
|
|
|
|
|
*sub = *h;
|
|
|
|
|
h->type = bfd_link_hash_warning;
|
|
|
|
|
h->u.i.link = sub;
|
|
|
|
|
if (! copy)
|
|
|
|
|
h->u.i.warning = string;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
char *w;
|
|
|
|
|
|
|
|
|
|
w = bfd_hash_allocate (&info->hash->table,
|
|
|
|
|
strlen (string) + 1);
|
|
|
|
|
strcpy (w, string);
|
|
|
|
|
h->u.i.warning = w;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
while (cycle);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generic final link routine. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_generic_final_link (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
bfd *sub;
|
|
|
|
|
asection *o;
|
|
|
|
|
struct bfd_link_order *p;
|
|
|
|
|
size_t outsymalloc;
|
|
|
|
|
struct generic_write_global_symbol_info wginfo;
|
|
|
|
|
|
|
|
|
|
abfd->outsymbols = (asymbol **) NULL;
|
|
|
|
|
abfd->symcount = 0;
|
|
|
|
|
outsymalloc = 0;
|
|
|
|
|
|
|
|
|
|
/* Build the output symbol table. This also reads in the symbols
|
|
|
|
|
for all the input BFDs, keeping them in the outsymbols field. */
|
|
|
|
|
for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
|
|
|
|
|
if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Accumulate the global symbols. */
|
|
|
|
|
wginfo.output_bfd = abfd;
|
|
|
|
|
wginfo.psymalloc = &outsymalloc;
|
|
|
|
|
_bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
|
|
|
|
|
_bfd_generic_link_write_global_symbol,
|
|
|
|
|
(PTR) &wginfo);
|
|
|
|
|
|
|
|
|
|
if (info->relocateable)
|
|
|
|
|
{
|
|
|
|
|
/* Allocate space for the output relocs for each section. */
|
|
|
|
|
for (o = abfd->sections;
|
|
|
|
|
o != (asection *) NULL;
|
|
|
|
|
o = o->next)
|
|
|
|
|
{
|
|
|
|
|
o->reloc_count = 0;
|
|
|
|
|
for (p = o->link_order_head;
|
|
|
|
|
p != (struct bfd_link_order *) NULL;
|
|
|
|
|
p = p->next)
|
|
|
|
|
{
|
|
|
|
|
if (p->type == bfd_indirect_link_order)
|
|
|
|
|
{
|
|
|
|
|
asection *input_section;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
bfd_size_type relsize;
|
|
|
|
|
arelent **relocs;
|
|
|
|
|
bfd_size_type reloc_count;
|
|
|
|
|
|
|
|
|
|
input_section = p->u.indirect.section;
|
|
|
|
|
input_bfd = input_section->owner;
|
|
|
|
|
relsize = bfd_get_reloc_upper_bound (input_bfd,
|
|
|
|
|
input_section);
|
|
|
|
|
relocs = (arelent **) bfd_xmalloc (relsize);
|
|
|
|
|
reloc_count =
|
|
|
|
|
bfd_canonicalize_reloc (input_bfd, input_section,
|
|
|
|
|
relocs,
|
|
|
|
|
bfd_get_outsymbols (input_bfd));
|
|
|
|
|
BFD_ASSERT (reloc_count == input_section->reloc_count);
|
|
|
|
|
o->reloc_count += reloc_count;
|
|
|
|
|
free (relocs);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (o->reloc_count > 0)
|
|
|
|
|
{
|
|
|
|
|
o->orelocation = ((arelent **)
|
|
|
|
|
bfd_alloc (abfd,
|
|
|
|
|
(o->reloc_count
|
|
|
|
|
* sizeof (arelent *))));
|
|
|
|
|
/* Reset the count so that it can be used as an index
|
|
|
|
|
when putting in the output relocs. */
|
|
|
|
|
o->reloc_count = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle all the link order information for the sections. */
|
|
|
|
|
for (o = abfd->sections;
|
|
|
|
|
o != (asection *) NULL;
|
|
|
|
|
o = o->next)
|
|
|
|
|
{
|
|
|
|
|
for (p = o->link_order_head;
|
|
|
|
|
p != (struct bfd_link_order *) NULL;
|
|
|
|
|
p = p->next)
|
|
|
|
|
{
|
1994-01-07 04:01:42 +08:00
|
|
|
|
if (! _bfd_default_link_order (abfd, info, o, p))
|
|
|
|
|
return false;
|
1993-12-31 04:03:34 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add an output symbol to the output BFD. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
generic_add_output_symbol (output_bfd, psymalloc, sym)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
size_t *psymalloc;
|
|
|
|
|
asymbol *sym;
|
|
|
|
|
{
|
|
|
|
|
if (output_bfd->symcount >= *psymalloc)
|
|
|
|
|
{
|
|
|
|
|
asymbol **newsyms;
|
|
|
|
|
|
|
|
|
|
if (*psymalloc == 0)
|
|
|
|
|
*psymalloc = 124;
|
|
|
|
|
else
|
|
|
|
|
*psymalloc *= 2;
|
|
|
|
|
if (output_bfd->outsymbols == (asymbol **) NULL)
|
|
|
|
|
newsyms = (asymbol **) malloc (*psymalloc * sizeof (asymbol *));
|
|
|
|
|
else
|
|
|
|
|
newsyms = (asymbol **) realloc (output_bfd->outsymbols,
|
|
|
|
|
*psymalloc * sizeof (asymbol *));
|
|
|
|
|
if (newsyms == (asymbol **) NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_error = no_memory;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
output_bfd->outsymbols = newsyms;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output_bfd->outsymbols[output_bfd->symcount] = sym;
|
|
|
|
|
++output_bfd->symcount;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle the symbols for an input BFD. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
size_t *psymalloc;
|
|
|
|
|
{
|
|
|
|
|
size_t symsize;
|
|
|
|
|
asymbol **sym_ptr;
|
|
|
|
|
asymbol **sym_end;
|
|
|
|
|
|
|
|
|
|
symsize = get_symtab_upper_bound (input_bfd);
|
|
|
|
|
input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
|
|
|
|
|
input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
|
|
|
|
|
input_bfd->outsymbols);
|
|
|
|
|
|
|
|
|
|
/* Create a filename symbol if we are supposed to. */
|
|
|
|
|
if (info->create_object_symbols_section != (asection *) NULL)
|
|
|
|
|
{
|
|
|
|
|
asection *sec;
|
|
|
|
|
|
|
|
|
|
for (sec = input_bfd->sections;
|
|
|
|
|
sec != (asection *) NULL;
|
|
|
|
|
sec = sec->next)
|
|
|
|
|
{
|
|
|
|
|
if (sec->output_section == info->create_object_symbols_section)
|
|
|
|
|
{
|
|
|
|
|
asymbol *newsym;
|
|
|
|
|
|
|
|
|
|
newsym = bfd_make_empty_symbol (input_bfd);
|
|
|
|
|
newsym->name = input_bfd->filename;
|
|
|
|
|
newsym->value = 0;
|
|
|
|
|
newsym->flags = BSF_LOCAL | BSF_FILE;
|
|
|
|
|
newsym->section = sec;
|
|
|
|
|
|
|
|
|
|
if (! generic_add_output_symbol (output_bfd, psymalloc,
|
|
|
|
|
newsym))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Adjust the values of the globally visible symbols, and write out
|
|
|
|
|
local symbols. */
|
|
|
|
|
sym_ptr = bfd_get_outsymbols (input_bfd);
|
|
|
|
|
sym_end = sym_ptr + bfd_get_symcount (input_bfd);
|
|
|
|
|
for (; sym_ptr < sym_end; sym_ptr++)
|
|
|
|
|
{
|
|
|
|
|
asymbol *sym;
|
|
|
|
|
struct generic_link_hash_entry *h;
|
|
|
|
|
boolean output;
|
|
|
|
|
|
|
|
|
|
h = (struct generic_link_hash_entry *) NULL;
|
|
|
|
|
sym = *sym_ptr;
|
|
|
|
|
if ((sym->flags & (BSF_INDIRECT
|
|
|
|
|
| BSF_WARNING
|
|
|
|
|
| BSF_GLOBAL
|
|
|
|
|
| BSF_CONSTRUCTOR
|
|
|
|
|
| BSF_WEAK)) != 0
|
|
|
|
|
|| bfd_get_section (sym) == &bfd_und_section
|
|
|
|
|
|| bfd_is_com_section (bfd_get_section (sym))
|
|
|
|
|
|| bfd_get_section (sym) == &bfd_ind_section)
|
|
|
|
|
{
|
|
|
|
|
h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
|
|
|
|
|
bfd_asymbol_name (sym),
|
|
|
|
|
false, false, true);
|
|
|
|
|
if (h != (struct generic_link_hash_entry *) NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Force all references to this symbol to point to
|
|
|
|
|
the same area in memory. It is possible that
|
|
|
|
|
this routine will be called with a hash table
|
|
|
|
|
other than a generic hash table, so we double
|
|
|
|
|
check that. */
|
|
|
|
|
if (info->hash->creator == input_bfd->xvec)
|
|
|
|
|
{
|
|
|
|
|
if (h->sym != (asymbol *) NULL)
|
|
|
|
|
*sym_ptr = sym = h->sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (h->root.type)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case bfd_link_hash_new:
|
|
|
|
|
abort ();
|
|
|
|
|
case bfd_link_hash_undefined:
|
|
|
|
|
case bfd_link_hash_weak:
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_defined:
|
|
|
|
|
sym->value = h->root.u.def.value;
|
|
|
|
|
sym->section = h->root.u.def.section;
|
|
|
|
|
sym->flags |= BSF_GLOBAL;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_common:
|
|
|
|
|
sym->value = h->root.u.c.size;
|
|
|
|
|
sym->flags |= BSF_GLOBAL;
|
|
|
|
|
/* We do not set the section of the symbol to
|
|
|
|
|
c.section. c.section is saved so that we know
|
|
|
|
|
where to allocate the symbol if we define it. In
|
|
|
|
|
this case the type is still bfd_link_hash_common,
|
|
|
|
|
so we did not define it, so we do not want to use
|
|
|
|
|
that section. */
|
|
|
|
|
BFD_ASSERT (bfd_is_com_section (sym->section));
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This switch is straight from the old code in
|
|
|
|
|
write_file_locals in ldsym.c. */
|
|
|
|
|
if (info->strip == strip_some
|
|
|
|
|
&& (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
|
|
|
|
|
false, false)
|
|
|
|
|
== (struct bfd_hash_entry *) NULL))
|
|
|
|
|
output = false;
|
|
|
|
|
else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* If this symbol is marked as occurring now, rather
|
|
|
|
|
than at the end, output it now. This is used for
|
|
|
|
|
COFF C_EXT FCN symbols. FIXME: There must be a
|
|
|
|
|
better way. */
|
|
|
|
|
if (bfd_asymbol_bfd (sym) == input_bfd
|
|
|
|
|
&& (sym->flags & BSF_NOT_AT_END) != 0)
|
|
|
|
|
output = true;
|
|
|
|
|
else
|
|
|
|
|
output = false;
|
|
|
|
|
}
|
|
|
|
|
else if (sym->section == &bfd_ind_section)
|
|
|
|
|
output = false;
|
|
|
|
|
else if ((sym->flags & BSF_DEBUGGING) != 0)
|
|
|
|
|
{
|
|
|
|
|
if (info->strip == strip_none)
|
|
|
|
|
output = true;
|
|
|
|
|
else
|
|
|
|
|
output = false;
|
|
|
|
|
}
|
|
|
|
|
else if (sym->section == &bfd_und_section
|
|
|
|
|
|| bfd_is_com_section (sym->section))
|
|
|
|
|
output = false;
|
|
|
|
|
else if ((sym->flags & BSF_LOCAL) != 0)
|
|
|
|
|
{
|
|
|
|
|
if ((sym->flags & BSF_WARNING) != 0)
|
|
|
|
|
output = false;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
switch (info->discard)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case discard_all:
|
|
|
|
|
output = false;
|
|
|
|
|
break;
|
|
|
|
|
case discard_l:
|
|
|
|
|
if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
|
|
|
|
|
&& (info->lprefix_len == 1
|
|
|
|
|
|| strncmp (bfd_asymbol_name (sym), info->lprefix,
|
|
|
|
|
info->lprefix_len) == 0))
|
|
|
|
|
output = false;
|
|
|
|
|
else
|
|
|
|
|
output = true;
|
|
|
|
|
break;
|
|
|
|
|
case discard_none:
|
|
|
|
|
output = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if ((sym->flags & BSF_CONSTRUCTOR))
|
|
|
|
|
{
|
|
|
|
|
if (info->strip != strip_all)
|
|
|
|
|
output = true;
|
|
|
|
|
else
|
|
|
|
|
output = false;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
if (output)
|
|
|
|
|
{
|
|
|
|
|
if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
|
|
|
|
|
return false;
|
|
|
|
|
if (h != (struct generic_link_hash_entry *) NULL)
|
|
|
|
|
h->root.written = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out a global symbol, if it hasn't already been written out.
|
|
|
|
|
This is called for each symbol in the hash table. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_generic_link_write_global_symbol (h, data)
|
|
|
|
|
struct generic_link_hash_entry *h;
|
|
|
|
|
PTR data;
|
|
|
|
|
{
|
|
|
|
|
struct generic_write_global_symbol_info *wginfo =
|
|
|
|
|
(struct generic_write_global_symbol_info *) data;
|
|
|
|
|
asymbol *sym;
|
|
|
|
|
|
|
|
|
|
if (h->root.written)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
if (h->sym != (asymbol *) NULL)
|
|
|
|
|
{
|
|
|
|
|
sym = h->sym;
|
|
|
|
|
BFD_ASSERT (strcmp (bfd_asymbol_name (sym), h->root.root.string) == 0);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
sym = bfd_make_empty_symbol (wginfo->output_bfd);
|
|
|
|
|
sym->name = h->root.root.string;
|
|
|
|
|
sym->flags = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (h->root.type)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case bfd_link_hash_new:
|
|
|
|
|
abort ();
|
|
|
|
|
case bfd_link_hash_undefined:
|
|
|
|
|
sym->section = &bfd_und_section;
|
|
|
|
|
sym->value = 0;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_weak:
|
|
|
|
|
sym->section = &bfd_und_section;
|
|
|
|
|
sym->value = 0;
|
|
|
|
|
sym->flags |= BSF_WEAK;
|
|
|
|
|
case bfd_link_hash_defined:
|
|
|
|
|
sym->section = h->root.u.def.section;
|
|
|
|
|
sym->value = h->root.u.def.value;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_common:
|
|
|
|
|
sym->value = h->root.u.c.size;
|
|
|
|
|
/* Do not set the section; see _bfd_generic_link_output_symbols. */
|
|
|
|
|
BFD_ASSERT (bfd_is_com_section (sym->section));
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_indirect:
|
|
|
|
|
case bfd_link_hash_warning:
|
|
|
|
|
/* FIXME: What should we do here? */
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sym->flags |= BSF_GLOBAL;
|
|
|
|
|
|
|
|
|
|
if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
|
|
|
|
|
sym))
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: No way to return failure. */
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
h->root.written = true;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Allocate a new link_order for a section. */
|
|
|
|
|
|
|
|
|
|
struct bfd_link_order *
|
|
|
|
|
bfd_new_link_order (abfd, section)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asection *section;
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_order *new;
|
|
|
|
|
|
|
|
|
|
new = ((struct bfd_link_order *)
|
|
|
|
|
bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
|
|
|
|
|
|
|
|
|
|
new->type = bfd_undefined_link_order;
|
|
|
|
|
new->offset = 0;
|
|
|
|
|
new->size = 0;
|
|
|
|
|
new->next = (struct bfd_link_order *) NULL;
|
|
|
|
|
|
|
|
|
|
if (section->link_order_tail != (struct bfd_link_order *) NULL)
|
|
|
|
|
section->link_order_tail->next = new;
|
|
|
|
|
else
|
|
|
|
|
section->link_order_head = new;
|
|
|
|
|
section->link_order_tail = new;
|
|
|
|
|
|
|
|
|
|
return new;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Default link order processing routine. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
_bfd_default_link_order (abfd, info, sec, link_order)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
asection *sec;
|
|
|
|
|
struct bfd_link_order *link_order;
|
|
|
|
|
{
|
|
|
|
|
switch (link_order->type)
|
|
|
|
|
{
|
|
|
|
|
case bfd_undefined_link_order:
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
case bfd_indirect_link_order:
|
1994-01-07 04:01:42 +08:00
|
|
|
|
return default_indirect_link_order (abfd, info, sec, link_order);
|
1993-12-31 04:03:34 +08:00
|
|
|
|
case bfd_fill_link_order:
|
|
|
|
|
return default_fill_link_order (abfd, info, sec, link_order);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Default routine to handle a bfd_fill_link_order. */
|
|
|
|
|
|
1994-01-07 04:01:42 +08:00
|
|
|
|
/*ARGSUSED*/
|
1993-12-31 04:03:34 +08:00
|
|
|
|
static boolean
|
|
|
|
|
default_fill_link_order (abfd, info, sec, link_order)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
asection *sec;
|
|
|
|
|
struct bfd_link_order *link_order;
|
|
|
|
|
{
|
|
|
|
|
size_t size;
|
|
|
|
|
char *space;
|
|
|
|
|
size_t i;
|
|
|
|
|
int fill;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
|
|
|
|
|
|
|
|
|
|
size = (size_t) link_order->size;
|
|
|
|
|
space = (char *) alloca (size);
|
|
|
|
|
fill = link_order->u.fill.value;
|
|
|
|
|
for (i = 0; i < size; i += 2)
|
|
|
|
|
space[i] = fill >> 8;
|
|
|
|
|
for (i = 1; i < size; i += 2)
|
|
|
|
|
space[i] = fill;
|
|
|
|
|
return bfd_set_section_contents (abfd, sec, space,
|
|
|
|
|
(file_ptr) link_order->offset,
|
|
|
|
|
link_order->size);
|
|
|
|
|
}
|
1994-01-07 04:01:42 +08:00
|
|
|
|
|
|
|
|
|
/* Default routine to handle a bfd_indirect_link_order. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
default_indirect_link_order (output_bfd, info, output_section, link_order)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
asection *output_section;
|
|
|
|
|
struct bfd_link_order *link_order;
|
|
|
|
|
{
|
|
|
|
|
asection *input_section;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
bfd_byte *contents;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
|
|
|
|
|
|
|
|
|
|
if (link_order->size == 0)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
input_section = link_order->u.indirect.section;
|
|
|
|
|
input_bfd = input_section->owner;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (input_section->output_section == output_section);
|
|
|
|
|
BFD_ASSERT (input_section->output_offset == link_order->offset);
|
|
|
|
|
BFD_ASSERT (bfd_section_size (input_bfd, input_section) == link_order->size);
|
|
|
|
|
|
|
|
|
|
if (info->relocateable
|
1994-01-13 04:33:30 +08:00
|
|
|
|
&& input_section->reloc_count > 0
|
1994-01-07 04:01:42 +08:00
|
|
|
|
&& output_section->orelocation == (arelent **) NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Space has not been allocated for the output relocations.
|
|
|
|
|
This can happen when we are called by a specific backend
|
|
|
|
|
because somebody is attempting to link together different
|
|
|
|
|
types of object files. Handling this case correctly is
|
|
|
|
|
difficult, and sometimes impossible. */
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the canonical symbols. The generic linker will always have
|
|
|
|
|
retrieved them by this point, but we may be being called by a
|
|
|
|
|
specific linker when linking different types of object files
|
|
|
|
|
together. */
|
|
|
|
|
if (bfd_get_outsymbols (input_bfd) == (asymbol **) NULL)
|
|
|
|
|
{
|
|
|
|
|
size_t symsize;
|
|
|
|
|
|
|
|
|
|
symsize = get_symtab_upper_bound (input_bfd);
|
|
|
|
|
input_bfd->outsymbols = (asymbol **) bfd_alloc (input_bfd, symsize);
|
|
|
|
|
input_bfd->symcount = bfd_canonicalize_symtab (input_bfd,
|
|
|
|
|
input_bfd->outsymbols);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get and relocate the section contents. */
|
|
|
|
|
contents = (bfd_byte *) alloca (bfd_section_size (input_bfd, input_section));
|
|
|
|
|
contents = (bfd_get_relocated_section_contents
|
|
|
|
|
(output_bfd, info, link_order, contents, info->relocateable,
|
|
|
|
|
bfd_get_outsymbols (input_bfd)));
|
|
|
|
|
|
|
|
|
|
/* Output the section contents. */
|
|
|
|
|
if (! bfd_set_section_contents (output_bfd, output_section, (PTR) contents,
|
|
|
|
|
link_order->offset, link_order->size))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|