binutils-gdb/gdb/target-float.c

2504 lines
75 KiB
C
Raw Normal View History

Target FP: Introduce target-float.{c,h} This patch introduces the new set of target floating-point handling routines in target-float.{c,h}. In the end, the intention is that this file will contain support for all operations in target FP format, fully replacing both the current doublest.{c,h} and dfp.{c,h}. To begin with, this patch only adds a target_float_is_zero routine, which handles the equivalent of decimal_is_zero for both binary and decimal FP. For the binary case, to avoid conversion to DOUBLEST, this is implemented using the floatformat_classify routine. However, it turns out that floatformat_classify actually has a bug (it was not used to check for zero before), so this is fixed as well. The new routine is used in both value_logical_not and valpy_nonzero. There is one extra twist: the code previously used value_as_double to convert to DOUBLEST and then compare against zero. That routine performs an extra task: it detects invalid floating-point values and raises an error. In any place where value_as_double is removed in favor of some target-float.c routine, we need to replace that check. To keep this check centralized in one place, I've added a new routine is_floating_value, which returns a boolean determining whether a value's type is floating point (binary or decimal), and if so, also performs the validity check. Since we need to check whether a value is FP before calling any of the target-float routines anyway, this seems a good place to add the check without much code size overhead. In some places where we only want to check for floating-point types and not perform a validity check (e.g. for the *output* of an operation), we can use the new is_floating_type routine (in gdbarch) instead. The validity check itself is done by a new target_float_is_valid routine in target-float, encapsulating floatformat_is_valid. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.c (SFILES): Add target-float.c. (HFILES_NO_SRCDIR): Add target-float.h. (COMMON_OBS): Add target-float.o. * target-float.h: New file. * target-float.c: New file. * doublest.c (floatformat_classify): Fix detection of float_zero. * gdbtypes.c (is_floating_type): New function. * gdbtypes.h (is_floating_type): Add prototype. * value.c: Do not include "floatformat.h". (unpack_double): Use target_float_is_valid. (is_floating_value): New function. * value.h (is_floating_value): Add prototype- * valarith.c: Include "target-float.h". (value_logical_not): Use target_float_is_zero. * python/py-value.c: Include "target-float.h". (valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
/* Floating point routines for GDB, the GNU debugger.
Copyright (C) 2017-2019 Free Software Foundation, Inc.
Target FP: Introduce target-float.{c,h} This patch introduces the new set of target floating-point handling routines in target-float.{c,h}. In the end, the intention is that this file will contain support for all operations in target FP format, fully replacing both the current doublest.{c,h} and dfp.{c,h}. To begin with, this patch only adds a target_float_is_zero routine, which handles the equivalent of decimal_is_zero for both binary and decimal FP. For the binary case, to avoid conversion to DOUBLEST, this is implemented using the floatformat_classify routine. However, it turns out that floatformat_classify actually has a bug (it was not used to check for zero before), so this is fixed as well. The new routine is used in both value_logical_not and valpy_nonzero. There is one extra twist: the code previously used value_as_double to convert to DOUBLEST and then compare against zero. That routine performs an extra task: it detects invalid floating-point values and raises an error. In any place where value_as_double is removed in favor of some target-float.c routine, we need to replace that check. To keep this check centralized in one place, I've added a new routine is_floating_value, which returns a boolean determining whether a value's type is floating point (binary or decimal), and if so, also performs the validity check. Since we need to check whether a value is FP before calling any of the target-float routines anyway, this seems a good place to add the check without much code size overhead. In some places where we only want to check for floating-point types and not perform a validity check (e.g. for the *output* of an operation), we can use the new is_floating_type routine (in gdbarch) instead. The validity check itself is done by a new target_float_is_valid routine in target-float, encapsulating floatformat_is_valid. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.c (SFILES): Add target-float.c. (HFILES_NO_SRCDIR): Add target-float.h. (COMMON_OBS): Add target-float.o. * target-float.h: New file. * target-float.c: New file. * doublest.c (floatformat_classify): Fix detection of float_zero. * gdbtypes.c (is_floating_type): New function. * gdbtypes.h (is_floating_type): Add prototype. * value.c: Do not include "floatformat.h". (unpack_double): Use target_float_is_valid. (is_floating_value): New function. * value.h (is_floating_value): Add prototype- * valarith.c: Include "target-float.h". (value_logical_not): Use target_float_is_zero. * python/py-value.c: Include "target-float.h". (valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbtypes.h"
#include "floatformat.h"
#include "target-float.h"
Don't include gdbarch.h from defs.h I touched symtab.h and was surprised to see how many files were rebuilt. I looked into it a bit, and found that defs.h includes gdbarch.h, which in turn includes many things. gdbarch.h is only needed by a minority ofthe files in gdb, so this patch removes the include from defs.h and updates the fallout. I did "wc -l" on the files in build/gdb/.deps; this patch reduces the line count from 139935 to 137030; so there are definitely future build-time savings here. Note that while I configured with --enable-targets=all, it's possible that some *-nat.c file needs an update. I could not test all of these. The buildbot caught a few problems along these lines. gdb/ChangeLog 2019-07-10 Tom Tromey <tom@tromey.com> * defs.h: Don't include gdbarch.h. * aarch64-ravenscar-thread.c, aarch64-tdep.c, alpha-bsd-tdep.h, alpha-linux-tdep.c, alpha-mdebug-tdep.c, arch-utils.h, arm-tdep.h, ax-general.c, btrace.c, buildsym-legacy.c, buildsym.h, c-lang.c, cli/cli-decode.h, cli/cli-dump.c, cli/cli-script.h, cli/cli-style.h, coff-pe-read.h, compile/compile-c-support.c, compile/compile-cplus.h, compile/compile-loc2c.c, corefile.c, cp-valprint.c, cris-linux-tdep.c, ctf.c, d-lang.c, d-namespace.c, dcache.c, dicos-tdep.c, dictionary.c, disasm-selftests.c, dummy-frame.c, dummy-frame.h, dwarf2-frame-tailcall.c, dwarf2expr.c, expression.h, f-lang.c, frame-base.c, frame-unwind.c, frv-linux-tdep.c, gdbarch-selftests.c, gdbtypes.h, go-lang.c, hppa-nbsd-tdep.c, hppa-obsd-tdep.c, i386-dicos-tdep.c, i386-tdep.h, ia64-vms-tdep.c, interps.h, language.c, linux-record.c, location.h, m2-lang.c, m32r-linux-tdep.c, mem-break.c, memattr.c, mn10300-linux-tdep.c, nios2-linux-tdep.c, objfiles.h, opencl-lang.c, or1k-linux-tdep.c, p-lang.c, parser-defs.h, ppc-tdep.h, probe.h, python/py-record-btrace.c, record-btrace.c, record.h, regcache-dump.c, regcache.h, riscv-fbsd-tdep.c, riscv-linux-tdep.c, rust-exp.y, sh-linux-tdep.c, sh-nbsd-tdep.c, source-cache.c, sparc-nbsd-tdep.c, sparc-obsd-tdep.c, sparc-ravenscar-thread.c, sparc64-fbsd-tdep.c, std-regs.c, target-descriptions.h, target-float.c, tic6x-linux-tdep.c, tilegx-linux-tdep.c, top.c, tracefile.c, trad-frame.c, type-stack.h, ui-style.c, utils.c, utils.h, valarith.c, valprint.c, varobj.c, x86-tdep.c, xml-support.h, xtensa-linux-tdep.c, cli/cli-cmds.h: Update. * s390-linux-nat.c, procfs.c, inf-ptrace.c: Likewise.
2019-06-10 05:21:02 +08:00
#include "gdbarch.h"
Target FP: Introduce target-float.{c,h} This patch introduces the new set of target floating-point handling routines in target-float.{c,h}. In the end, the intention is that this file will contain support for all operations in target FP format, fully replacing both the current doublest.{c,h} and dfp.{c,h}. To begin with, this patch only adds a target_float_is_zero routine, which handles the equivalent of decimal_is_zero for both binary and decimal FP. For the binary case, to avoid conversion to DOUBLEST, this is implemented using the floatformat_classify routine. However, it turns out that floatformat_classify actually has a bug (it was not used to check for zero before), so this is fixed as well. The new routine is used in both value_logical_not and valpy_nonzero. There is one extra twist: the code previously used value_as_double to convert to DOUBLEST and then compare against zero. That routine performs an extra task: it detects invalid floating-point values and raises an error. In any place where value_as_double is removed in favor of some target-float.c routine, we need to replace that check. To keep this check centralized in one place, I've added a new routine is_floating_value, which returns a boolean determining whether a value's type is floating point (binary or decimal), and if so, also performs the validity check. Since we need to check whether a value is FP before calling any of the target-float routines anyway, this seems a good place to add the check without much code size overhead. In some places where we only want to check for floating-point types and not perform a validity check (e.g. for the *output* of an operation), we can use the new is_floating_type routine (in gdbarch) instead. The validity check itself is done by a new target_float_is_valid routine in target-float, encapsulating floatformat_is_valid. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.c (SFILES): Add target-float.c. (HFILES_NO_SRCDIR): Add target-float.h. (COMMON_OBS): Add target-float.o. * target-float.h: New file. * target-float.c: New file. * doublest.c (floatformat_classify): Fix detection of float_zero. * gdbtypes.c (is_floating_type): New function. * gdbtypes.h (is_floating_type): Add prototype. * value.c: Do not include "floatformat.h". (unpack_double): Use target_float_is_valid. (is_floating_value): New function. * value.h (is_floating_value): Add prototype- * valarith.c: Include "target-float.h". (value_logical_not): Use target_float_is_zero. * python/py-value.c: Include "target-float.h". (valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Target floating-point operations.
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
We provide multiple implementations of those operations, which differ
by the host-side intermediate format they perform computations in.
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
Those multiple implementations all derive from the following abstract
base class, which specifies the set of operations to be implemented. */
class target_float_ops
{
public:
virtual std::string to_string (const gdb_byte *addr, const struct type *type,
const char *format) const = 0;
virtual bool from_string (gdb_byte *addr, const struct type *type,
const std::string &string) const = 0;
virtual LONGEST to_longest (const gdb_byte *addr,
const struct type *type) const = 0;
virtual void from_longest (gdb_byte *addr, const struct type *type,
LONGEST val) const = 0;
virtual void from_ulongest (gdb_byte *addr, const struct type *type,
ULONGEST val) const = 0;
virtual double to_host_double (const gdb_byte *addr,
const struct type *type) const = 0;
virtual void from_host_double (gdb_byte *addr, const struct type *type,
double val) const = 0;
virtual void convert (const gdb_byte *from, const struct type *from_type,
gdb_byte *to, const struct type *to_type) const = 0;
virtual void binop (enum exp_opcode opcode,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res) const = 0;
virtual int compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y) const = 0;
};
/* Helper routines operating on binary floating-point data. */
#include <cmath>
#include <limits>
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* Different kinds of floatformat numbers recognized by
floatformat_classify. To avoid portability issues, we use local
values instead of the C99 macros (FP_NAN et cetera). */
enum float_kind {
float_nan,
float_infinite,
float_zero,
float_normal,
float_subnormal
};
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
going to bother with trying to muck around with whether it is defined in
a system header, what we do if not, etc. */
#define FLOATFORMAT_CHAR_BIT 8
/* The number of bytes that the largest floating-point type that we
can convert to doublest will need. */
#define FLOATFORMAT_LARGEST_BYTES 16
/* Return the floatformat's total size in host bytes. */
static size_t
floatformat_totalsize_bytes (const struct floatformat *fmt)
{
return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
/ FLOATFORMAT_CHAR_BIT);
}
/* Return the precision of the floating point format FMT. */
static int
floatformat_precision (const struct floatformat *fmt)
{
/* Assume the precision of and IBM long double is twice the precision
of the underlying double. This matches what GCC does. */
if (fmt->split_half)
return 2 * floatformat_precision (fmt->split_half);
/* Otherwise, the precision is the size of mantissa in bits,
including the implicit bit if present. */
int prec = fmt->man_len;
if (fmt->intbit == floatformat_intbit_no)
prec++;
return prec;
}
/* Normalize the byte order of FROM into TO. If no normalization is
needed then FMT->byteorder is returned and TO is not changed;
otherwise the format of the normalized form in TO is returned. */
static enum floatformat_byteorders
floatformat_normalize_byteorder (const struct floatformat *fmt,
const void *from, void *to)
{
const unsigned char *swapin;
unsigned char *swapout;
int words;
if (fmt->byteorder == floatformat_little
|| fmt->byteorder == floatformat_big)
return fmt->byteorder;
words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
words >>= 2;
swapout = (unsigned char *)to;
swapin = (const unsigned char *)from;
if (fmt->byteorder == floatformat_vax)
{
while (words-- > 0)
{
*swapout++ = swapin[1];
*swapout++ = swapin[0];
*swapout++ = swapin[3];
*swapout++ = swapin[2];
swapin += 4;
}
/* This may look weird, since VAX is little-endian, but it is
easier to translate to big-endian than to little-endian. */
return floatformat_big;
}
else
{
gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
while (words-- > 0)
{
*swapout++ = swapin[3];
*swapout++ = swapin[2];
*swapout++ = swapin[1];
*swapout++ = swapin[0];
swapin += 4;
}
return floatformat_big;
}
}
/* Extract a field which starts at START and is LEN bytes long. DATA and
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
static unsigned long
get_field (const bfd_byte *data, enum floatformat_byteorders order,
unsigned int total_len, unsigned int start, unsigned int len)
{
unsigned long result;
unsigned int cur_byte;
int cur_bitshift;
/* Caller must byte-swap words before calling this routine. */
gdb_assert (order == floatformat_little || order == floatformat_big);
/* Start at the least significant part of the field. */
if (order == floatformat_little)
{
/* We start counting from the other end (i.e, from the high bytes
rather than the low bytes). As such, we need to be concerned
with what happens if bit 0 doesn't start on a byte boundary.
I.e, we need to properly handle the case where total_len is
not evenly divisible by 8. So we compute ``excess'' which
represents the number of bits from the end of our starting
byte needed to get to bit 0. */
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
- FLOATFORMAT_CHAR_BIT;
}
else
{
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
cur_bitshift =
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
}
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
result = *(data + cur_byte) >> (-cur_bitshift);
else
result = 0;
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
/* Move towards the most significant part of the field. */
while (cur_bitshift < len)
{
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
cur_bitshift += FLOATFORMAT_CHAR_BIT;
switch (order)
{
case floatformat_little:
++cur_byte;
break;
case floatformat_big:
--cur_byte;
break;
}
}
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
/* Mask out bits which are not part of the field. */
result &= ((1UL << len) - 1);
return result;
}
/* Set a field which starts at START and is LEN bytes long. DATA and
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
static void
put_field (unsigned char *data, enum floatformat_byteorders order,
unsigned int total_len, unsigned int start, unsigned int len,
unsigned long stuff_to_put)
{
unsigned int cur_byte;
int cur_bitshift;
/* Caller must byte-swap words before calling this routine. */
gdb_assert (order == floatformat_little || order == floatformat_big);
/* Start at the least significant part of the field. */
if (order == floatformat_little)
{
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
- FLOATFORMAT_CHAR_BIT;
}
else
{
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
cur_bitshift =
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
}
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
{
*(data + cur_byte) &=
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
<< (-cur_bitshift));
*(data + cur_byte) |=
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
}
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
/* Move towards the most significant part of the field. */
while (cur_bitshift < len)
{
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
{
/* This is the last byte. */
*(data + cur_byte) &=
~((1 << (len - cur_bitshift)) - 1);
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
}
else
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
cur_bitshift += FLOATFORMAT_CHAR_BIT;
if (order == floatformat_little)
++cur_byte;
else
--cur_byte;
}
}
/* Check if VAL (which is assumed to be a floating point number whose
format is described by FMT) is negative. */
static int
floatformat_is_negative (const struct floatformat *fmt,
const bfd_byte *uval)
{
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
gdb_assert (fmt != NULL);
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* An IBM long double (a two element array of double) always takes the
sign of the first double. */
if (fmt->split_half)
fmt = fmt->split_half;
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
if (order != fmt->byteorder)
uval = newfrom;
return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
}
/* Check if VAL is "not a number" (NaN) for FMT. */
static enum float_kind
floatformat_classify (const struct floatformat *fmt,
const bfd_byte *uval)
{
long exponent;
unsigned long mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
int mant_zero;
gdb_assert (fmt != NULL);
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* An IBM long double (a two element array of double) can be classified
by looking at the first double. inf and nan are specified as
ignoring the second double. zero and subnormal will always have
the second double 0.0 if the long double is correctly rounded. */
if (fmt->split_half)
fmt = fmt->split_half;
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
if (order != fmt->byteorder)
uval = newfrom;
exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len);
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
mant_zero = 1;
while (mant_bits_left > 0)
{
mant_bits = std::min (mant_bits_left, 32);
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
/* If there is an explicit integer bit, mask it off. */
if (mant_off == fmt->man_start
&& fmt->intbit == floatformat_intbit_yes)
mant &= ~(1 << (mant_bits - 1));
if (mant)
{
mant_zero = 0;
break;
}
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
/* If exp_nan is not set, assume that inf, NaN, and subnormals are not
supported. */
if (! fmt->exp_nan)
{
if (mant_zero)
return float_zero;
else
return float_normal;
}
if (exponent == 0)
{
if (mant_zero)
return float_zero;
else
return float_subnormal;
}
if (exponent == fmt->exp_nan)
{
if (mant_zero)
return float_infinite;
else
return float_nan;
}
return float_normal;
}
/* Convert the mantissa of VAL (which is assumed to be a floating
point number whose format is described by FMT) into a hexadecimal
and store it in a static string. Return a pointer to that string. */
static const char *
floatformat_mantissa (const struct floatformat *fmt,
const bfd_byte *val)
{
unsigned char *uval = (unsigned char *) val;
unsigned long mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
static char res[50];
char buf[9];
int len;
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
gdb_assert (fmt != NULL);
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* For IBM long double (a two element array of double), return the
mantissa of the first double. The problem with returning the
actual mantissa from both doubles is that there can be an
arbitrary number of implied 0's or 1's between the mantissas
of the first and second double. In any case, this function
is only used for dumping out nans, and a nan is specified to
ignore the value in the second double. */
if (fmt->split_half)
fmt = fmt->split_half;
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
if (order != fmt->byteorder)
uval = newfrom;
if (! fmt->exp_nan)
return 0;
/* Make sure we have enough room to store the mantissa. */
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
mant_off = fmt->man_start;
mant_bits_left = fmt->man_len;
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
len = xsnprintf (res, sizeof res, "%lx", mant);
mant_off += mant_bits;
mant_bits_left -= mant_bits;
while (mant_bits_left > 0)
{
mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
xsnprintf (buf, sizeof buf, "%08lx", mant);
gdb_assert (len + strlen (buf) <= sizeof res);
strcat (res, buf);
mant_off += 32;
mant_bits_left -= 32;
}
return res;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert printf format string FORMAT to the otherwise equivalent string
which may be used to print a host floating-point number using the length
modifier LENGTH (which may be 0 if none is needed). If FORMAT is null,
return a format appropriate to print the full precision of a target
floating-point number of format FMT. */
static std::string
floatformat_printf_format (const struct floatformat *fmt,
const char *format, char length)
{
std::string host_format;
char conversion;
if (format == nullptr)
{
/* If no format was specified, print the number using a format string
where the precision is set to the DECIMAL_DIG value for the given
floating-point format. This value is computed as
ceil(1 + p * log10(b)),
where p is the precision of the floating-point format in bits, and
b is the base (which is always 2 for the formats we support). */
const double log10_2 = .30102999566398119521;
double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2;
int decimal_dig = d_decimal_dig;
if (decimal_dig < d_decimal_dig)
decimal_dig++;
host_format = string_printf ("%%.%d", decimal_dig);
conversion = 'g';
}
else
{
/* Use the specified format, stripping out the conversion character
and length modifier, if present. */
size_t len = strlen (format);
gdb_assert (len > 1);
conversion = format[--len];
gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g'
|| conversion == 'E' || conversion == 'G');
if (format[len - 1] == 'L')
len--;
host_format = std::string (format, len);
}
/* Add the length modifier and conversion character appropriate for
handling the appropriate host floating-point type. */
if (length)
host_format += length;
host_format += conversion;
return host_format;
}
/* Implementation of target_float_ops using the host floating-point type T
as intermediate type. */
template<typename T> class host_float_ops : public target_float_ops
{
public:
std::string to_string (const gdb_byte *addr, const struct type *type,
const char *format) const override;
bool from_string (gdb_byte *addr, const struct type *type,
const std::string &string) const override;
LONGEST to_longest (const gdb_byte *addr,
const struct type *type) const override;
void from_longest (gdb_byte *addr, const struct type *type,
LONGEST val) const override;
void from_ulongest (gdb_byte *addr, const struct type *type,
ULONGEST val) const override;
double to_host_double (const gdb_byte *addr,
const struct type *type) const override;
void from_host_double (gdb_byte *addr, const struct type *type,
double val) const override;
void convert (const gdb_byte *from, const struct type *from_type,
gdb_byte *to, const struct type *to_type) const override;
void binop (enum exp_opcode opcode,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res) const override;
int compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y) const override;
private:
void from_target (const struct floatformat *fmt,
const gdb_byte *from, T *to) const;
void from_target (const struct type *type,
const gdb_byte *from, T *to) const;
void to_target (const struct type *type,
const T *from, gdb_byte *to) const;
void to_target (const struct floatformat *fmt,
const T *from, gdb_byte *to) const;
};
/* Convert TO/FROM target to the host floating-point format T.
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
If the host and target formats agree, we just copy the raw data
into the appropriate type of variable and return, letting the host
increase precision as necessary. Otherwise, we call the conversion
routine and let it do the dirty work. Note that even if the target
and host floating-point formats match, the length of the types
might still be different, so the conversion routines must make sure
to not overrun any buffers. For example, on x86, long double is
the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
64-bit, for alignment reasons. See comment in store_typed_floating
for a discussion about zeroing out remaining bytes in the target
buffer. */
static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
static const struct floatformat *host_long_double_format
= GDB_HOST_LONG_DOUBLE_FORMAT;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert target floating-point value at FROM in format FMT to host
floating-point format of type T. */
template<typename T> void
host_float_ops<T>::from_target (const struct floatformat *fmt,
const gdb_byte *from, T *to) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
gdb_assert (fmt != NULL);
if (fmt == host_float_format)
{
float val = 0;
memcpy (&val, from, floatformat_totalsize_bytes (fmt));
*to = val;
return;
}
else if (fmt == host_double_format)
{
double val = 0;
memcpy (&val, from, floatformat_totalsize_bytes (fmt));
*to = val;
return;
}
else if (fmt == host_long_double_format)
{
long double val = 0;
memcpy (&val, from, floatformat_totalsize_bytes (fmt));
*to = val;
return;
}
unsigned char *ufrom = (unsigned char *) from;
long exponent;
unsigned long mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
int special_exponent; /* It's a NaN, denorm or zero. */
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
enum float_kind kind;
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* For non-numbers, reuse libiberty's logic to find the correct
format. We do not lose any precision in this case by passing
through a double. */
kind = floatformat_classify (fmt, (const bfd_byte *) from);
if (kind == float_infinite || kind == float_nan)
{
double dto;
floatformat_to_double /* ARI: floatformat_to_double */
(fmt->split_half ? fmt->split_half : fmt, from, &dto);
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
*to = (T) dto;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
return;
}
order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
if (order != fmt->byteorder)
ufrom = newfrom;
if (fmt->split_half)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T dtop, dbot;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
from_target (fmt->split_half, ufrom, &dtop);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* Preserve the sign of 0, which is the sign of the top
half. */
if (dtop == 0.0)
{
*to = dtop;
return;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
from_target (fmt->split_half,
ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, &dbot);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
*to = dtop + dbot;
return;
}
exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len);
/* Note that if exponent indicates a NaN, we can't really do anything useful
(not knowing if the host has NaN's, or how to build one). So it will
end up as an infinity or something close; that is OK. */
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
Simple -Wshadow=local fixes This fixes all the straightforward -Wshadow=local warnings in gdb. A few standard approaches are used here: * Renaming an inner (or outer, but more commonly inner) variable; * Lowering a declaration to avoid a clash; * Moving a declaration into a more inner scope to avoid a clash, including the special case of moving a declaration into a loop header. I did not consider any of the changes in this patch to be particularly noteworthy, though of course they should all still be examined. gdb/ChangeLog 2018-10-04 Tom Tromey <tom@tromey.com> * ctf.c (SET_ARRAY_FIELD): Rename "u32". * p-valprint.c (pascal_val_print): Split inner "i" variable. * xtensa-tdep.c (xtensa_push_dummy_call): Declare "i" in loop header. * xstormy16-tdep.c (xstormy16_push_dummy_call): Declare "val" in more inner scope. * xcoffread.c (read_xcoff_symtab): Rename inner "symbol". * varobj.c (varobj_update): Rename inner "newobj", "type_changed". * valprint.c (generic_emit_char): Rename inner "buf". * valops.c (find_overload_match): Rename inner "temp". (value_struct_elt_for_reference): Declare "v" in more inner scope. * v850-tdep.c (v850_push_dummy_call): Rename "len". * unittests/array-view-selftests.c (run_tests): Rename inner "vec". * tui/tui-stack.c (tui_show_frame_info): Declare "i" in loop header. * tracepoint.c (merge_uploaded_trace_state_variables): Declare "tsv" in more inner scope. (print_one_static_tracepoint_marker): Rename inner "tuple_emitter". * tic6x-tdep.c (tic6x_analyze_prologue): Declare "inst" lower. (tic6x_push_dummy_call): Don't redeclare "addr". * target-float.c: Declare "dto" lower. * symtab.c (lookup_local_symbol): Rename inner "sym". (find_pc_sect_line): Rename inner "pc". * stack.c (print_frame): Don't redeclare "gdbarch". (return_command): Rename inner "gdbarch". * s390-tdep.c (s390_prologue_frame_unwind_cache): Renam inner "sp". * rust-lang.c (rust_internal_print_type): Declare "i" in loop header. * rs6000-tdep.c (ppc_process_record): Rename inner "addr". * riscv-tdep.c (riscv_push_dummy_call): Declare "info" in inner scope. * remote.c (remote_target::update_thread_list): Don't redeclare "tp". (remote_target::process_initial_stop_replies): Rename inner "thread". (remote_target::remote_parse_stop_reply): Don't redeclare "p". (remote_target::wait_as): Don't redeclare "stop_reply". (remote_target::get_thread_local_address): Rename inner "result". (remote_target::get_tib_address): Likewise.
2018-04-22 06:16:27 +08:00
T dto = 0.0;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
/* Don't bias NaNs. Use minimum exponent for denorms. For
simplicity, we don't check for zero as the exponent doesn't matter.
Note the cast to int; exp_bias is unsigned, so it's important to
make sure the operation is done in signed arithmetic. */
if (!special_exponent)
exponent -= fmt->exp_bias;
else if (exponent == 0)
exponent = 1 - fmt->exp_bias;
/* Build the result algebraically. Might go infinite, underflow, etc;
who cares. */
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
increment the exponent by one to account for the integer bit. */
if (!special_exponent)
{
if (fmt->intbit == floatformat_intbit_no)
dto = ldexp (1.0, exponent);
else
exponent++;
}
while (mant_bits_left > 0)
{
mant_bits = std::min (mant_bits_left, 32);
mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
dto += ldexp ((T) mant, exponent - mant_bits);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
exponent -= mant_bits;
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
/* Negate it if negative. */
if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
dto = -dto;
*to = dto;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> void
host_float_ops<T>::from_target (const struct type *type,
const gdb_byte *from, T *to) const
{
from_target (floatformat_from_type (type), from, to);
}
/* Convert host floating-point value of type T to target floating-point
value in format FMT and store at TO. */
template<typename T> void
host_float_ops<T>::to_target (const struct floatformat *fmt,
const T *from, gdb_byte *to) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
gdb_assert (fmt != NULL);
if (fmt == host_float_format)
{
float val = *from;
memcpy (to, &val, floatformat_totalsize_bytes (fmt));
return;
}
else if (fmt == host_double_format)
{
double val = *from;
memcpy (to, &val, floatformat_totalsize_bytes (fmt));
return;
}
else if (fmt == host_long_double_format)
{
long double val = *from;
memcpy (to, &val, floatformat_totalsize_bytes (fmt));
return;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T dfrom;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
int exponent;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T mant;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
unsigned int mant_bits, mant_off;
int mant_bits_left;
unsigned char *uto = (unsigned char *) to;
enum floatformat_byteorders order = fmt->byteorder;
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
if (order != floatformat_little)
order = floatformat_big;
if (order != fmt->byteorder)
uto = newto;
memcpy (&dfrom, from, sizeof (dfrom));
memset (uto, 0, floatformat_totalsize_bytes (fmt));
if (fmt->split_half)
{
/* Use static volatile to ensure that any excess precision is
removed via storing in memory, and so the top half really is
the result of converting to double. */
static volatile double dtop, dbot;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T dtopnv, dbotnv;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
dtop = (double) dfrom;
/* If the rounded top half is Inf, the bottom must be 0 not NaN
or Inf. */
if (dtop + dtop == dtop && dtop != 0.0)
dbot = 0.0;
else
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
dbot = (double) (dfrom - (T) dtop);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
dtopnv = dtop;
dbotnv = dbot;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
to_target (fmt->split_half, &dtopnv, uto);
to_target (fmt->split_half, &dbotnv,
uto + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
return;
}
if (dfrom == 0)
goto finalize_byteorder; /* Result is zero */
if (dfrom != dfrom) /* Result is NaN */
{
/* From is NaN */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
/* Be sure it's not infinity, but NaN value is irrel. */
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 1);
goto finalize_byteorder;
}
/* If negative, set the sign bit. */
if (dfrom < 0)
{
put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
dfrom = -dfrom;
}
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
{
/* Infinity exponent is same as NaN's. */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
/* Infinity mantissa is all zeroes. */
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
mant = frexp (dfrom, &exponent);
if (exponent + fmt->exp_bias <= 0)
{
/* The value is too small to be expressed in the destination
type (not enough bits in the exponent. Treat as 0. */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, 0);
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
{
/* The value is too large to fit into the destination.
Treat as infinity. */
put_field (uto, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
put_field (uto, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
exponent + fmt->exp_bias - 1);
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
while (mant_bits_left > 0)
{
unsigned long mant_long;
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
mant *= 4294967296.0;
mant_long = ((unsigned long) mant) & 0xffffffffL;
mant -= mant_long;
/* If the integer bit is implicit, then we need to discard it.
If we are discarding a zero, we should be (but are not) creating
a denormalized number which means adjusting the exponent
(I think). */
if (mant_bits_left == fmt->man_len
&& fmt->intbit == floatformat_intbit_no)
{
mant_long <<= 1;
mant_long &= 0xffffffffL;
/* If we are processing the top 32 mantissa bits of a doublest
so as to convert to a float value with implied integer bit,
we will only be putting 31 of those 32 bits into the
final value due to the discarding of the top bit. In the
case of a small float value where the number of mantissa
bits is less than 32, discarding the top bit does not alter
the number of bits we will be adding to the result. */
if (mant_bits == 32)
mant_bits -= 1;
}
if (mant_bits < 32)
{
/* The bits we want are in the most significant MANT_BITS bits of
mant_long. Move them to the least significant. */
mant_long >>= 32 - mant_bits;
}
put_field (uto, order, fmt->totalsize,
mant_off, mant_bits, mant_long);
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
finalize_byteorder:
/* Do we need to byte-swap the words in the result? */
if (order != fmt->byteorder)
floatformat_normalize_byteorder (fmt, newto, to);
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> void
host_float_ops<T>::to_target (const struct type *type,
const T *from, gdb_byte *to) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Ensure possible padding bytes in the target buffer are zeroed out. */
memset (to, 0, TYPE_LENGTH (type));
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
to_target (floatformat_from_type (type), from, to);
}
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
to a string, optionally using the print format FORMAT. */
template<typename T> struct printf_length_modifier
{
static constexpr char value = 0;
};
template<> struct printf_length_modifier<long double>
{
static constexpr char value = 'L';
};
template<typename T> std::string
host_float_ops<T>::to_string (const gdb_byte *addr, const struct type *type,
const char *format) const
{
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* Determine the format string to use on the host side. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
constexpr char length = printf_length_modifier<T>::value;
const struct floatformat *fmt = floatformat_from_type (type);
std::string host_format = floatformat_printf_format (fmt, format, length);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float;
from_target (type, addr, &host_float);
DIAGNOSTIC_PUSH
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
return string_printf (host_format.c_str (), host_float);
DIAGNOSTIC_POP
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Parse string IN into a target floating-number of type TYPE and
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
store it as byte-stream ADDR. Return whether parsing succeeded. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> struct scanf_length_modifier
{
static constexpr char value = 0;
};
template<> struct scanf_length_modifier<double>
{
static constexpr char value = 'l';
};
template<> struct scanf_length_modifier<long double>
{
static constexpr char value = 'L';
};
template<typename T> bool
host_float_ops<T>::from_string (gdb_byte *addr, const struct type *type,
const std::string &in) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
int n, num;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
std::string scan_format = "%";
if (scanf_length_modifier<T>::value)
scan_format += scanf_length_modifier<T>::value;
scan_format += "g%n";
DIAGNOSTIC_PUSH
DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
num = sscanf (in.c_str (), scan_format.c_str(), &host_float, &n);
DIAGNOSTIC_POP
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* The sscanf man page suggests not making any assumptions on the effect
of %n on the result, so we don't.
That is why we simply test num == 0. */
if (num == 0)
return false;
/* We only accept the whole string. */
if (in[n])
return false;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
to_target (type, &host_float, addr);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
return true;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
to an integer value (rounding towards zero). */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> LONGEST
host_float_ops<T>::to_longest (const gdb_byte *addr,
const struct type *type) const
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float;
from_target (type, addr, &host_float);
T min_possible_range = static_cast<T>(std::numeric_limits<LONGEST>::min());
T max_possible_range = -min_possible_range;
/* host_float can be converted to an integer as long as it's in
the range [min_possible_range, max_possible_range). If not, it is either
too large, or too small, or is NaN; in this case return the maximum or
minimum possible value. */
if (host_float < max_possible_range && host_float >= min_possible_range)
return static_cast<LONGEST> (host_float);
if (host_float < min_possible_range)
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
return std::numeric_limits<LONGEST>::min();
/* This line will be executed if host_float is NaN. */
return std::numeric_limits<LONGEST>::max();
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert signed integer VAL to a target floating-number of type TYPE
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
and store it as byte-stream ADDR. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> void
host_float_ops<T>::from_longest (gdb_byte *addr, const struct type *type,
LONGEST val) const
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float = (T) val;
to_target (type, &host_float, addr);
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert unsigned integer VAL to a target floating-number of type TYPE
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
and store it as byte-stream ADDR. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> void
host_float_ops<T>::from_ulongest (gdb_byte *addr, const struct type *type,
ULONGEST val) const
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float = (T) val;
to_target (type, &host_float, addr);
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
to a floating-point value in the host "double" format. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> double
host_float_ops<T>::to_host_double (const gdb_byte *addr,
const struct type *type) const
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float;
from_target (type, addr, &host_float);
return (double) host_float;
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
}
/* Convert floating-point value VAL in the host "double" format to a target
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
floating-number of type TYPE and store it as byte-stream ADDR. */
template<typename T> void
host_float_ops<T>::from_host_double (gdb_byte *addr, const struct type *type,
double val) const
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float = (T) val;
to_target (type, &host_float, addr);
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert a floating-point number of type FROM_TYPE from the target
byte-stream FROM to a floating-point number of type TO_TYPE, and
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
store it to the target byte-stream TO. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> void
host_float_ops<T>::convert (const gdb_byte *from,
const struct type *from_type,
gdb_byte *to,
const struct type *to_type) const
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T host_float;
from_target (from_type, from, &host_float);
to_target (to_type, &host_float, to);
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
/* Perform the binary operation indicated by OPCODE, using as operands the
target byte streams X and Y, interpreted as floating-point numbers of
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
types TYPE_X and TYPE_Y, respectively. Convert the result to format
TYPE_RES and store it into the byte-stream RES. */
template<typename T> void
host_float_ops<T>::binop (enum exp_opcode op,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res) const
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T v1, v2, v = 0;
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
from_target (type_x, x, &v1);
from_target (type_y, y, &v2);
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
switch (op)
{
case BINOP_ADD:
v = v1 + v2;
break;
case BINOP_SUB:
v = v1 - v2;
break;
case BINOP_MUL:
v = v1 * v2;
break;
case BINOP_DIV:
v = v1 / v2;
break;
case BINOP_EXP:
errno = 0;
v = pow (v1, v2);
if (errno)
error (_("Cannot perform exponentiation: %s"),
safe_strerror (errno));
break;
case BINOP_MIN:
v = v1 < v2 ? v1 : v2;
break;
case BINOP_MAX:
v = v1 > v2 ? v1 : v2;
break;
default:
error (_("Integer-only operation on floating point number."));
break;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
to_target (type_res, &v, res);
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
}
/* Compare the two target byte streams X and Y, interpreted as floating-point
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
are equal, -1 if X is less than Y, and 1 otherwise. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
template<typename T> int
host_float_ops<T>::compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y) const
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
T v1, v2;
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
from_target (type_x, x, &v1);
from_target (type_y, y, &v2);
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
if (v1 == v2)
return 0;
if (v1 < v2)
return -1;
return 1;
}
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
Target FP: Make use of MPFR if available This second patch introduces mfpr_float_ops, an new implementation of target_float_ops. This implements precise emulation of target floating-point formats using the MPFR library. This is then used to perform operations on types that do not match any host type. Note that use of MPFR is still not required. The patch adds a configure option --with-mpfr similar to --with-expat. If use of MPFR is disabled via the option or MPFR is not available, code will fall back to current behavior. This means that operations on types that do not match any host type will be implemented on the host long double type instead. A new test case verifies that we can correctly print the largest __float128 value now. gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Document use of GNU MPFR. * README: Likewise. * Makefile.in (LIBMPFR): Add define. (CLIBS): Add $(LIBMPFR). * configure.ac: Add --with-mpfr configure option. * configure: Regenerate. * config.in: Regenerate. * target-float.c [HAVE_LIBMPFR]: Include <mpfr.h>. (class mpfr_float_ops): New type. (mpfr_float_ops::from_target): Two new overloaded functions. (mpfr_float_ops::to_target): Likewise. (mpfr_float_ops::to_string): New function. (mpfr_float_ops::from_string): Likewise. (mpfr_float_ops::to_longest): Likewise. (mpfr_float_ops::from_longest): Likewise. (mpfr_float_ops::from_ulongest): Likewise. (mpfr_float_ops::to_host_double): Likewise. (mpfr_float_ops::from_host_double): Likewise. (mpfr_float_ops::convert): Likewise. (mpfr_float_ops::binop): Likewise. (mpfr_float_ops::compare): Likewise. (get_target_float_ops): Use mpfr_float_ops if available. gdb/doc/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.texinfo (Requirements): Document use of GNU MPFR. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.base/float128.c (large128): New variable. * gdb.base/float128.exp: Add test to print largest __float128 value.
2017-11-22 20:53:43 +08:00
/* Implementation of target_float_ops using the MPFR library
mpfr_t as intermediate type. */
#ifdef HAVE_LIBMPFR
#define MPFR_USE_INTMAX_T
Target FP: Make use of MPFR if available This second patch introduces mfpr_float_ops, an new implementation of target_float_ops. This implements precise emulation of target floating-point formats using the MPFR library. This is then used to perform operations on types that do not match any host type. Note that use of MPFR is still not required. The patch adds a configure option --with-mpfr similar to --with-expat. If use of MPFR is disabled via the option or MPFR is not available, code will fall back to current behavior. This means that operations on types that do not match any host type will be implemented on the host long double type instead. A new test case verifies that we can correctly print the largest __float128 value now. gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Document use of GNU MPFR. * README: Likewise. * Makefile.in (LIBMPFR): Add define. (CLIBS): Add $(LIBMPFR). * configure.ac: Add --with-mpfr configure option. * configure: Regenerate. * config.in: Regenerate. * target-float.c [HAVE_LIBMPFR]: Include <mpfr.h>. (class mpfr_float_ops): New type. (mpfr_float_ops::from_target): Two new overloaded functions. (mpfr_float_ops::to_target): Likewise. (mpfr_float_ops::to_string): New function. (mpfr_float_ops::from_string): Likewise. (mpfr_float_ops::to_longest): Likewise. (mpfr_float_ops::from_longest): Likewise. (mpfr_float_ops::from_ulongest): Likewise. (mpfr_float_ops::to_host_double): Likewise. (mpfr_float_ops::from_host_double): Likewise. (mpfr_float_ops::convert): Likewise. (mpfr_float_ops::binop): Likewise. (mpfr_float_ops::compare): Likewise. (get_target_float_ops): Use mpfr_float_ops if available. gdb/doc/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.texinfo (Requirements): Document use of GNU MPFR. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.base/float128.c (large128): New variable. * gdb.base/float128.exp: Add test to print largest __float128 value.
2017-11-22 20:53:43 +08:00
#include <mpfr.h>
class mpfr_float_ops : public target_float_ops
{
public:
std::string to_string (const gdb_byte *addr, const struct type *type,
const char *format) const override;
bool from_string (gdb_byte *addr, const struct type *type,
const std::string &string) const override;
LONGEST to_longest (const gdb_byte *addr,
const struct type *type) const override;
void from_longest (gdb_byte *addr, const struct type *type,
LONGEST val) const override;
void from_ulongest (gdb_byte *addr, const struct type *type,
ULONGEST val) const override;
double to_host_double (const gdb_byte *addr,
const struct type *type) const override;
void from_host_double (gdb_byte *addr, const struct type *type,
double val) const override;
void convert (const gdb_byte *from, const struct type *from_type,
gdb_byte *to, const struct type *to_type) const override;
void binop (enum exp_opcode opcode,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res) const override;
int compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y) const override;
private:
/* Local wrapper class to handle mpfr_t initalization and cleanup. */
class gdb_mpfr
{
public:
mpfr_t val;
gdb_mpfr (const struct type *type)
{
const struct floatformat *fmt = floatformat_from_type (type);
mpfr_init2 (val, floatformat_precision (fmt));
}
gdb_mpfr (const gdb_mpfr &source)
{
mpfr_init2 (val, mpfr_get_prec (source.val));
}
~gdb_mpfr ()
{
mpfr_clear (val);
}
};
void from_target (const struct floatformat *fmt,
const gdb_byte *from, gdb_mpfr &to) const;
void from_target (const struct type *type,
const gdb_byte *from, gdb_mpfr &to) const;
void to_target (const struct type *type,
const gdb_mpfr &from, gdb_byte *to) const;
void to_target (const struct floatformat *fmt,
const gdb_mpfr &from, gdb_byte *to) const;
};
/* Convert TO/FROM target floating-point format to mpfr_t. */
void
mpfr_float_ops::from_target (const struct floatformat *fmt,
const gdb_byte *orig_from, gdb_mpfr &to) const
{
const gdb_byte *from = orig_from;
mpfr_exp_t exponent;
unsigned long mant;
unsigned int mant_bits, mant_off;
int mant_bits_left;
int special_exponent; /* It's a NaN, denorm or zero. */
enum floatformat_byteorders order;
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
enum float_kind kind;
gdb_assert (fmt->totalsize
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
/* Handle non-numbers. */
kind = floatformat_classify (fmt, from);
if (kind == float_infinite)
{
mpfr_set_inf (to.val, floatformat_is_negative (fmt, from) ? -1 : 1);
return;
}
if (kind == float_nan)
{
mpfr_set_nan (to.val);
return;
}
order = floatformat_normalize_byteorder (fmt, from, newfrom);
if (order != fmt->byteorder)
from = newfrom;
if (fmt->split_half)
{
gdb_mpfr top (to), bot (to);
from_target (fmt->split_half, from, top);
/* Preserve the sign of 0, which is the sign of the top half. */
if (mpfr_zero_p (top.val))
{
mpfr_set (to.val, top.val, MPFR_RNDN);
return;
}
from_target (fmt->split_half,
from + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, bot);
mpfr_add (to.val, top.val, bot.val, MPFR_RNDN);
return;
}
exponent = get_field (from, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len);
/* Note that if exponent indicates a NaN, we can't really do anything useful
(not knowing if the host has NaN's, or how to build one). So it will
end up as an infinity or something close; that is OK. */
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
mpfr_set_zero (to.val, 0);
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
/* Don't bias NaNs. Use minimum exponent for denorms. For
simplicity, we don't check for zero as the exponent doesn't matter.
Note the cast to int; exp_bias is unsigned, so it's important to
make sure the operation is done in signed arithmetic. */
if (!special_exponent)
exponent -= fmt->exp_bias;
else if (exponent == 0)
exponent = 1 - fmt->exp_bias;
/* Build the result algebraically. Might go infinite, underflow, etc;
who cares. */
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
increment the exponent by one to account for the integer bit. */
if (!special_exponent)
{
if (fmt->intbit == floatformat_intbit_no)
mpfr_set_ui_2exp (to.val, 1, exponent, MPFR_RNDN);
else
exponent++;
}
gdb_mpfr tmp (to);
while (mant_bits_left > 0)
{
mant_bits = std::min (mant_bits_left, 32);
mant = get_field (from, order, fmt->totalsize, mant_off, mant_bits);
mpfr_set_ui (tmp.val, mant, MPFR_RNDN);
Target FP: Make use of MPFR if available This second patch introduces mfpr_float_ops, an new implementation of target_float_ops. This implements precise emulation of target floating-point formats using the MPFR library. This is then used to perform operations on types that do not match any host type. Note that use of MPFR is still not required. The patch adds a configure option --with-mpfr similar to --with-expat. If use of MPFR is disabled via the option or MPFR is not available, code will fall back to current behavior. This means that operations on types that do not match any host type will be implemented on the host long double type instead. A new test case verifies that we can correctly print the largest __float128 value now. gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Document use of GNU MPFR. * README: Likewise. * Makefile.in (LIBMPFR): Add define. (CLIBS): Add $(LIBMPFR). * configure.ac: Add --with-mpfr configure option. * configure: Regenerate. * config.in: Regenerate. * target-float.c [HAVE_LIBMPFR]: Include <mpfr.h>. (class mpfr_float_ops): New type. (mpfr_float_ops::from_target): Two new overloaded functions. (mpfr_float_ops::to_target): Likewise. (mpfr_float_ops::to_string): New function. (mpfr_float_ops::from_string): Likewise. (mpfr_float_ops::to_longest): Likewise. (mpfr_float_ops::from_longest): Likewise. (mpfr_float_ops::from_ulongest): Likewise. (mpfr_float_ops::to_host_double): Likewise. (mpfr_float_ops::from_host_double): Likewise. (mpfr_float_ops::convert): Likewise. (mpfr_float_ops::binop): Likewise. (mpfr_float_ops::compare): Likewise. (get_target_float_ops): Use mpfr_float_ops if available. gdb/doc/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.texinfo (Requirements): Document use of GNU MPFR. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.base/float128.c (large128): New variable. * gdb.base/float128.exp: Add test to print largest __float128 value.
2017-11-22 20:53:43 +08:00
mpfr_mul_2si (tmp.val, tmp.val, exponent - mant_bits, MPFR_RNDN);
mpfr_add (to.val, to.val, tmp.val, MPFR_RNDN);
exponent -= mant_bits;
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
/* Negate it if negative. */
if (get_field (from, order, fmt->totalsize, fmt->sign_start, 1))
mpfr_neg (to.val, to.val, MPFR_RNDN);
}
void
mpfr_float_ops::from_target (const struct type *type,
const gdb_byte *from, gdb_mpfr &to) const
{
from_target (floatformat_from_type (type), from, to);
}
void
mpfr_float_ops::to_target (const struct floatformat *fmt,
const gdb_mpfr &from, gdb_byte *orig_to) const
{
unsigned char *to = orig_to;
mpfr_exp_t exponent;
unsigned int mant_bits, mant_off;
int mant_bits_left;
enum floatformat_byteorders order = fmt->byteorder;
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
if (order != floatformat_little)
order = floatformat_big;
if (order != fmt->byteorder)
to = newto;
memset (to, 0, floatformat_totalsize_bytes (fmt));
if (fmt->split_half)
{
gdb_mpfr top (from), bot (from);
mpfr_set (top.val, from.val, MPFR_RNDN);
/* If the rounded top half is Inf, the bottom must be 0 not NaN
or Inf. */
if (mpfr_inf_p (top.val))
mpfr_set_zero (bot.val, 0);
else
mpfr_sub (bot.val, from.val, top.val, MPFR_RNDN);
to_target (fmt->split_half, top, to);
to_target (fmt->split_half, bot,
to + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
return;
}
gdb_mpfr tmp (from);
if (mpfr_zero_p (from.val))
goto finalize_byteorder; /* Result is zero */
mpfr_set (tmp.val, from.val, MPFR_RNDN);
if (mpfr_nan_p (tmp.val)) /* Result is NaN */
{
/* From is NaN */
put_field (to, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
/* Be sure it's not infinity, but NaN value is irrel. */
put_field (to, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 1);
goto finalize_byteorder;
}
/* If negative, set the sign bit. */
if (mpfr_sgn (tmp.val) < 0)
{
put_field (to, order, fmt->totalsize, fmt->sign_start, 1, 1);
mpfr_neg (tmp.val, tmp.val, MPFR_RNDN);
}
if (mpfr_inf_p (tmp.val)) /* Result is Infinity. */
{
/* Infinity exponent is same as NaN's. */
put_field (to, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
/* Infinity mantissa is all zeroes. */
put_field (to, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
mpfr_frexp (&exponent, tmp.val, tmp.val, MPFR_RNDN);
if (exponent + fmt->exp_bias <= 0)
{
/* The value is too small to be expressed in the destination
type (not enough bits in the exponent. Treat as 0. */
put_field (to, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, 0);
put_field (to, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
{
/* The value is too large to fit into the destination.
Treat as infinity. */
put_field (to, order, fmt->totalsize, fmt->exp_start,
fmt->exp_len, fmt->exp_nan);
put_field (to, order, fmt->totalsize, fmt->man_start,
fmt->man_len, 0);
goto finalize_byteorder;
}
put_field (to, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
exponent + fmt->exp_bias - 1);
mant_bits_left = fmt->man_len;
mant_off = fmt->man_start;
while (mant_bits_left > 0)
{
unsigned long mant_long;
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
mpfr_mul_2ui (tmp.val, tmp.val, 32, MPFR_RNDN);
mant_long = mpfr_get_ui (tmp.val, MPFR_RNDZ) & 0xffffffffL;
mpfr_sub_ui (tmp.val, tmp.val, mant_long, MPFR_RNDZ);
/* If the integer bit is implicit, then we need to discard it.
If we are discarding a zero, we should be (but are not) creating
a denormalized number which means adjusting the exponent
(I think). */
if (mant_bits_left == fmt->man_len
&& fmt->intbit == floatformat_intbit_no)
{
mant_long <<= 1;
mant_long &= 0xffffffffL;
/* If we are processing the top 32 mantissa bits of a doublest
so as to convert to a float value with implied integer bit,
we will only be putting 31 of those 32 bits into the
final value due to the discarding of the top bit. In the
case of a small float value where the number of mantissa
bits is less than 32, discarding the top bit does not alter
the number of bits we will be adding to the result. */
if (mant_bits == 32)
mant_bits -= 1;
}
if (mant_bits < 32)
{
/* The bits we want are in the most significant MANT_BITS bits of
mant_long. Move them to the least significant. */
mant_long >>= 32 - mant_bits;
}
put_field (to, order, fmt->totalsize,
mant_off, mant_bits, mant_long);
mant_off += mant_bits;
mant_bits_left -= mant_bits;
}
finalize_byteorder:
/* Do we need to byte-swap the words in the result? */
if (order != fmt->byteorder)
floatformat_normalize_byteorder (fmt, newto, orig_to);
}
void
mpfr_float_ops::to_target (const struct type *type,
const gdb_mpfr &from, gdb_byte *to) const
{
/* Ensure possible padding bytes in the target buffer are zeroed out. */
memset (to, 0, TYPE_LENGTH (type));
to_target (floatformat_from_type (type), from, to);
}
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
to a string, optionally using the print format FORMAT. */
std::string
mpfr_float_ops::to_string (const gdb_byte *addr,
const struct type *type,
const char *format) const
{
const struct floatformat *fmt = floatformat_from_type (type);
/* Unless we need to adhere to a specific format, provide special
output for certain cases. */
if (format == nullptr)
{
/* Detect invalid representations. */
if (!floatformat_is_valid (fmt, addr))
return "<invalid float value>";
/* Handle NaN and Inf. */
enum float_kind kind = floatformat_classify (fmt, addr);
if (kind == float_nan)
{
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
const char *mantissa = floatformat_mantissa (fmt, addr);
return string_printf ("%snan(0x%s)", sign, mantissa);
}
else if (kind == float_infinite)
{
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
return string_printf ("%sinf", sign);
}
}
/* Determine the format string to use on the host side. */
std::string host_format = floatformat_printf_format (fmt, format, 'R');
gdb_mpfr tmp (type);
from_target (type, addr, tmp);
int size = mpfr_snprintf (NULL, 0, host_format.c_str (), tmp.val);
std::string str (size, '\0');
mpfr_sprintf (&str[0], host_format.c_str (), tmp.val);
return str;
}
/* Parse string STRING into a target floating-number of type TYPE and
store it as byte-stream ADDR. Return whether parsing succeeded. */
bool
mpfr_float_ops::from_string (gdb_byte *addr,
const struct type *type,
const std::string &in) const
{
gdb_mpfr tmp (type);
char *endptr;
mpfr_strtofr (tmp.val, in.c_str (), &endptr, 0, MPFR_RNDN);
/* We only accept the whole string. */
if (*endptr)
return false;
to_target (type, tmp, addr);
return true;
}
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
to an integer value (rounding towards zero). */
LONGEST
mpfr_float_ops::to_longest (const gdb_byte *addr,
const struct type *type) const
{
gdb_mpfr tmp (type);
from_target (type, addr, tmp);
return mpfr_get_sj (tmp.val, MPFR_RNDZ);
}
/* Convert signed integer VAL to a target floating-number of type TYPE
and store it as byte-stream ADDR. */
void
mpfr_float_ops::from_longest (gdb_byte *addr,
const struct type *type,
LONGEST val) const
{
gdb_mpfr tmp (type);
mpfr_set_sj (tmp.val, val, MPFR_RNDN);
to_target (type, tmp, addr);
}
/* Convert unsigned integer VAL to a target floating-number of type TYPE
and store it as byte-stream ADDR. */
void
mpfr_float_ops::from_ulongest (gdb_byte *addr,
const struct type *type,
ULONGEST val) const
{
gdb_mpfr tmp (type);
mpfr_set_uj (tmp.val, val, MPFR_RNDN);
to_target (type, tmp, addr);
}
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
to a floating-point value in the host "double" format. */
double
mpfr_float_ops::to_host_double (const gdb_byte *addr,
const struct type *type) const
{
gdb_mpfr tmp (type);
from_target (type, addr, tmp);
return mpfr_get_d (tmp.val, MPFR_RNDN);
}
/* Convert floating-point value VAL in the host "double" format to a target
floating-number of type TYPE and store it as byte-stream ADDR. */
void
mpfr_float_ops::from_host_double (gdb_byte *addr,
const struct type *type,
double val) const
{
gdb_mpfr tmp (type);
mpfr_set_d (tmp.val, val, MPFR_RNDN);
to_target (type, tmp, addr);
}
/* Convert a floating-point number of type FROM_TYPE from the target
byte-stream FROM to a floating-point number of type TO_TYPE, and
store it to the target byte-stream TO. */
void
mpfr_float_ops::convert (const gdb_byte *from,
const struct type *from_type,
gdb_byte *to,
const struct type *to_type) const
{
gdb_mpfr from_tmp (from_type), to_tmp (to_type);
from_target (from_type, from, from_tmp);
mpfr_set (to_tmp.val, from_tmp.val, MPFR_RNDN);
to_target (to_type, to_tmp, to);
}
/* Perform the binary operation indicated by OPCODE, using as operands the
target byte streams X and Y, interpreted as floating-point numbers of
types TYPE_X and TYPE_Y, respectively. Convert the result to type
TYPE_RES and store it into the byte-stream RES. */
void
mpfr_float_ops::binop (enum exp_opcode op,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res) const
{
gdb_mpfr x_tmp (type_x), y_tmp (type_y), tmp (type_res);
from_target (type_x, x, x_tmp);
from_target (type_y, y, y_tmp);
switch (op)
{
case BINOP_ADD:
mpfr_add (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
break;
case BINOP_SUB:
mpfr_sub (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
break;
case BINOP_MUL:
mpfr_mul (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
break;
case BINOP_DIV:
mpfr_div (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
break;
case BINOP_EXP:
mpfr_pow (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
break;
case BINOP_MIN:
mpfr_min (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
break;
case BINOP_MAX:
mpfr_max (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
break;
default:
error (_("Integer-only operation on floating point number."));
break;
}
to_target (type_res, tmp, res);
}
/* Compare the two target byte streams X and Y, interpreted as floating-point
numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
are equal, -1 if X is less than Y, and 1 otherwise. */
int
mpfr_float_ops::compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y) const
{
gdb_mpfr x_tmp (type_x), y_tmp (type_y);
from_target (type_x, x, x_tmp);
from_target (type_y, y, y_tmp);
if (mpfr_equal_p (x_tmp.val, y_tmp.val))
return 0;
else if (mpfr_less_p (x_tmp.val, y_tmp.val))
return -1;
else
return 1;
}
#endif
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* Helper routines operating on decimal floating-point data. */
/* Decimal floating point is one of the extension to IEEE 754, which is
described in http://grouper.ieee.org/groups/754/revision.html and
http://www2.hursley.ibm.com/decimal/. It completes binary floating
point by representing floating point more exactly. */
/* The order of the following headers is important for making sure
decNumber structure is large enough to hold decimal128 digits. */
#include "dpd/decimal128.h"
#include "dpd/decimal64.h"
#include "dpd/decimal32.h"
/* When using decimal128, this is the maximum string length + 1
(value comes from libdecnumber's DECIMAL128_String constant). */
#define MAX_DECIMAL_STRING 43
/* In GDB, we are using an array of gdb_byte to represent decimal values.
They are stored in host byte order. This routine does the conversion if
the target byte order is different. */
static void
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
match_endianness (const gdb_byte *from, const struct type *type, gdb_byte *to)
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
gdb_assert (TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
int len = TYPE_LENGTH (type);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
int i;
#if WORDS_BIGENDIAN
#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_LITTLE
#else
#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_BIG
#endif
Adjust byte order variable display/change if DW_AT_endianity is present. - Rationale: It is possible for compilers to indicate the desired byte order interpretation of scalar variables using the DWARF attribute: DW_AT_endianity A type flagged with this variable would typically use one of: DW_END_big DW_END_little which instructs the debugger what the desired byte order interpretation of the variable should be. The GCC compiler (as of V6) has a mechanism for setting the desired byte ordering of the fields within a structure or union. For, example, on a little endian target, a structure declared as: struct big { int v; short a[4]; } __attribute__( ( scalar_storage_order( "big-endian" ) ) ); could be used to ensure all the structure members have a big-endian interpretation (the compiler would automatically insert byte swap instructions before and after respective store and load instructions). - To reproduce GCC V8 is required to correctly emit DW_AT_endianity DWARF attributes in all situations when the scalar_storage_order attribute is used. A fix for (dwarf endianity instrumentation) for GCC V6-V7 can be found in the URL field of the following PR: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509 - Test-case: A new test case (testsuite/gdb.base/endianity.*) is included with this patch. Manual testing for mixed endianity code has also been done with GCC V8. See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509#c4 - Observed vs. expected: Without this change, using scalar_storage_order that doesn't match the target, such as struct otherendian { int v; } __attribute__( ( scalar_storage_order( "big-endian" ) ) ); would behave like the following on a little endian target: Breakpoint 1 at 0x401135: file endianity.c, line 41. (gdb) run Starting program: /home/pjoot/freeware/t/a.out Missing separate debuginfos, use: debuginfo-install glibc-2.17-292.el7.x86_64 Breakpoint 1, main () at endianity.c:41 41 struct otherendian o = {3}; (gdb) n 43 do_nothing (&o); /* START */ (gdb) p o $1 = {v = 50331648} (gdb) p /x $2 = {v = 0x3000000} whereas with this gdb enhancement we can access the variable with the user specified endianity: Breakpoint 1, main () at endianity.c:41 41 struct otherendian o = {3}; (gdb) p o $1 = {v = 0} (gdb) n 43 do_nothing (&o); /* START */ (gdb) p o $2 = {v = 3} (gdb) p o.v = 4 $3 = 4 (gdb) p o.v $4 = 4 (gdb) x/4xb &o.v 0x7fffffffd90c: 0x00 0x00 0x00 0x04 (observe that the 4 byte int variable has a big endian representation in the hex dump.) gdb/ChangeLog 2019-11-21 Peeter Joot <peeter.joot@lzlabs.com> Byte reverse display of variables with DW_END_big, DW_END_little (DW_AT_endianity) dwarf attributes if different than the native byte order. * ada-lang.c (ada_value_binop): Use type_byte_order instead of gdbarch_byte_order. * ada-valprint.c (printstr): (ada_val_print_string): * ada-lang.c (value_pointer): (ada_value_binop): Use type_byte_order instead of gdbarch_byte_order. * c-lang.c (c_get_string): Use type_byte_order instead of gdbarch_byte_order. * c-valprint.c (c_val_print_array): Use type_byte_order instead of gdbarch_byte_order. * cp-valprint.c (cp_print_class_member): Use type_byte_order instead of gdbarch_byte_order. * dwarf2loc.c (rw_pieced_value): Use type_byte_order instead of gdbarch_byte_order. * dwarf2read.c (read_base_type): Handle DW_END_big, DW_END_little * f-lang.c (f_get_encoding): Use type_byte_order instead of gdbarch_byte_order. * findvar.c (default_read_var_value): Use type_byte_order instead of gdbarch_byte_order. * gdbtypes.c (check_types_equal): Require matching TYPE_ENDIANITY_NOT_DEFAULT if set. (recursive_dump_type): Print TYPE_ENDIANITY_BIG, and TYPE_ENDIANITY_LITTLE if set. (type_byte_order): new function. * gdbtypes.h (TYPE_ENDIANITY_NOT_DEFAULT): New macro. (struct main_type) <flag_endianity_not_default>: New field. (type_byte_order): New function. * infcmd.c (default_print_one_register_info): Use type_byte_order instead of gdbarch_byte_order. * p-lang.c (pascal_printstr): Use type_byte_order instead of gdbarch_byte_order. * p-valprint.c (pascal_val_print): Use type_byte_order instead of gdbarch_byte_order. * printcmd.c (print_scalar_formatted): Use type_byte_order instead of gdbarch_byte_order. * solib-darwin.c (darwin_current_sos): Use type_byte_order instead of gdbarch_byte_order. * solib-svr4.c (solib_svr4_r_ldsomap): Use type_byte_order instead of gdbarch_byte_order. * stap-probe.c (stap_modify_semaphore): Use type_byte_order instead of gdbarch_byte_order. * target-float.c (target_float_same_format_p): Use type_byte_order instead of gdbarch_byte_order. * valarith.c (scalar_binop): (value_bit_index): Use type_byte_order instead of gdbarch_byte_order. * valops.c (value_cast): Use type_byte_order instead of gdbarch_byte_order. * valprint.c (generic_emit_char): (generic_printstr): (val_print_string): Use type_byte_order instead of gdbarch_byte_order. * value.c (unpack_long): (unpack_bits_as_long): (unpack_value_bitfield): (modify_field): (pack_long): (pack_unsigned_long): Use type_byte_order instead of gdbarch_byte_order. * findvar.c (unsigned_pointer_to_address): (signed_pointer_to_address): (unsigned_address_to_pointer): (address_to_signed_pointer): (default_read_var_value): (default_value_from_register): Use type_byte_order instead of gdbarch_byte_order. * gnu-v3-abi.c (gnuv3_make_method_ptr): Use type_byte_order instead of gdbarch_byte_order. * riscv-tdep.c (riscv_print_one_register_info): Use type_byte_order instead of gdbarch_byte_order. gdb/testsuite/ChangeLog 2019-11-21 Peeter Joot <peeter.joot@lzlabs.com> * gdb.base/endianity.c: New test. * gdb.base/endianity.exp: New file. Change-Id: I4bd98c1b4508c2d7c5a5dbb15d7b7b1cb4e667e2
2017-10-07 04:13:04 +08:00
if (type_byte_order (type) == OPPOSITE_BYTE_ORDER)
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
for (i = 0; i < len; i++)
to[i] = from[len - i - 1];
else
for (i = 0; i < len; i++)
to[i] = from[i];
return;
}
/* Helper function to get the appropriate libdecnumber context for each size
of decimal float. */
static void
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
set_decnumber_context (decContext *ctx, const struct type *type)
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
gdb_assert (TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
switch (TYPE_LENGTH (type))
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
case 4:
decContextDefault (ctx, DEC_INIT_DECIMAL32);
break;
case 8:
decContextDefault (ctx, DEC_INIT_DECIMAL64);
break;
case 16:
decContextDefault (ctx, DEC_INIT_DECIMAL128);
break;
}
ctx->traps = 0;
}
/* Check for errors signaled in the decimal context structure. */
static void
decimal_check_errors (decContext *ctx)
{
/* An error here could be a division by zero, an overflow, an underflow or
an invalid operation (from the DEC_Errors constant in decContext.h).
Since GDB doesn't complain about division by zero, overflow or underflow
errors for binary floating, we won't complain about them for decimal
floating either. */
if (ctx->status & DEC_IEEE_854_Invalid_operation)
{
/* Leave only the error bits in the status flags. */
ctx->status &= DEC_IEEE_854_Invalid_operation;
error (_("Cannot perform operation: %s"),
decContextStatusToString (ctx));
}
}
/* Helper function to convert from libdecnumber's appropriate representation
for computation to each size of decimal float. */
static void
decimal_from_number (const decNumber *from,
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
gdb_byte *to, const struct type *type)
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
gdb_byte dec[16];
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
decContext set;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
set_decnumber_context (&set, type);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
switch (TYPE_LENGTH (type))
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
case 4:
decimal32FromNumber ((decimal32 *) dec, from, &set);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
break;
case 8:
decimal64FromNumber ((decimal64 *) dec, from, &set);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
break;
case 16:
decimal128FromNumber ((decimal128 *) dec, from, &set);
break;
default:
error (_("Unknown decimal floating point type."));
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
break;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
match_endianness (dec, type, to);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
}
/* Helper function to convert each size of decimal float to libdecnumber's
appropriate representation for computation. */
static void
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
decimal_to_number (const gdb_byte *addr, const struct type *type,
decNumber *to)
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
gdb_byte dec[16];
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
match_endianness (addr, type, dec);
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
switch (TYPE_LENGTH (type))
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
case 4:
decimal32ToNumber ((decimal32 *) dec, to);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
break;
case 8:
decimal64ToNumber ((decimal64 *) dec, to);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
break;
case 16:
decimal128ToNumber ((decimal128 *) dec, to);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
break;
default:
error (_("Unknown decimal floating point type."));
break;
}
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Returns true if ADDR (which is of type TYPE) is the number zero. */
static bool
decimal_is_zero (const gdb_byte *addr, const struct type *type)
{
decNumber number;
decimal_to_number (addr, type, &number);
return decNumberIsZero (&number);
}
/* Implementation of target_float_ops using the libdecnumber decNumber type
as intermediate format. */
class decimal_float_ops : public target_float_ops
{
public:
std::string to_string (const gdb_byte *addr, const struct type *type,
const char *format) const override;
bool from_string (gdb_byte *addr, const struct type *type,
const std::string &string) const override;
LONGEST to_longest (const gdb_byte *addr,
const struct type *type) const override;
void from_longest (gdb_byte *addr, const struct type *type,
LONGEST val) const override;
void from_ulongest (gdb_byte *addr, const struct type *type,
ULONGEST val) const override;
double to_host_double (const gdb_byte *addr,
const struct type *type) const override
{
/* We don't support conversions between target decimal floating-point
types and the host double type. */
gdb_assert_not_reached ("invalid operation on decimal float");
}
void from_host_double (gdb_byte *addr, const struct type *type,
double val) const override
{
/* We don't support conversions between target decimal floating-point
types and the host double type. */
gdb_assert_not_reached ("invalid operation on decimal float");
}
void convert (const gdb_byte *from, const struct type *from_type,
gdb_byte *to, const struct type *to_type) const override;
void binop (enum exp_opcode opcode,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res) const override;
int compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y) const override;
};
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* Convert decimal type to its string representation. LEN is the length
of the decimal type, 4 bytes for decimal32, 8 bytes for decimal64 and
16 bytes for decimal128. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
std::string
decimal_float_ops::to_string (const gdb_byte *addr, const struct type *type,
const char *format = nullptr) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
gdb_byte dec[16];
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
match_endianness (addr, type, dec);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
if (format != nullptr)
{
/* We don't handle format strings (yet). If the host printf supports
decimal floating point types, just use this. Otherwise, fall back
to printing the number while ignoring the format string. */
#if defined (PRINTF_HAS_DECFLOAT)
/* FIXME: This makes unwarranted assumptions about the host ABI! */
return string_printf (format, dec);
#endif
}
std::string result;
result.resize (MAX_DECIMAL_STRING);
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
switch (TYPE_LENGTH (type))
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
case 4:
decimal32ToString ((decimal32 *) dec, &result[0]);
break;
case 8:
decimal64ToString ((decimal64 *) dec, &result[0]);
break;
case 16:
decimal128ToString ((decimal128 *) dec, &result[0]);
break;
default:
error (_("Unknown decimal floating point type."));
break;
}
return result;
}
/* Convert the string form of a decimal value to its decimal representation.
LEN is the length of the decimal type, 4 bytes for decimal32, 8 bytes for
decimal64 and 16 bytes for decimal128. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
bool
decimal_float_ops::from_string (gdb_byte *addr, const struct type *type,
const std::string &string) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
decContext set;
gdb_byte dec[16];
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
set_decnumber_context (&set, type);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
switch (TYPE_LENGTH (type))
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
case 4:
decimal32FromString ((decimal32 *) dec, string.c_str (), &set);
break;
case 8:
decimal64FromString ((decimal64 *) dec, string.c_str (), &set);
break;
case 16:
decimal128FromString ((decimal128 *) dec, string.c_str (), &set);
break;
default:
error (_("Unknown decimal floating point type."));
break;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
match_endianness (dec, type, addr);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* Check for errors in the DFP operation. */
decimal_check_errors (&set);
return true;
}
/* Converts a LONGEST to a decimal float of specified LEN bytes. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
void
decimal_float_ops::from_longest (gdb_byte *addr, const struct type *type,
LONGEST from) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
decNumber number;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
if ((int32_t) from != from)
/* libdecnumber can convert only 32-bit integers. */
error (_("Conversion of large integer to a "
"decimal floating type is not supported."));
decNumberFromInt32 (&number, (int32_t) from);
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
decimal_from_number (&number, addr, type);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
}
/* Converts a ULONGEST to a decimal float of specified LEN bytes. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
void
decimal_float_ops::from_ulongest (gdb_byte *addr, const struct type *type,
ULONGEST from) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
decNumber number;
if ((uint32_t) from != from)
/* libdecnumber can convert only 32-bit integers. */
error (_("Conversion of large integer to a "
"decimal floating type is not supported."));
decNumberFromUInt32 (&number, (uint32_t) from);
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
decimal_from_number (&number, addr, type);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
}
/* Converts a decimal float of LEN bytes to a LONGEST. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
LONGEST
decimal_float_ops::to_longest (const gdb_byte *addr,
const struct type *type) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
/* libdecnumber has a function to convert from decimal to integer, but
it doesn't work when the decimal number has a fractional part. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
std::string str = to_string (addr, type);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
return strtoll (str.c_str (), NULL, 10);
}
/* Perform operation OP with operands X and Y with sizes LEN_X and LEN_Y
and byte orders BYTE_ORDER_X and BYTE_ORDER_Y, and store value in
RESULT with size LEN_RESULT and byte order BYTE_ORDER_RESULT. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
void
decimal_float_ops::binop (enum exp_opcode op,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
decContext set;
decNumber number1, number2, number3;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
decimal_to_number (x, type_x, &number1);
decimal_to_number (y, type_y, &number2);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
set_decnumber_context (&set, type_res);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
switch (op)
{
case BINOP_ADD:
decNumberAdd (&number3, &number1, &number2, &set);
break;
case BINOP_SUB:
decNumberSubtract (&number3, &number1, &number2, &set);
break;
case BINOP_MUL:
decNumberMultiply (&number3, &number1, &number2, &set);
break;
case BINOP_DIV:
decNumberDivide (&number3, &number1, &number2, &set);
break;
case BINOP_EXP:
decNumberPower (&number3, &number1, &number2, &set);
break;
default:
error (_("Operation not valid for decimal floating point number."));
break;
}
/* Check for errors in the DFP operation. */
decimal_check_errors (&set);
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
decimal_from_number (&number3, res, type_res);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
}
/* Compares two numbers numerically. If X is less than Y then the return value
will be -1. If they are equal, then the return value will be 0. If X is
greater than the Y then the return value will be 1. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
int
decimal_float_ops::compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
decNumber number1, number2, result;
decContext set;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const struct type *type_result;
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
decimal_to_number (x, type_x, &number1);
decimal_to_number (y, type_y, &number2);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
/* Perform the comparison in the larger of the two sizes. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
type_result = TYPE_LENGTH (type_x) > TYPE_LENGTH (type_y) ? type_x : type_y;
set_decnumber_context (&set, type_result);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
decNumberCompare (&result, &number1, &number2, &set);
/* Check for errors in the DFP operation. */
decimal_check_errors (&set);
if (decNumberIsNaN (&result))
error (_("Comparison with an invalid number (NaN)."));
else if (decNumberIsZero (&result))
return 0;
else if (decNumberIsNegative (&result))
return -1;
else
return 1;
}
/* Convert a decimal value from a decimal type with LEN_FROM bytes to a
decimal type with LEN_TO bytes. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
void
decimal_float_ops::convert (const gdb_byte *from, const struct type *from_type,
gdb_byte *to, const struct type *to_type) const
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
{
decNumber number;
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
decimal_to_number (from, from_type, &number);
decimal_from_number (&number, to, to_type);
Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
}
Target FP: Introduce target-float.{c,h} This patch introduces the new set of target floating-point handling routines in target-float.{c,h}. In the end, the intention is that this file will contain support for all operations in target FP format, fully replacing both the current doublest.{c,h} and dfp.{c,h}. To begin with, this patch only adds a target_float_is_zero routine, which handles the equivalent of decimal_is_zero for both binary and decimal FP. For the binary case, to avoid conversion to DOUBLEST, this is implemented using the floatformat_classify routine. However, it turns out that floatformat_classify actually has a bug (it was not used to check for zero before), so this is fixed as well. The new routine is used in both value_logical_not and valpy_nonzero. There is one extra twist: the code previously used value_as_double to convert to DOUBLEST and then compare against zero. That routine performs an extra task: it detects invalid floating-point values and raises an error. In any place where value_as_double is removed in favor of some target-float.c routine, we need to replace that check. To keep this check centralized in one place, I've added a new routine is_floating_value, which returns a boolean determining whether a value's type is floating point (binary or decimal), and if so, also performs the validity check. Since we need to check whether a value is FP before calling any of the target-float routines anyway, this seems a good place to add the check without much code size overhead. In some places where we only want to check for floating-point types and not perform a validity check (e.g. for the *output* of an operation), we can use the new is_floating_type routine (in gdbarch) instead. The validity check itself is done by a new target_float_is_valid routine in target-float, encapsulating floatformat_is_valid. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.c (SFILES): Add target-float.c. (HFILES_NO_SRCDIR): Add target-float.h. (COMMON_OBS): Add target-float.o. * target-float.h: New file. * target-float.c: New file. * doublest.c (floatformat_classify): Fix detection of float_zero. * gdbtypes.c (is_floating_type): New function. * gdbtypes.h (is_floating_type): Add prototype. * value.c: Do not include "floatformat.h". (unpack_double): Use target_float_is_valid. (is_floating_value): New function. * value.h (is_floating_value): Add prototype- * valarith.c: Include "target-float.h". (value_logical_not): Use target_float_is_zero. * python/py-value.c: Include "target-float.h". (valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
/* Typed floating-point routines. These routines operate on floating-point
values in target format, represented by a byte buffer interpreted as a
"struct type", which may be either a binary or decimal floating-point
type (TYPE_CODE_FLT or TYPE_CODE_DECFLOAT). */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Return whether TYPE1 and TYPE2 are of the same category (binary or
decimal floating-point). */
static bool
target_float_same_category_p (const struct type *type1,
const struct type *type2)
{
return TYPE_CODE (type1) == TYPE_CODE (type2);
}
/* Return whether TYPE1 and TYPE2 use the same floating-point format. */
static bool
target_float_same_format_p (const struct type *type1,
const struct type *type2)
{
if (!target_float_same_category_p (type1, type2))
return false;
switch (TYPE_CODE (type1))
{
case TYPE_CODE_FLT:
return floatformat_from_type (type1) == floatformat_from_type (type2);
case TYPE_CODE_DECFLOAT:
return (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
Adjust byte order variable display/change if DW_AT_endianity is present. - Rationale: It is possible for compilers to indicate the desired byte order interpretation of scalar variables using the DWARF attribute: DW_AT_endianity A type flagged with this variable would typically use one of: DW_END_big DW_END_little which instructs the debugger what the desired byte order interpretation of the variable should be. The GCC compiler (as of V6) has a mechanism for setting the desired byte ordering of the fields within a structure or union. For, example, on a little endian target, a structure declared as: struct big { int v; short a[4]; } __attribute__( ( scalar_storage_order( "big-endian" ) ) ); could be used to ensure all the structure members have a big-endian interpretation (the compiler would automatically insert byte swap instructions before and after respective store and load instructions). - To reproduce GCC V8 is required to correctly emit DW_AT_endianity DWARF attributes in all situations when the scalar_storage_order attribute is used. A fix for (dwarf endianity instrumentation) for GCC V6-V7 can be found in the URL field of the following PR: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509 - Test-case: A new test case (testsuite/gdb.base/endianity.*) is included with this patch. Manual testing for mixed endianity code has also been done with GCC V8. See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509#c4 - Observed vs. expected: Without this change, using scalar_storage_order that doesn't match the target, such as struct otherendian { int v; } __attribute__( ( scalar_storage_order( "big-endian" ) ) ); would behave like the following on a little endian target: Breakpoint 1 at 0x401135: file endianity.c, line 41. (gdb) run Starting program: /home/pjoot/freeware/t/a.out Missing separate debuginfos, use: debuginfo-install glibc-2.17-292.el7.x86_64 Breakpoint 1, main () at endianity.c:41 41 struct otherendian o = {3}; (gdb) n 43 do_nothing (&o); /* START */ (gdb) p o $1 = {v = 50331648} (gdb) p /x $2 = {v = 0x3000000} whereas with this gdb enhancement we can access the variable with the user specified endianity: Breakpoint 1, main () at endianity.c:41 41 struct otherendian o = {3}; (gdb) p o $1 = {v = 0} (gdb) n 43 do_nothing (&o); /* START */ (gdb) p o $2 = {v = 3} (gdb) p o.v = 4 $3 = 4 (gdb) p o.v $4 = 4 (gdb) x/4xb &o.v 0x7fffffffd90c: 0x00 0x00 0x00 0x04 (observe that the 4 byte int variable has a big endian representation in the hex dump.) gdb/ChangeLog 2019-11-21 Peeter Joot <peeter.joot@lzlabs.com> Byte reverse display of variables with DW_END_big, DW_END_little (DW_AT_endianity) dwarf attributes if different than the native byte order. * ada-lang.c (ada_value_binop): Use type_byte_order instead of gdbarch_byte_order. * ada-valprint.c (printstr): (ada_val_print_string): * ada-lang.c (value_pointer): (ada_value_binop): Use type_byte_order instead of gdbarch_byte_order. * c-lang.c (c_get_string): Use type_byte_order instead of gdbarch_byte_order. * c-valprint.c (c_val_print_array): Use type_byte_order instead of gdbarch_byte_order. * cp-valprint.c (cp_print_class_member): Use type_byte_order instead of gdbarch_byte_order. * dwarf2loc.c (rw_pieced_value): Use type_byte_order instead of gdbarch_byte_order. * dwarf2read.c (read_base_type): Handle DW_END_big, DW_END_little * f-lang.c (f_get_encoding): Use type_byte_order instead of gdbarch_byte_order. * findvar.c (default_read_var_value): Use type_byte_order instead of gdbarch_byte_order. * gdbtypes.c (check_types_equal): Require matching TYPE_ENDIANITY_NOT_DEFAULT if set. (recursive_dump_type): Print TYPE_ENDIANITY_BIG, and TYPE_ENDIANITY_LITTLE if set. (type_byte_order): new function. * gdbtypes.h (TYPE_ENDIANITY_NOT_DEFAULT): New macro. (struct main_type) <flag_endianity_not_default>: New field. (type_byte_order): New function. * infcmd.c (default_print_one_register_info): Use type_byte_order instead of gdbarch_byte_order. * p-lang.c (pascal_printstr): Use type_byte_order instead of gdbarch_byte_order. * p-valprint.c (pascal_val_print): Use type_byte_order instead of gdbarch_byte_order. * printcmd.c (print_scalar_formatted): Use type_byte_order instead of gdbarch_byte_order. * solib-darwin.c (darwin_current_sos): Use type_byte_order instead of gdbarch_byte_order. * solib-svr4.c (solib_svr4_r_ldsomap): Use type_byte_order instead of gdbarch_byte_order. * stap-probe.c (stap_modify_semaphore): Use type_byte_order instead of gdbarch_byte_order. * target-float.c (target_float_same_format_p): Use type_byte_order instead of gdbarch_byte_order. * valarith.c (scalar_binop): (value_bit_index): Use type_byte_order instead of gdbarch_byte_order. * valops.c (value_cast): Use type_byte_order instead of gdbarch_byte_order. * valprint.c (generic_emit_char): (generic_printstr): (val_print_string): Use type_byte_order instead of gdbarch_byte_order. * value.c (unpack_long): (unpack_bits_as_long): (unpack_value_bitfield): (modify_field): (pack_long): (pack_unsigned_long): Use type_byte_order instead of gdbarch_byte_order. * findvar.c (unsigned_pointer_to_address): (signed_pointer_to_address): (unsigned_address_to_pointer): (address_to_signed_pointer): (default_read_var_value): (default_value_from_register): Use type_byte_order instead of gdbarch_byte_order. * gnu-v3-abi.c (gnuv3_make_method_ptr): Use type_byte_order instead of gdbarch_byte_order. * riscv-tdep.c (riscv_print_one_register_info): Use type_byte_order instead of gdbarch_byte_order. gdb/testsuite/ChangeLog 2019-11-21 Peeter Joot <peeter.joot@lzlabs.com> * gdb.base/endianity.c: New test. * gdb.base/endianity.exp: New file. Change-Id: I4bd98c1b4508c2d7c5a5dbb15d7b7b1cb4e667e2
2017-10-07 04:13:04 +08:00
&& (type_byte_order (type1)
== type_byte_order (type2)));
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
default:
gdb_assert_not_reached ("unexpected type code");
}
}
/* Return the size (without padding) of the target floating-point
format used by TYPE. */
static int
target_float_format_length (const struct type *type)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_FLT:
return floatformat_totalsize_bytes (floatformat_from_type (type));
case TYPE_CODE_DECFLOAT:
return TYPE_LENGTH (type);
default:
gdb_assert_not_reached ("unexpected type code");
}
}
/* Identifiers of available host-side intermediate formats. These must
be sorted so the that the more "general" kinds come later. */
enum target_float_ops_kind
{
/* Target binary floating-point formats that match a host format. */
host_float = 0,
host_double,
host_long_double,
/* Any other target binary floating-point format. */
binary,
/* Any target decimal floating-point format. */
decimal
};
/* Given a target type TYPE, choose the best host-side intermediate format
to perform operations on TYPE in. */
static enum target_float_ops_kind
get_target_float_ops_kind (const struct type *type)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_FLT:
{
const struct floatformat *fmt = floatformat_from_type (type);
/* Binary floating-point formats matching a host format. */
if (fmt == host_float_format)
return target_float_ops_kind::host_float;
if (fmt == host_double_format)
return target_float_ops_kind::host_double;
if (fmt == host_long_double_format)
return target_float_ops_kind::host_long_double;
/* Any other binary floating-point format. */
return target_float_ops_kind::binary;
}
case TYPE_CODE_DECFLOAT:
{
/* Any decimal floating-point format. */
return target_float_ops_kind::decimal;
}
default:
gdb_assert_not_reached ("unexpected type code");
}
}
/* Return target_float_ops to peform operations for KIND. */
static const target_float_ops *
get_target_float_ops (enum target_float_ops_kind kind)
{
switch (kind)
{
/* If the type format matches one of the host floating-point
types, use that type as intermediate format. */
case target_float_ops_kind::host_float:
{
static host_float_ops<float> host_float_ops_float;
return &host_float_ops_float;
}
case target_float_ops_kind::host_double:
{
static host_float_ops<double> host_float_ops_double;
return &host_float_ops_double;
}
case target_float_ops_kind::host_long_double:
{
static host_float_ops<long double> host_float_ops_long_double;
return &host_float_ops_long_double;
}
/* For binary floating-point formats that do not match any host format,
Target FP: Make use of MPFR if available This second patch introduces mfpr_float_ops, an new implementation of target_float_ops. This implements precise emulation of target floating-point formats using the MPFR library. This is then used to perform operations on types that do not match any host type. Note that use of MPFR is still not required. The patch adds a configure option --with-mpfr similar to --with-expat. If use of MPFR is disabled via the option or MPFR is not available, code will fall back to current behavior. This means that operations on types that do not match any host type will be implemented on the host long double type instead. A new test case verifies that we can correctly print the largest __float128 value now. gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Document use of GNU MPFR. * README: Likewise. * Makefile.in (LIBMPFR): Add define. (CLIBS): Add $(LIBMPFR). * configure.ac: Add --with-mpfr configure option. * configure: Regenerate. * config.in: Regenerate. * target-float.c [HAVE_LIBMPFR]: Include <mpfr.h>. (class mpfr_float_ops): New type. (mpfr_float_ops::from_target): Two new overloaded functions. (mpfr_float_ops::to_target): Likewise. (mpfr_float_ops::to_string): New function. (mpfr_float_ops::from_string): Likewise. (mpfr_float_ops::to_longest): Likewise. (mpfr_float_ops::from_longest): Likewise. (mpfr_float_ops::from_ulongest): Likewise. (mpfr_float_ops::to_host_double): Likewise. (mpfr_float_ops::from_host_double): Likewise. (mpfr_float_ops::convert): Likewise. (mpfr_float_ops::binop): Likewise. (mpfr_float_ops::compare): Likewise. (get_target_float_ops): Use mpfr_float_ops if available. gdb/doc/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.texinfo (Requirements): Document use of GNU MPFR. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.base/float128.c (large128): New variable. * gdb.base/float128.exp: Add test to print largest __float128 value.
2017-11-22 20:53:43 +08:00
use mpfr_t as intermediate format to provide precise target-floating
[gdb] Fix more typos in comments Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-18 Tom de Vries <tdevries@suse.de> * aarch64-tdep.c: Fix typos in comments. * ada-lang.c: Same. * ada-tasks.c: Same. * alpha-tdep.c: Same. * alpha-tdep.h: Same. * amd64-nat.c: Same. * amd64-windows-tdep.c: Same. * arc-tdep.c: Same. * arc-tdep.h: Same. * arch-utils.c: Same. * arm-nbsd-tdep.c: Same. * arm-tdep.c: Same. * ax-gdb.c: Same. * blockframe.c: Same. * btrace.c: Same. * c-varobj.c: Same. * coff-pe-read.c: Same. * coffread.c: Same. * cris-tdep.c: Same. * darwin-nat.c: Same. * dbxread.c: Same. * dcache.c: Same. * disasm.c: Same. * dtrace-probe.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame-tailcall.c: Same. * dwarf2-frame.c: Same. * dwarf2read.c: Same. * eval.c: Same. * exceptions.c: Same. * fbsd-tdep.c: Same. * findvar.c: Same. * frame.c: Same. * frv-tdep.c: Same. * gnu-v3-abi.c: Same. * go32-nat.c: Same. * h8300-tdep.c: Same. * hppa-tdep.c: Same. * i386-linux-tdep.c: Same. * i386-tdep.c: Same. * ia64-libunwind-tdep.c: Same. * ia64-tdep.c: Same. * infcmd.c: Same. * infrun.c: Same. * linespec.c: Same. * linux-nat.c: Same. * linux-thread-db.c: Same. * machoread.c: Same. * mdebugread.c: Same. * mep-tdep.c: Same. * mn10300-tdep.c: Same. * namespace.c: Same. * objfiles.c: Same. * opencl-lang.c: Same. * or1k-tdep.c: Same. * osabi.c: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-sysv-tdep.c: Same. * printcmd.c: Same. * procfs.c: Same. * record-btrace.c: Same. * record-full.c: Same. * remote-fileio.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * s12z-tdep.c: Same. * score-tdep.c: Same. * ser-base.c: Same. * ser-go32.c: Same. * skip.c: Same. * sol-thread.c: Same. * solib-svr4.c: Same. * solib.c: Same. * source.c: Same. * sparc-nat.c: Same. * sparc-sol2-tdep.c: Same. * sparc-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * stack.c: Same. * symfile.c: Same. * symtab.c: Same. * target-descriptions.c: Same. * target-float.c: Same. * thread.c: Same. * utils.c: Same. * valops.c: Same. * valprint.c: Same. * value.c: Same. * varobj.c: Same. * windows-nat.c: Same. * xcoffread.c: Same. * xstormy16-tdep.c: Same. * xtensa-tdep.c: Same. Change-Id: I5175f1b107bfa4e1cdd4a3361ccb4739e53c75c4
2019-10-18 08:48:08 +08:00
point emulation. However, if the MPFR library is not available,
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
use the largest host floating-point type as intermediate format. */
case target_float_ops_kind::binary:
{
Target FP: Make use of MPFR if available This second patch introduces mfpr_float_ops, an new implementation of target_float_ops. This implements precise emulation of target floating-point formats using the MPFR library. This is then used to perform operations on types that do not match any host type. Note that use of MPFR is still not required. The patch adds a configure option --with-mpfr similar to --with-expat. If use of MPFR is disabled via the option or MPFR is not available, code will fall back to current behavior. This means that operations on types that do not match any host type will be implemented on the host long double type instead. A new test case verifies that we can correctly print the largest __float128 value now. gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Document use of GNU MPFR. * README: Likewise. * Makefile.in (LIBMPFR): Add define. (CLIBS): Add $(LIBMPFR). * configure.ac: Add --with-mpfr configure option. * configure: Regenerate. * config.in: Regenerate. * target-float.c [HAVE_LIBMPFR]: Include <mpfr.h>. (class mpfr_float_ops): New type. (mpfr_float_ops::from_target): Two new overloaded functions. (mpfr_float_ops::to_target): Likewise. (mpfr_float_ops::to_string): New function. (mpfr_float_ops::from_string): Likewise. (mpfr_float_ops::to_longest): Likewise. (mpfr_float_ops::from_longest): Likewise. (mpfr_float_ops::from_ulongest): Likewise. (mpfr_float_ops::to_host_double): Likewise. (mpfr_float_ops::from_host_double): Likewise. (mpfr_float_ops::convert): Likewise. (mpfr_float_ops::binop): Likewise. (mpfr_float_ops::compare): Likewise. (get_target_float_ops): Use mpfr_float_ops if available. gdb/doc/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.texinfo (Requirements): Document use of GNU MPFR. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.base/float128.c (large128): New variable. * gdb.base/float128.exp: Add test to print largest __float128 value.
2017-11-22 20:53:43 +08:00
#ifdef HAVE_LIBMPFR
static mpfr_float_ops binary_float_ops;
#else
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
static host_float_ops<long double> binary_float_ops;
Target FP: Make use of MPFR if available This second patch introduces mfpr_float_ops, an new implementation of target_float_ops. This implements precise emulation of target floating-point formats using the MPFR library. This is then used to perform operations on types that do not match any host type. Note that use of MPFR is still not required. The patch adds a configure option --with-mpfr similar to --with-expat. If use of MPFR is disabled via the option or MPFR is not available, code will fall back to current behavior. This means that operations on types that do not match any host type will be implemented on the host long double type instead. A new test case verifies that we can correctly print the largest __float128 value now. gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Document use of GNU MPFR. * README: Likewise. * Makefile.in (LIBMPFR): Add define. (CLIBS): Add $(LIBMPFR). * configure.ac: Add --with-mpfr configure option. * configure: Regenerate. * config.in: Regenerate. * target-float.c [HAVE_LIBMPFR]: Include <mpfr.h>. (class mpfr_float_ops): New type. (mpfr_float_ops::from_target): Two new overloaded functions. (mpfr_float_ops::to_target): Likewise. (mpfr_float_ops::to_string): New function. (mpfr_float_ops::from_string): Likewise. (mpfr_float_ops::to_longest): Likewise. (mpfr_float_ops::from_longest): Likewise. (mpfr_float_ops::from_ulongest): Likewise. (mpfr_float_ops::to_host_double): Likewise. (mpfr_float_ops::from_host_double): Likewise. (mpfr_float_ops::convert): Likewise. (mpfr_float_ops::binop): Likewise. (mpfr_float_ops::compare): Likewise. (get_target_float_ops): Use mpfr_float_ops if available. gdb/doc/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.texinfo (Requirements): Document use of GNU MPFR. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.base/float128.c (large128): New variable. * gdb.base/float128.exp: Add test to print largest __float128 value.
2017-11-22 20:53:43 +08:00
#endif
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
return &binary_float_ops;
}
/* For decimal floating-point types, always use the libdecnumber
decNumber type as intermediate format. */
case target_float_ops_kind::decimal:
{
static decimal_float_ops decimal_float_ops;
return &decimal_float_ops;
}
default:
gdb_assert_not_reached ("unexpected target_float_ops_kind");
}
}
/* Given a target type TYPE, determine the best host-side intermediate format
to perform operations on TYPE in. */
static const target_float_ops *
get_target_float_ops (const struct type *type)
{
enum target_float_ops_kind kind = get_target_float_ops_kind (type);
return get_target_float_ops (kind);
}
/* The same for operations involving two target types TYPE1 and TYPE2. */
static const target_float_ops *
get_target_float_ops (const struct type *type1, const struct type *type2)
{
gdb_assert (TYPE_CODE (type1) == TYPE_CODE (type2));
enum target_float_ops_kind kind1 = get_target_float_ops_kind (type1);
enum target_float_ops_kind kind2 = get_target_float_ops_kind (type2);
/* Given the way the kinds are sorted, we simply choose the larger one;
this will be able to hold values of either type. */
return get_target_float_ops (std::max (kind1, kind2));
}
Target FP: Introduce target-float.{c,h} This patch introduces the new set of target floating-point handling routines in target-float.{c,h}. In the end, the intention is that this file will contain support for all operations in target FP format, fully replacing both the current doublest.{c,h} and dfp.{c,h}. To begin with, this patch only adds a target_float_is_zero routine, which handles the equivalent of decimal_is_zero for both binary and decimal FP. For the binary case, to avoid conversion to DOUBLEST, this is implemented using the floatformat_classify routine. However, it turns out that floatformat_classify actually has a bug (it was not used to check for zero before), so this is fixed as well. The new routine is used in both value_logical_not and valpy_nonzero. There is one extra twist: the code previously used value_as_double to convert to DOUBLEST and then compare against zero. That routine performs an extra task: it detects invalid floating-point values and raises an error. In any place where value_as_double is removed in favor of some target-float.c routine, we need to replace that check. To keep this check centralized in one place, I've added a new routine is_floating_value, which returns a boolean determining whether a value's type is floating point (binary or decimal), and if so, also performs the validity check. Since we need to check whether a value is FP before calling any of the target-float routines anyway, this seems a good place to add the check without much code size overhead. In some places where we only want to check for floating-point types and not perform a validity check (e.g. for the *output* of an operation), we can use the new is_floating_type routine (in gdbarch) instead. The validity check itself is done by a new target_float_is_valid routine in target-float, encapsulating floatformat_is_valid. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.c (SFILES): Add target-float.c. (HFILES_NO_SRCDIR): Add target-float.h. (COMMON_OBS): Add target-float.o. * target-float.h: New file. * target-float.c: New file. * doublest.c (floatformat_classify): Fix detection of float_zero. * gdbtypes.c (is_floating_type): New function. * gdbtypes.h (is_floating_type): Add prototype. * value.c: Do not include "floatformat.h". (unpack_double): Use target_float_is_valid. (is_floating_value): New function. * value.h (is_floating_value): Add prototype- * valarith.c: Include "target-float.h". (value_logical_not): Use target_float_is_zero. * python/py-value.c: Include "target-float.h". (valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
/* Return whether the byte-stream ADDR holds a valid value of
floating-point type TYPE. */
bool
target_float_is_valid (const gdb_byte *addr, const struct type *type)
{
if (TYPE_CODE (type) == TYPE_CODE_FLT)
return floatformat_is_valid (floatformat_from_type (type), addr);
if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
return true;
gdb_assert_not_reached ("unexpected type code");
}
/* Return whether the byte-stream ADDR, interpreted as floating-point
type TYPE, is numerically equal to zero (of either sign). */
bool
target_float_is_zero (const gdb_byte *addr, const struct type *type)
{
if (TYPE_CODE (type) == TYPE_CODE_FLT)
return (floatformat_classify (floatformat_from_type (type), addr)
== float_zero);
if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
return decimal_is_zero (addr, type);
Target FP: Introduce target-float.{c,h} This patch introduces the new set of target floating-point handling routines in target-float.{c,h}. In the end, the intention is that this file will contain support for all operations in target FP format, fully replacing both the current doublest.{c,h} and dfp.{c,h}. To begin with, this patch only adds a target_float_is_zero routine, which handles the equivalent of decimal_is_zero for both binary and decimal FP. For the binary case, to avoid conversion to DOUBLEST, this is implemented using the floatformat_classify routine. However, it turns out that floatformat_classify actually has a bug (it was not used to check for zero before), so this is fixed as well. The new routine is used in both value_logical_not and valpy_nonzero. There is one extra twist: the code previously used value_as_double to convert to DOUBLEST and then compare against zero. That routine performs an extra task: it detects invalid floating-point values and raises an error. In any place where value_as_double is removed in favor of some target-float.c routine, we need to replace that check. To keep this check centralized in one place, I've added a new routine is_floating_value, which returns a boolean determining whether a value's type is floating point (binary or decimal), and if so, also performs the validity check. Since we need to check whether a value is FP before calling any of the target-float routines anyway, this seems a good place to add the check without much code size overhead. In some places where we only want to check for floating-point types and not perform a validity check (e.g. for the *output* of an operation), we can use the new is_floating_type routine (in gdbarch) instead. The validity check itself is done by a new target_float_is_valid routine in target-float, encapsulating floatformat_is_valid. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * Makefile.c (SFILES): Add target-float.c. (HFILES_NO_SRCDIR): Add target-float.h. (COMMON_OBS): Add target-float.o. * target-float.h: New file. * target-float.c: New file. * doublest.c (floatformat_classify): Fix detection of float_zero. * gdbtypes.c (is_floating_type): New function. * gdbtypes.h (is_floating_type): Add prototype. * value.c: Do not include "floatformat.h". (unpack_double): Use target_float_is_valid. (is_floating_value): New function. * value.h (is_floating_value): Add prototype- * valarith.c: Include "target-float.h". (value_logical_not): Use target_float_is_zero. * python/py-value.c: Include "target-float.h". (valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
gdb_assert_not_reached ("unexpected type code");
}
Target FP: Add string routines to target-float.{c,h} This adds target_float_to_string and target_float_from_string, which dispatch to the corresponding floatformat_ or decimal_ routines. Existing users of those routines are changed to use the new target-float routines instead (most of those places already handle both binary and decimal FP). In addition, two other places are changes to use target_float_from_string: - define_symbol in stabsread.c, when parsing a floating-point literal from stabs debug info - gdbarch-selftest.c when initializing a target format values (to eliminate use of DOUBLEST there). gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (target_float_to_string): New function. (target_float_from_string): New function. * target-float.h (target_float_to_string): Add prototype. (target_float_from_string): Add prototype. * valprint.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (print_floating): Use target_float_to_string. * printcmd.c: Include "target-float.h". Do not include "dfp.h". (printf_floating): Use target_float_to_string. * i387-tdep.c: Include "target-float.h". Do not include "doublest.h". (print_i387_value): Use target_float_to_string. * mips-tdep.c: Include "target-float.h". (mips_print_fp_register): Use target_float_to_string. * sh64-tdep.c: Include "target-float.h". (sh64_do_fp_register): Use target_float_to_string. * parse.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (parse_float): Use target_float_from_string. * stabsread.c: Include "target-float.h". Do not include "doublest.h". (define_symbol): Use target_float_from_string. * gdbarch-selftests.c: Include "target-float.h". (register_to_value_test): Use target_float_from_string.
2017-11-06 22:56:35 +08:00
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
to a string, optionally using the print format FORMAT. */
std::string
target_float_to_string (const gdb_byte *addr, const struct type *type,
const char *format)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Unless we need to adhere to a specific format, provide special
output for special cases of binary floating-point numbers. */
if (format == nullptr && TYPE_CODE (type) == TYPE_CODE_FLT)
{
const struct floatformat *fmt = floatformat_from_type (type);
Target FP: Add string routines to target-float.{c,h} This adds target_float_to_string and target_float_from_string, which dispatch to the corresponding floatformat_ or decimal_ routines. Existing users of those routines are changed to use the new target-float routines instead (most of those places already handle both binary and decimal FP). In addition, two other places are changes to use target_float_from_string: - define_symbol in stabsread.c, when parsing a floating-point literal from stabs debug info - gdbarch-selftest.c when initializing a target format values (to eliminate use of DOUBLEST there). gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (target_float_to_string): New function. (target_float_from_string): New function. * target-float.h (target_float_to_string): Add prototype. (target_float_from_string): Add prototype. * valprint.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (print_floating): Use target_float_to_string. * printcmd.c: Include "target-float.h". Do not include "dfp.h". (printf_floating): Use target_float_to_string. * i387-tdep.c: Include "target-float.h". Do not include "doublest.h". (print_i387_value): Use target_float_to_string. * mips-tdep.c: Include "target-float.h". (mips_print_fp_register): Use target_float_to_string. * sh64-tdep.c: Include "target-float.h". (sh64_do_fp_register): Use target_float_to_string. * parse.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (parse_float): Use target_float_from_string. * stabsread.c: Include "target-float.h". Do not include "doublest.h". (define_symbol): Use target_float_from_string. * gdbarch-selftests.c: Include "target-float.h". (register_to_value_test): Use target_float_from_string.
2017-11-06 22:56:35 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Detect invalid representations. */
if (!floatformat_is_valid (fmt, addr))
return "<invalid float value>";
Target FP: Add string routines to target-float.{c,h} This adds target_float_to_string and target_float_from_string, which dispatch to the corresponding floatformat_ or decimal_ routines. Existing users of those routines are changed to use the new target-float routines instead (most of those places already handle both binary and decimal FP). In addition, two other places are changes to use target_float_from_string: - define_symbol in stabsread.c, when parsing a floating-point literal from stabs debug info - gdbarch-selftest.c when initializing a target format values (to eliminate use of DOUBLEST there). gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (target_float_to_string): New function. (target_float_from_string): New function. * target-float.h (target_float_to_string): Add prototype. (target_float_from_string): Add prototype. * valprint.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (print_floating): Use target_float_to_string. * printcmd.c: Include "target-float.h". Do not include "dfp.h". (printf_floating): Use target_float_to_string. * i387-tdep.c: Include "target-float.h". Do not include "doublest.h". (print_i387_value): Use target_float_to_string. * mips-tdep.c: Include "target-float.h". (mips_print_fp_register): Use target_float_to_string. * sh64-tdep.c: Include "target-float.h". (sh64_do_fp_register): Use target_float_to_string. * parse.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (parse_float): Use target_float_from_string. * stabsread.c: Include "target-float.h". Do not include "doublest.h". (define_symbol): Use target_float_from_string. * gdbarch-selftests.c: Include "target-float.h". (register_to_value_test): Use target_float_from_string.
2017-11-06 22:56:35 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Handle NaN and Inf. */
enum float_kind kind = floatformat_classify (fmt, addr);
if (kind == float_nan)
{
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
const char *mantissa = floatformat_mantissa (fmt, addr);
return string_printf ("%snan(0x%s)", sign, mantissa);
}
else if (kind == float_infinite)
{
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
return string_printf ("%sinf", sign);
}
}
const target_float_ops *ops = get_target_float_ops (type);
return ops->to_string (addr, type, format);
Target FP: Add string routines to target-float.{c,h} This adds target_float_to_string and target_float_from_string, which dispatch to the corresponding floatformat_ or decimal_ routines. Existing users of those routines are changed to use the new target-float routines instead (most of those places already handle both binary and decimal FP). In addition, two other places are changes to use target_float_from_string: - define_symbol in stabsread.c, when parsing a floating-point literal from stabs debug info - gdbarch-selftest.c when initializing a target format values (to eliminate use of DOUBLEST there). gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (target_float_to_string): New function. (target_float_from_string): New function. * target-float.h (target_float_to_string): Add prototype. (target_float_from_string): Add prototype. * valprint.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (print_floating): Use target_float_to_string. * printcmd.c: Include "target-float.h". Do not include "dfp.h". (printf_floating): Use target_float_to_string. * i387-tdep.c: Include "target-float.h". Do not include "doublest.h". (print_i387_value): Use target_float_to_string. * mips-tdep.c: Include "target-float.h". (mips_print_fp_register): Use target_float_to_string. * sh64-tdep.c: Include "target-float.h". (sh64_do_fp_register): Use target_float_to_string. * parse.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (parse_float): Use target_float_from_string. * stabsread.c: Include "target-float.h". Do not include "doublest.h". (define_symbol): Use target_float_from_string. * gdbarch-selftests.c: Include "target-float.h". (register_to_value_test): Use target_float_from_string.
2017-11-06 22:56:35 +08:00
}
/* Parse string STRING into a target floating-number of type TYPE and
store it as byte-stream ADDR. Return whether parsing succeeded. */
bool
target_float_from_string (gdb_byte *addr, const struct type *type,
const std::string &string)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type);
return ops->from_string (addr, type, string);
Target FP: Add string routines to target-float.{c,h} This adds target_float_to_string and target_float_from_string, which dispatch to the corresponding floatformat_ or decimal_ routines. Existing users of those routines are changed to use the new target-float routines instead (most of those places already handle both binary and decimal FP). In addition, two other places are changes to use target_float_from_string: - define_symbol in stabsread.c, when parsing a floating-point literal from stabs debug info - gdbarch-selftest.c when initializing a target format values (to eliminate use of DOUBLEST there). gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (target_float_to_string): New function. (target_float_from_string): New function. * target-float.h (target_float_to_string): Add prototype. (target_float_from_string): Add prototype. * valprint.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (print_floating): Use target_float_to_string. * printcmd.c: Include "target-float.h". Do not include "dfp.h". (printf_floating): Use target_float_to_string. * i387-tdep.c: Include "target-float.h". Do not include "doublest.h". (print_i387_value): Use target_float_to_string. * mips-tdep.c: Include "target-float.h". (mips_print_fp_register): Use target_float_to_string. * sh64-tdep.c: Include "target-float.h". (sh64_do_fp_register): Use target_float_to_string. * parse.c: Include "target-float.h". Do not include "doublest.h" and "dfp.h". (parse_float): Use target_float_from_string. * stabsread.c: Include "target-float.h". Do not include "doublest.h". (define_symbol): Use target_float_from_string. * gdbarch-selftests.c: Include "target-float.h". (register_to_value_test): Use target_float_from_string.
2017-11-06 22:56:35 +08:00
}
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
to an integer value (rounding towards zero). */
LONGEST
target_float_to_longest (const gdb_byte *addr, const struct type *type)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type);
return ops->to_longest (addr, type);
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
/* Convert signed integer VAL to a target floating-number of type TYPE
and store it as byte-stream ADDR. */
void
target_float_from_longest (gdb_byte *addr, const struct type *type,
LONGEST val)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type);
ops->from_longest (addr, type, val);
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
/* Convert unsigned integer VAL to a target floating-number of type TYPE
and store it as byte-stream ADDR. */
void
target_float_from_ulongest (gdb_byte *addr, const struct type *type,
ULONGEST val)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type);
ops->from_ulongest (addr, type, val);
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
to a floating-point value in the host "double" format. */
double
target_float_to_host_double (const gdb_byte *addr,
const struct type *type)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type);
return ops->to_host_double (addr, type);
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
}
/* Convert floating-point value VAL in the host "double" format to a target
floating-number of type TYPE and store it as byte-stream ADDR. */
void
target_float_from_host_double (gdb_byte *addr, const struct type *type,
double val)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type);
ops->from_host_double (addr, type, val);
Target FP: Handle interfaces to scripting languages The last remaing use for DOUBLEST is in the code that interfaces to the scripting languages (Python and Guile). The problem here is that we expose interfaces to convert a GDB value to and from native values of floating-point type in those languages, and those by definition use the host floating-point format. While we cannot completely eliminate conversions to/from the host floating-point format here, we still need to get rid of the uses of value_as_double / value_from_double, since those will go away. This patch implements two new target-float.c routine: - target_float_to_host_double - target_float_from_host_double which convert to/from a host "double". Those should only ever be used where a host "double" is mandated by an external interface. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_host_double): New function. (floatformat_from_host_double): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. * target-float.h (target_float_to_host_double): Add prototype. (target_float_from_host_double): Likewise. * guile/scm-value.c: Include "target-float.h". (gdbscm_value_to_real): Use target_float_to_host_double. Handle integer source values via value_as_long. * guile/scm-math.c: Include "target-float.h". Do not include "doublest.h", "dfp.h", and "expression.h". (vlscm_convert_typed_number): Use target_float_from_host_double. (vlscm_convert_number): Likewise. * python/py-value.c (valpy_float): Use target_float_to_host_double. (convert_value_from_python): Use target_float_from_host_double.
2017-11-06 23:00:47 +08:00
}
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
/* Convert a floating-point number of type FROM_TYPE from the target
byte-stream FROM to a floating-point number of type TO_TYPE, and
store it to the target byte-stream TO. */
void
target_float_convert (const gdb_byte *from, const struct type *from_type,
gdb_byte *to, const struct type *to_type)
{
/* We cannot directly convert between binary and decimal floating-point
types, so go via an intermediary string. */
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
if (!target_float_same_category_p (from_type, to_type))
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
{
std::string str = target_float_to_string (from, from_type);
target_float_from_string (to, to_type, str);
return;
}
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
/* Convert between two different formats in the same category. */
if (!target_float_same_format_p (from_type, to_type))
{
const target_float_ops *ops = get_target_float_ops (from_type, to_type);
ops->convert (from, from_type, to, to_type);
return;
}
/* The floating-point formats match, so we simply copy the data, ensuring
possible padding bytes in the target buffer are zeroed out. */
memset (to, 0, TYPE_LENGTH (to_type));
memcpy (to, from, target_float_format_length (to_type));
Target FP: Add conversion routines to target-float.{c,h} This patch adds the following conversion routines: - target_float_to_longest - target_float_from_longest - target_float_from_ulongest - target_float_convert which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP. The target_float_convert routine not only handles BFP<->BFP and DFP<->DFP conversions, but also BFP<->DFP, which are implemented by converting to a string and back. These helpers are used in particular to implement conversion from and to FP in value_cast, without going through DOUBLEST there. In order to implement this for the FP<-integer case, the pack_long / pack_unsigned_long routines are extended to support floating-point values as output (thereby allowing use of value_from_[u]longest with a floating-point target type). This latter change also allows simplification of value_one. gdb/ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c (floatformat_to_longest): New function. (floatformat_from_longest, floatformat_from_ulongest): Likewise. (floatformat_convert): Likewise. (target_float_to_longest): Likewise. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * target-float.h (target_float_to_longest): Add prototype. (target_float_from_longest, target_float_from_ulongest): Likewise. (target_float_convert): Likewise. * value.c (unpack_long): Use target_float_to_longest. (pack_long): Allow FP types. Use target_float_from_longest. (pack_unsigned_long): Likewise using target_float_from_ulongest. * valops.c: Include "target-float.h". Do not include "dfp.h". (value_cast): Handle conversions to FP using target_float_convert, value_from_ulongest, and value_from_longest. (value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
}
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
/* Perform the binary operation indicated by OPCODE, using as operands the
target byte streams X and Y, interpreted as floating-point numbers of
types TYPE_X and TYPE_Y, respectively. Convert the result to type
TYPE_RES and store it into the byte-stream RES.
The three types must either be all binary floating-point types, or else
all decimal floating-point types. Binary and decimal floating-point
types cannot be mixed within a single operation. */
void
target_float_binop (enum exp_opcode opcode,
const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y,
gdb_byte *res, const struct type *type_res)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
gdb_assert (target_float_same_category_p (type_x, type_res));
gdb_assert (target_float_same_category_p (type_y, type_res));
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type_x, type_y);
ops->binop (opcode, x, type_x, y, type_y, res, type_res);
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
}
/* Compare the two target byte streams X and Y, interpreted as floating-point
numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
are equal, -1 if X is less than Y, and 1 otherwise.
The two types must either both be binary floating-point types, or else
both be decimal floating-point types. Binary and decimal floating-point
types cannot compared directly against each other. */
int
target_float_compare (const gdb_byte *x, const struct type *type_x,
const gdb_byte *y, const struct type *type_y)
{
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
gdb_assert (target_float_same_category_p (type_x, type_y));
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
Target FP: Refactor use of host floating-point arithmetic Prepare for using MPFR to implement floating-point arithmetic by refactoring the way host floating-point arithmetic is currently used. In particular, fix the following two problems that cause different (and incorrect) results due to using host arithmetic: - Current processing always uses host "long double", and then converts back to the actual target format. This may introduce rounding errors. - Conversion of FP values to LONGEST simply does a host C++ type cast. However the result of such a cast is undefined if the source value is outside the representable range. MPFR always has defined behavior here (returns the minimum or maximum representable value). To fix the first issue, I've now created not just one set of routines using host FP arithmetic (on long double), but instead three different sets of routines, one each for host float, double, and long double. Operations can then be performed in the desired type directly, avoiding the extra rounding step. Using C++ templates, the three sets can all share the same source code without duplication. To fix the second issue, I'm simply enforcing the same conversion rule (which makes sense anyway) when converting out-of-range values from FP to LONGEST. To contain the code complexity with the variety of options now possible, I've created a new class "target_float_ops". There are a total of five separate implementations of this: host_float_ops<float> Implemented via host FP in given type host_float_ops<double> host_float_ops<long double> mpfr_float_ops Implemented via MPFR if available decimal_float_ops Implemented via libdecnumber Note instead of using the DOUBLEST define, this always just uses the "long double" data type. But since we now require C++11 anyway, this type must in any case be avaialble unconditionally. Most target floating-point operations simply dispatch to a (virtual) member routine of this class. Which implementation to choose is determined from the target types involved, and whether they match some host type or not. E.g. any operation on a single type that matches a host type is performed in that type. Operations involving two types that both match host types are performed in the larger one (according to C/C++ implicit conversion rules). Operations that involve any type that does not match a host type are performed using MPFR. (And of course operations involving decimal FP are performed using libdecnumber.) This first patch implements the refactoring of target-float.c as described above, introduing the host_float_ops and decimal_float_ops classes, and using them. Use of MPFR is introduced in the second patch. A bit of special-case handling code is moved around to as to avoid code duplication between host_float_ops and mpfr_float_ops. Note that due to the changes mentioned above, I've had to update (fix) the floating-point register values tested in the gdb.arch/vsx-regs.exp test case. (The new values now work both with host arithmetic and MPFR.) gdb/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Do not include <math.h>. Include <cmath> and <limits>. (DOUBLEST): Do not define. (class target_float_ops): New type. (class host_float_ops): New templated type. (class decimal_float_ops): New type. (floatformat_to_doublest): Rename to ... (host_float_ops<T>::from_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::from_target): New overload using a type argument. (floatformat_from_doublest): Rename to ... (host_float_ops<T>::to_target): ... this. Use template type T instead of DOUBLEST. Use C++ math routines. Update recursive calls. (host_float_ops<T>::to_target): New overload using a type argument. (floatformat_printf_format): New function. (struct printf_length_modifier): New templated type. (floatformat_to_string): Rename to ... (host_float_ops<T>::to_string): ... this. Use type instead of floatformat argument. Use floatformat_printf_format and printf_length_modifier. Remove special handling of invalid numbers, infinities and NaN (moved to target_float_to_string). (struct scanf_length_modifier): New templated type. (floatformat_from_string): Rename to ... (host_float_ops<T>::from_string): ... this. Use type instead of floatformat argument. Use scanf_length_modifier. (floatformat_to_longest): Rename to ... (host_float_ops<T>::to_longest): ... this. Use type instead of floatformat argument. Handle out-of-range values deterministically. (floatformat_from_longest): Rename to ... (host_float_ops<T>::from_longest): ... this. Use type instead of floatformat argument. (floatformat_from_ulongest): Rename to ... (host_float_ops<T>::from_ulongest): ... this. Use type instead of floatformat argument. (floatformat_to_host_double): Rename to ... (host_float_ops<T>::to_host_double): ... this. Use type instead of floatformat argument. (floatformat_from_host_double): Rename to ... (host_float_ops<T>::from_host_double): ... this. Use type instead of floatformat argument. (floatformat_convert): Rename to ... (host_float_ops<T>::convert): ... this. Use type instead of floatformat arguments. Remove handling of no-op conversions. (floatformat_binop): Rename to ... (host_float_ops<T>::binop): ... this. Use type instead of floatformat arguments. (floatformat_compare): Rename to ... (host_float_ops<T>::compare): ... this. Use type instead of floatformat arguments. (match_endianness): Use type instead of length/byte_order arguments. (set_decnumber_context): Likewise. (decimal_from_number): Likewise. Update calls. (decimal_to_number): Likewise. (decimal_is_zero): Likewise. Update calls. Move to earlier in file. (decimal_float_ops::to_host_double): New dummy function. (decimal_float_ops::from_host_double): Likewise. (decimal_to_string): Rename to ... (decimal_float_ops::to_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_string): Rename to ... (decimal_float_ops::from_string): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_longest): Rename to ... (decimal_float_ops::from_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_from_ulongest): Rename to ... (decimal_float_ops::from_ulongest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_to_longest): Rename to ... (decimal_float_ops::to_longest): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_binop): Rename to ... (decimal_float_ops::binop): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_compare): Rename to ... (decimal_float_ops::compare): ... this. Use type instead of length/byte_order arguments. Update calls. (decimal_convert): Rename to ... (decimal_float_ops::convert): ... this. Use type instead of length/byte_order arguments. Update calls. (target_float_same_category_p): New function. (target_float_same_format_p): Likewise. (target_float_format_length): Likewise. (enum target_float_ops_kind): New type. (get_target_float_ops_kind): New function. (get_target_float_ops): Three new overloaded functions. (target_float_is_zero): Update call. (target_float_to_string): Add special handling of invalid numbers, infinities and NaN (moved from floatformat_to_string). Use target_float_ops callback. (target_float_from_string): Use target_float_ops callback. (target_float_to_longest): Likewise. (target_float_from_longest): Likewise. (target_float_from_ulongest): Likewise. (target_float_to_host_double): Likewise. (target_float_from_host_double): Likewise. (target_float_convert): Add special case for no-op conversions. Use target_float_ops callback. (target_float_binop): Use target_float_ops callback. (target_float_compare): Likewise. gdb/testsuite/ChangeLog: 2017-11-22 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
const target_float_ops *ops = get_target_float_ops (type_x, type_y);
return ops->compare (x, type_x, y, type_y);
Target FP: Add binop and compare routines to target-float.{c,h} This patch adds the following target floating-point routines: - target_float_binop - target_float_compare which call the equivalent decimal_ routines to handle decimal FP, and call helper routines that currently still go via DOUBLEST to handle binary FP (derived from current valarith.c code). These routines are used to handle both binary and decimal FP types in scalar_binop, value_equal, and value_less, mostly following the method currently used for decimal FP. The existing value_args_as_decimal helper is renamed to value_args_as_target_float and extended to handle both binary and decimal types. The unary operations value_pos and value_neg are also simplified, the former by using a simple copy for all scalar types, the latter by using value_binop (... BINOP_SUB) to implement negation as subtraction from zero. ChangeLog: 2017-11-06 Ulrich Weigand <uweigand@de.ibm.com> * target-float.c: Include <math.h>. (floatformat_binop): New function. (floatformat_compare): Likewise. (target_float_binop): Likewise. (target_float_compare): Likewise. * target-float.h: Include "expression.h". (target_float_binop): Add prototype. (target_float_compare): Likewise. * valarith.c: Do not include "doublest.h" and "dfp.h". Include "common/byte-vector.h". (value_args_as_decimal): Remove, replace by ... (value_args_as_target_float): ... this function. Handle both binary and decimal target floating-point formats. (scalar_binop): Handle both binary and decimal FP using value_args_as_target_float and target_float_binop. (value_equal): Handle both binary and decimal FP using value_args_as_target_float and target_float_compare. (value_less): Likewise. (value_pos): Handle all scalar types as simple copy. (value_neg): Handle all scalar types via BINOP_SUB from 0. * dfp.c (decimal_binop): Throw error instead of internal_error when called with an unsupported operation code.
2017-11-06 22:58:46 +08:00
}