mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-22 16:53:31 +08:00
381 lines
9.5 KiB
C
381 lines
9.5 KiB
C
|
/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
|
|||
|
Copyright 1996, Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "frame.h"
|
|||
|
#include "inferior.h"
|
|||
|
#include "obstack.h"
|
|||
|
#include "target.h"
|
|||
|
#include "value.h"
|
|||
|
#include "bfd.h"
|
|||
|
#include "gdb_string.h"
|
|||
|
#include "gdbcore.h"
|
|||
|
#include "symfile.h"
|
|||
|
|
|||
|
struct dummy_frame
|
|||
|
{
|
|||
|
struct dummy_frame *next;
|
|||
|
|
|||
|
CORE_ADDR fp;
|
|||
|
CORE_ADDR sp;
|
|||
|
CORE_ADDR rp;
|
|||
|
CORE_ADDR pc;
|
|||
|
};
|
|||
|
|
|||
|
void
|
|||
|
m32r_frame_find_saved_regs PARAMS ((struct frame_info *fi,
|
|||
|
struct frame_saved_regs *regaddr))
|
|||
|
{
|
|||
|
*regaddr = fi->fsr;
|
|||
|
}
|
|||
|
|
|||
|
static struct dummy_frame *dummy_frame_stack = NULL;
|
|||
|
|
|||
|
/* Find end of function prologue */
|
|||
|
|
|||
|
CORE_ADDR
|
|||
|
m32r_skip_prologue (pc)
|
|||
|
CORE_ADDR pc;
|
|||
|
{
|
|||
|
CORE_ADDR func_addr, func_end;
|
|||
|
struct symtab_and_line sal;
|
|||
|
|
|||
|
/* See what the symbol table says */
|
|||
|
|
|||
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|||
|
{
|
|||
|
sal = find_pc_line (func_addr, 0);
|
|||
|
|
|||
|
if (sal.line != 0 && sal.end < func_end)
|
|||
|
return sal.end;
|
|||
|
else
|
|||
|
/* Either there's no line info, or the line after the prologue is after
|
|||
|
the end of the function. In this case, there probably isn't a
|
|||
|
prologue. */
|
|||
|
return pc;
|
|||
|
}
|
|||
|
|
|||
|
/* We can't find the start of this function, so there's nothing we can do. */
|
|||
|
return pc;
|
|||
|
}
|
|||
|
|
|||
|
/* This function decodes the target function prologue to determine
|
|||
|
1) the size of the stack frame, and 2) which registers are saved on it.
|
|||
|
It saves the offsets of saved regs in the frame_saved_regs argument,
|
|||
|
and returns the frame size.
|
|||
|
*/
|
|||
|
|
|||
|
static unsigned long
|
|||
|
m32r_scan_prologue (fi, fsr)
|
|||
|
struct frame_info *fi;
|
|||
|
struct frame_saved_regs *fsr;
|
|||
|
{
|
|||
|
struct symtab_and_line sal;
|
|||
|
CORE_ADDR prologue_start, prologue_end, current_pc;
|
|||
|
unsigned long framesize;
|
|||
|
|
|||
|
/* this code essentially duplicates skip_prologue,
|
|||
|
but we need the start address below. */
|
|||
|
|
|||
|
if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
|
|||
|
{
|
|||
|
sal = find_pc_line (prologue_start, 0);
|
|||
|
|
|||
|
if (sal.line == 0) /* no line info, use current PC */
|
|||
|
prologue_end = fi->pc;
|
|||
|
else if (sal.end < prologue_end) /* next line begins after fn end */
|
|||
|
prologue_end = sal.end; /* (probably means no prologue) */
|
|||
|
}
|
|||
|
else
|
|||
|
prologue_end = prologue_start + 100; /* We're in the boondocks */
|
|||
|
|
|||
|
prologue_end = min (prologue_end, fi->pc);
|
|||
|
|
|||
|
/* Now, search the prologue looking for instructions that setup fp, save
|
|||
|
rp (and other regs), adjust sp and such. */
|
|||
|
|
|||
|
framesize = 0;
|
|||
|
memset (fsr->regs, '\000', sizeof fsr->regs);
|
|||
|
|
|||
|
for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
|
|||
|
{
|
|||
|
int insn;
|
|||
|
int regno;
|
|||
|
|
|||
|
insn = read_memory_unsigned_integer (current_pc, 2);
|
|||
|
if (insn & 0x80) /* Four byte instruction? */
|
|||
|
current_pc += 2;
|
|||
|
|
|||
|
if ((insn & 0xf0ff) == 0x207f) { /* st reg, @-sp */
|
|||
|
framesize += 4;
|
|||
|
regno = ((insn >> 8) & 0xf);
|
|||
|
fsr->regs[regno] = framesize;
|
|||
|
}
|
|||
|
else if ((insn >> 8) == 0x4f) { /* addi sp */
|
|||
|
framesize += -((char) (insn & 0xff)); /* offset */
|
|||
|
break; /* end of stack adjustments */
|
|||
|
}
|
|||
|
}
|
|||
|
return framesize;
|
|||
|
}
|
|||
|
|
|||
|
/* This function actually figures out the frame address for a given pc and
|
|||
|
sp. This is tricky on the v850 because we only use an explicit frame
|
|||
|
pointer when using alloca(). The only reliable way to get this info is to
|
|||
|
examine the prologue.
|
|||
|
*/
|
|||
|
|
|||
|
void
|
|||
|
m32r_init_extra_frame_info (fi)
|
|||
|
struct frame_info *fi;
|
|||
|
{
|
|||
|
int reg;
|
|||
|
int framesize;
|
|||
|
|
|||
|
if (fi->next)
|
|||
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
|||
|
|
|||
|
framesize = m32r_scan_prologue (fi, &fi->fsr);
|
|||
|
|
|||
|
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
|
|||
|
fi->frame = dummy_frame_stack->sp;
|
|||
|
else if (!fi->next)
|
|||
|
fi->frame = read_register (SP_REGNUM);
|
|||
|
|
|||
|
for (reg = 0; reg < NUM_REGS; reg++)
|
|||
|
if (fi->fsr.regs[reg] != 0)
|
|||
|
fi->fsr.regs[reg] = fi->frame + framesize - fi->fsr.regs[reg];
|
|||
|
}
|
|||
|
|
|||
|
/* Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
|
|||
|
in the stack anywhere, otherwise we get it from the registers. */
|
|||
|
|
|||
|
CORE_ADDR
|
|||
|
m32r_find_callers_reg (fi, regnum)
|
|||
|
struct frame_info *fi;
|
|||
|
int regnum;
|
|||
|
{
|
|||
|
#if 0
|
|||
|
/* XXX - Won't work if multiple dummy frames are active */
|
|||
|
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
|
|||
|
switch (regnum)
|
|||
|
{
|
|||
|
case SP_REGNUM:
|
|||
|
return dummy_frame_stack->sp;
|
|||
|
break;
|
|||
|
case FP_REGNUM:
|
|||
|
return dummy_frame_stack->fp;
|
|||
|
break;
|
|||
|
case RP_REGNUM:
|
|||
|
return dummy_frame_stack->pc;
|
|||
|
break;
|
|||
|
case PC_REGNUM:
|
|||
|
return dummy_frame_stack->pc;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
#endif
|
|||
|
for (; fi; fi = fi->next)
|
|||
|
if (fi->fsr.regs[regnum] != 0)
|
|||
|
return read_memory_integer (fi->fsr.regs[regnum], 4);
|
|||
|
return read_register (regnum);
|
|||
|
}
|
|||
|
|
|||
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|||
|
This will be used to create a new GDB frame struct, and then
|
|||
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|||
|
For m32r, simply get the saved FP off the stack.
|
|||
|
*/
|
|||
|
|
|||
|
CORE_ADDR
|
|||
|
m32r_frame_chain (fi)
|
|||
|
struct frame_info *fi;
|
|||
|
{
|
|||
|
CORE_ADDR saved_fp = fi->fsr.regs[FP_REGNUM];
|
|||
|
|
|||
|
if (saved_fp == 0)
|
|||
|
return 0; /* frameless assembly language fn (such as _start) */
|
|||
|
|
|||
|
return read_memory_integer (saved_fp, 4);
|
|||
|
}
|
|||
|
|
|||
|
/* All we do here is record SP and FP on the call dummy stack */
|
|||
|
|
|||
|
void
|
|||
|
m32r_push_dummy_frame ()
|
|||
|
{
|
|||
|
struct dummy_frame *dummy_frame;
|
|||
|
|
|||
|
dummy_frame = xmalloc (sizeof (struct dummy_frame));
|
|||
|
|
|||
|
dummy_frame->fp = read_register (FP_REGNUM);
|
|||
|
dummy_frame->sp = read_register (SP_REGNUM);
|
|||
|
dummy_frame->rp = read_register (RP_REGNUM);
|
|||
|
dummy_frame->pc = read_register (PC_REGNUM);
|
|||
|
dummy_frame->next = dummy_frame_stack;
|
|||
|
dummy_frame_stack = dummy_frame;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* MISSING FUNCTION HEADER COMMENT
|
|||
|
*/
|
|||
|
|
|||
|
int
|
|||
|
m32r_pc_in_call_dummy (pc)
|
|||
|
CORE_ADDR pc;
|
|||
|
{
|
|||
|
return dummy_frame_stack
|
|||
|
&& pc >= CALL_DUMMY_ADDRESS ()
|
|||
|
&& pc <= CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK;
|
|||
|
}
|
|||
|
|
|||
|
/* Discard from the stack the innermost frame,
|
|||
|
restoring all saved registers. */
|
|||
|
|
|||
|
struct frame_info *
|
|||
|
m32r_pop_frame (frame)
|
|||
|
struct frame_info *frame;
|
|||
|
{
|
|||
|
int regnum;
|
|||
|
|
|||
|
#if 0
|
|||
|
if (PC_IN_CALL_DUMMY (frame->pc, NULL, NULL))
|
|||
|
{
|
|||
|
struct dummy_frame *dummy_frame;
|
|||
|
|
|||
|
dummy_frame = dummy_frame_stack;
|
|||
|
if (!dummy_frame)
|
|||
|
error ("Can't pop dummy frame!");
|
|||
|
|
|||
|
dummy_frame_stack = dummy_frame->next;
|
|||
|
|
|||
|
write_register (FP_REGNUM, dummy_frame->fp);
|
|||
|
write_register (SP_REGNUM, dummy_frame->sp);
|
|||
|
write_register (RP_REGNUM, dummy_frame->rp);
|
|||
|
write_register (PC_REGNUM, dummy_frame->pc);
|
|||
|
|
|||
|
free (dummy_frame);
|
|||
|
|
|||
|
flush_cached_frames ();
|
|||
|
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
#endif
|
|||
|
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
|||
|
|
|||
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|||
|
if (frame->fsr.regs[regnum] != 0)
|
|||
|
write_register (regnum,
|
|||
|
read_memory_integer (frame->fsr.regs[regnum], 4));
|
|||
|
|
|||
|
write_register (SP_REGNUM, read_register (FP_REGNUM));
|
|||
|
if (read_register (PSW_REGNUM) & 0x80)
|
|||
|
write_register (SPU_REGNUM, read_register (SP_REGNUM));
|
|||
|
else
|
|||
|
write_register (SPI_REGNUM, read_register (SP_REGNUM));
|
|||
|
/* registers_changed (); */
|
|||
|
flush_cached_frames ();
|
|||
|
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Put arguments in the right places, and setup return address register (RP) to
|
|||
|
point at a convenient place to put a breakpoint. First four args go in
|
|||
|
R6->R9, subsequent args go into sp + 16 -> sp + ... Structs are passed by
|
|||
|
reference. 64 bit quantities (doubles and long longs) may be split between
|
|||
|
the regs and the stack. When calling a function that returns a struct, a
|
|||
|
pointer to the struct is passed in as a secret first argument (always in R6).
|
|||
|
|
|||
|
By the time we get here, stack space has been allocated for the args, but
|
|||
|
not for the struct return pointer. */
|
|||
|
|
|||
|
CORE_ADDR
|
|||
|
m32r_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
|||
|
int nargs;
|
|||
|
value_ptr *args;
|
|||
|
CORE_ADDR sp;
|
|||
|
unsigned char struct_return;
|
|||
|
CORE_ADDR struct_addr;
|
|||
|
{
|
|||
|
int argreg;
|
|||
|
int argnum;
|
|||
|
|
|||
|
argreg = ARG0_REGNUM;
|
|||
|
|
|||
|
#if 0
|
|||
|
if (struct_return)
|
|||
|
{
|
|||
|
write_register (argreg++, struct_addr);
|
|||
|
sp -= 4;
|
|||
|
}
|
|||
|
|
|||
|
for (argnum = 0; argnum < nargs; argnum++)
|
|||
|
{
|
|||
|
int len;
|
|||
|
char *val;
|
|||
|
char valbuf[4];
|
|||
|
|
|||
|
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
|||
|
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
|||
|
{
|
|||
|
store_address (valbuf, 4, VALUE_ADDRESS (*args));
|
|||
|
len = 4;
|
|||
|
val = valbuf;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
|||
|
val = (char *)VALUE_CONTENTS (*args);
|
|||
|
}
|
|||
|
|
|||
|
while (len > 0)
|
|||
|
if (argreg <= ARGLAST_REGNUM)
|
|||
|
{
|
|||
|
CORE_ADDR regval;
|
|||
|
|
|||
|
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
|||
|
write_register (argreg, regval);
|
|||
|
|
|||
|
len -= REGISTER_RAW_SIZE (argreg);
|
|||
|
val += REGISTER_RAW_SIZE (argreg);
|
|||
|
argreg++;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
write_memory (sp + argnum * 4, val, 4);
|
|||
|
|
|||
|
len -= 4;
|
|||
|
val += 4;
|
|||
|
}
|
|||
|
args++;
|
|||
|
}
|
|||
|
|
|||
|
write_register (RP_REGNUM, entry_point_address ());
|
|||
|
|
|||
|
#endif
|
|||
|
return sp;
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
_initialize_m32r_tdep ()
|
|||
|
{
|
|||
|
tm_print_insn = print_insn_m32r;
|
|||
|
}
|