binutils-gdb/gdb/rust-exp.y

2785 lines
68 KiB
Plaintext
Raw Normal View History

/* Bison parser for Rust expressions, for GDB.
Copyright (C) 2016-2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Removing the last conflict seems difficult. */
%expect 1
%{
#include "defs.h"
#include "block.h"
#include "charset.h"
#include "cp-support.h"
#include "gdb_obstack.h"
#include "gdb_regex.h"
#include "rust-lang.h"
#include "parser-defs.h"
#include "selftest.h"
#include "value.h"
#include "vec.h"
#define GDB_YY_REMAP_PREFIX rust
#include "yy-remap.h"
#define RUSTSTYPE YYSTYPE
struct rust_op;
typedef std::vector<const struct rust_op *> rust_op_vector;
/* A typed integer constant. */
struct typed_val_int
{
LONGEST val;
struct type *type;
};
/* A typed floating point constant. */
struct typed_val_float
{
DOUBLEST dval;
struct type *type;
};
/* An identifier and an expression. This is used to represent one
element of a struct initializer. */
struct set_field
{
struct stoken name;
const struct rust_op *init;
};
typedef std::vector<set_field> rust_set_vector;
static int rustyylex (void);
static void rust_push_back (char c);
static const char *rust_copy_name (const char *, int);
static struct stoken rust_concat3 (const char *, const char *, const char *);
static struct stoken make_stoken (const char *);
static struct block_symbol rust_lookup_symbol (const char *name,
const struct block *block,
const domain_enum domain);
static struct type *rust_lookup_type (const char *name,
const struct block *block);
static struct type *rust_type (const char *name);
static const struct rust_op *crate_name (const struct rust_op *name);
static const struct rust_op *super_name (const struct rust_op *name,
unsigned int n_supers);
static const struct rust_op *ast_operation (enum exp_opcode opcode,
const struct rust_op *left,
const struct rust_op *right);
static const struct rust_op *ast_compound_assignment
(enum exp_opcode opcode, const struct rust_op *left,
const struct rust_op *rust_op);
static const struct rust_op *ast_literal (struct typed_val_int val);
static const struct rust_op *ast_dliteral (struct typed_val_float val);
static const struct rust_op *ast_structop (const struct rust_op *left,
const char *name,
int completing);
static const struct rust_op *ast_structop_anonymous
(const struct rust_op *left, struct typed_val_int number);
static const struct rust_op *ast_unary (enum exp_opcode opcode,
const struct rust_op *expr);
static const struct rust_op *ast_cast (const struct rust_op *expr,
const struct rust_op *type);
static const struct rust_op *ast_call_ish (enum exp_opcode opcode,
const struct rust_op *expr,
rust_op_vector *params);
static const struct rust_op *ast_path (struct stoken name,
rust_op_vector *params);
static const struct rust_op *ast_string (struct stoken str);
static const struct rust_op *ast_struct (const struct rust_op *name,
rust_set_vector *fields);
static const struct rust_op *ast_range (const struct rust_op *lhs,
const struct rust_op *rhs);
static const struct rust_op *ast_array_type (const struct rust_op *lhs,
struct typed_val_int val);
static const struct rust_op *ast_slice_type (const struct rust_op *type);
static const struct rust_op *ast_reference_type (const struct rust_op *type);
static const struct rust_op *ast_pointer_type (const struct rust_op *type,
int is_mut);
static const struct rust_op *ast_function_type (const struct rust_op *result,
rust_op_vector *params);
static const struct rust_op *ast_tuple_type (rust_op_vector *params);
/* The current rust parser. */
struct rust_parser;
static rust_parser *current_parser;
/* A regular expression for matching Rust numbers. This is split up
since it is very long and this gives us a way to comment the
sections. */
static const char *number_regex_text =
/* subexpression 1: allows use of alternation, otherwise uninteresting */
"^("
/* First comes floating point. */
/* Recognize number after the decimal point, with optional
exponent and optional type suffix.
subexpression 2: allows "?", otherwise uninteresting
subexpression 3: if present, type suffix
*/
"[0-9][0-9_]*\\.[0-9][0-9_]*([eE][-+]?[0-9][0-9_]*)?(f32|f64)?"
#define FLOAT_TYPE1 3
"|"
/* Recognize exponent without decimal point, with optional type
suffix.
subexpression 4: if present, type suffix
*/
#define FLOAT_TYPE2 4
"[0-9][0-9_]*[eE][-+]?[0-9][0-9_]*(f32|f64)?"
"|"
/* "23." is a valid floating point number, but "23.e5" and
"23.f32" are not. So, handle the trailing-. case
separately. */
"[0-9][0-9_]*\\."
"|"
/* Finally come integers.
subexpression 5: text of integer
subexpression 6: if present, type suffix
subexpression 7: allows use of alternation, otherwise uninteresting
*/
#define INT_TEXT 5
#define INT_TYPE 6
"(0x[a-fA-F0-9_]+|0o[0-7_]+|0b[01_]+|[0-9][0-9_]*)"
"([iu](size|8|16|32|64))?"
")";
/* The number of subexpressions to allocate space for, including the
"0th" whole match subexpression. */
#define NUM_SUBEXPRESSIONS 8
/* The compiled number-matching regex. */
static regex_t number_regex;
/* True if we're running unit tests. */
static int unit_testing;
/* Obstack for data temporarily allocated during parsing. Points to
the obstack in the rust_parser, or to a temporary obstack during
unit testing. */
static auto_obstack *work_obstack;
/* An instance of this is created before parsing, and destroyed when
parsing is finished. */
struct rust_parser
{
rust_parser (struct parser_state *state)
: rust_ast (nullptr),
pstate (state)
{
gdb_assert (current_parser == nullptr);
current_parser = this;
work_obstack = &obstack;
}
~rust_parser ()
{
/* Clean up the globals we set. */
current_parser = nullptr;
work_obstack = nullptr;
}
/* Create a new rust_set_vector. The storage for the new vector is
managed by this class. */
rust_set_vector *new_set_vector ()
{
rust_set_vector *result = new rust_set_vector;
set_vectors.push_back (std::unique_ptr<rust_set_vector> (result));
return result;
}
/* Create a new rust_ops_vector. The storage for the new vector is
managed by this class. */
rust_op_vector *new_op_vector ()
{
rust_op_vector *result = new rust_op_vector;
op_vectors.push_back (std::unique_ptr<rust_op_vector> (result));
return result;
}
/* Return the parser's language. */
const struct language_defn *language () const
{
return parse_language (pstate);
}
/* Return the parser's gdbarch. */
struct gdbarch *arch () const
{
return parse_gdbarch (pstate);
}
/* A pointer to this is installed globally. */
auto_obstack obstack;
/* Result of parsing. Points into obstack. */
const struct rust_op *rust_ast;
/* This keeps track of the various vectors we allocate. */
std::vector<std::unique_ptr<rust_set_vector>> set_vectors;
std::vector<std::unique_ptr<rust_op_vector>> op_vectors;
/* The parser state gdb gave us. */
struct parser_state *pstate;
};
%}
%union
{
/* A typed integer constant. */
struct typed_val_int typed_val_int;
/* A typed floating point constant. */
struct typed_val_float typed_val_float;
/* An identifier or string. */
struct stoken sval;
/* A token representing an opcode, like "==". */
enum exp_opcode opcode;
/* A list of expressions; for example, the arguments to a function
call. */
rust_op_vector *params;
/* A list of field initializers. */
rust_set_vector *field_inits;
/* A single field initializer. */
struct set_field one_field_init;
/* An expression. */
const struct rust_op *op;
/* A plain integer, for example used to count the number of
"super::" prefixes on a path. */
unsigned int depth;
}
%{
/* Rust AST operations. We build a tree of these; then lower them
to gdb expressions when parsing has completed. */
struct rust_op
{
/* The opcode. */
enum exp_opcode opcode;
/* If OPCODE is OP_TYPE, then this holds information about what type
is described by this node. */
enum type_code typecode;
/* Indicates whether OPCODE actually represents a compound
assignment. For example, if OPCODE is GTGT and this is false,
then this rust_op represents an ordinary ">>"; but if this is
true, then this rust_op represents ">>=". Unused in other
cases. */
unsigned int compound_assignment : 1;
/* Only used by a field expression; if set, indicates that the field
name occurred at the end of the expression and is eligible for
completion. */
unsigned int completing : 1;
/* Operands of expression. Which one is used and how depends on the
particular opcode. */
RUSTSTYPE left;
RUSTSTYPE right;
};
%}
%token <sval> GDBVAR
%token <sval> IDENT
%token <sval> COMPLETE
%token <typed_val_int> INTEGER
%token <typed_val_int> DECIMAL_INTEGER
%token <sval> STRING
%token <sval> BYTESTRING
%token <typed_val_float> FLOAT
%token <opcode> COMPOUND_ASSIGN
/* Keyword tokens. */
%token <voidval> KW_AS
%token <voidval> KW_IF
%token <voidval> KW_TRUE
%token <voidval> KW_FALSE
%token <voidval> KW_SUPER
%token <voidval> KW_SELF
%token <voidval> KW_MUT
%token <voidval> KW_EXTERN
%token <voidval> KW_CONST
%token <voidval> KW_FN
%token <voidval> KW_SIZEOF
/* Operator tokens. */
%token <voidval> DOTDOT
%token <voidval> OROR
%token <voidval> ANDAND
%token <voidval> EQEQ
%token <voidval> NOTEQ
%token <voidval> LTEQ
%token <voidval> GTEQ
%token <voidval> LSH RSH
%token <voidval> COLONCOLON
%token <voidval> ARROW
%type <op> type
%type <op> path_for_expr
%type <op> identifier_path_for_expr
%type <op> path_for_type
%type <op> identifier_path_for_type
%type <op> just_identifiers_for_type
%type <params> maybe_type_list
%type <params> type_list
%type <depth> super_path
%type <op> literal
%type <op> expr
%type <op> field_expr
%type <op> idx_expr
%type <op> unop_expr
%type <op> binop_expr
%type <op> binop_expr_expr
%type <op> type_cast_expr
%type <op> assignment_expr
%type <op> compound_assignment_expr
%type <op> paren_expr
%type <op> call_expr
%type <op> path_expr
%type <op> tuple_expr
%type <op> unit_expr
%type <op> struct_expr
%type <op> array_expr
%type <op> range_expr
%type <params> expr_list
%type <params> maybe_expr_list
%type <params> paren_expr_list
%type <field_inits> struct_expr_list
%type <one_field_init> struct_expr_tail
/* Precedence. */
%nonassoc DOTDOT
%right '=' COMPOUND_ASSIGN
%left OROR
%left ANDAND
%nonassoc EQEQ NOTEQ '<' '>' LTEQ GTEQ
%left '|'
%left '^'
%left '&'
%left LSH RSH
%left '@'
%left '+' '-'
%left '*' '/' '%'
/* These could be %precedence in Bison, but that isn't a yacc
feature. */
%left KW_AS
%left UNARY
%left '[' '.' '('
%%
start:
expr
{
/* If we are completing and see a valid parse,
rust_ast will already have been set. */
if (current_parser->rust_ast == NULL)
current_parser->rust_ast = $1;
}
;
/* Note that the Rust grammar includes a method_call_expr, but we
handle this differently, to avoid a shift/reduce conflict with
call_expr. */
expr:
literal
| path_expr
| tuple_expr
| unit_expr
| struct_expr
| field_expr
| array_expr
| idx_expr
| range_expr
| unop_expr /* Must precede call_expr because of ambiguity with sizeof. */
| binop_expr
| paren_expr
| call_expr
;
tuple_expr:
'(' expr ',' maybe_expr_list ')'
{
$4->push_back ($2);
error (_("Tuple expressions not supported yet"));
}
;
unit_expr:
'(' ')'
{
struct typed_val_int val;
val.type
= language_lookup_primitive_type (current_parser->language (),
current_parser->arch (),
"()");
val.val = 0;
$$ = ast_literal (val);
}
;
/* To avoid a shift/reduce conflict with call_expr, we don't handle
tuple struct expressions here, but instead when examining the
AST. */
struct_expr:
path_for_expr '{' struct_expr_list '}'
{ $$ = ast_struct ($1, $3); }
;
struct_expr_tail:
DOTDOT expr
{
struct set_field sf;
sf.name.ptr = NULL;
sf.name.length = 0;
sf.init = $2;
$$ = sf;
}
| IDENT ':' expr
{
struct set_field sf;
sf.name = $1;
sf.init = $3;
$$ = sf;
}
;
struct_expr_list:
/* %empty */
{
$$ = current_parser->new_set_vector ();
}
| struct_expr_tail
{
rust_set_vector *result = current_parser->new_set_vector ();
result->push_back ($1);
$$ = result;
}
| IDENT ':' expr ',' struct_expr_list
{
struct set_field sf;
sf.name = $1;
sf.init = $3;
$5->push_back (sf);
$$ = $5;
}
;
array_expr:
'[' KW_MUT expr_list ']'
{ $$ = ast_call_ish (OP_ARRAY, NULL, $3); }
| '[' expr_list ']'
{ $$ = ast_call_ish (OP_ARRAY, NULL, $2); }
| '[' KW_MUT expr ';' expr ']'
{ $$ = ast_operation (OP_RUST_ARRAY, $3, $5); }
| '[' expr ';' expr ']'
{ $$ = ast_operation (OP_RUST_ARRAY, $2, $4); }
;
range_expr:
expr DOTDOT
{ $$ = ast_range ($1, NULL); }
| expr DOTDOT expr
{ $$ = ast_range ($1, $3); }
| DOTDOT expr
{ $$ = ast_range (NULL, $2); }
| DOTDOT
{ $$ = ast_range (NULL, NULL); }
;
literal:
INTEGER
{ $$ = ast_literal ($1); }
| DECIMAL_INTEGER
{ $$ = ast_literal ($1); }
| FLOAT
{ $$ = ast_dliteral ($1); }
| STRING
{
const struct rust_op *str = ast_string ($1);
struct set_field field;
struct typed_val_int val;
struct stoken token;
rust_set_vector *fields = current_parser->new_set_vector ();
/* Wrap the raw string in the &str struct. */
field.name.ptr = "data_ptr";
field.name.length = strlen (field.name.ptr);
field.init = ast_unary (UNOP_ADDR, ast_string ($1));
fields->push_back (field);
val.type = rust_type ("usize");
val.val = $1.length;
field.name.ptr = "length";
field.name.length = strlen (field.name.ptr);
field.init = ast_literal (val);
fields->push_back (field);
token.ptr = "&str";
token.length = strlen (token.ptr);
$$ = ast_struct (ast_path (token, NULL), fields);
}
| BYTESTRING
{ $$ = ast_string ($1); }
| KW_TRUE
{
struct typed_val_int val;
val.type = language_bool_type (current_parser->language (),
current_parser->arch ());
val.val = 1;
$$ = ast_literal (val);
}
| KW_FALSE
{
struct typed_val_int val;
val.type = language_bool_type (current_parser->language (),
current_parser->arch ());
val.val = 0;
$$ = ast_literal (val);
}
;
field_expr:
expr '.' IDENT
{ $$ = ast_structop ($1, $3.ptr, 0); }
| expr '.' COMPLETE
{
$$ = ast_structop ($1, $3.ptr, 1);
current_parser->rust_ast = $$;
}
| expr '.' DECIMAL_INTEGER
{ $$ = ast_structop_anonymous ($1, $3); }
;
idx_expr:
expr '[' expr ']'
{ $$ = ast_operation (BINOP_SUBSCRIPT, $1, $3); }
;
unop_expr:
'+' expr %prec UNARY
{ $$ = ast_unary (UNOP_PLUS, $2); }
| '-' expr %prec UNARY
{ $$ = ast_unary (UNOP_NEG, $2); }
| '!' expr %prec UNARY
{
/* Note that we provide a Rust-specific evaluator
override for UNOP_COMPLEMENT, so it can do the
right thing for both bool and integral
values. */
$$ = ast_unary (UNOP_COMPLEMENT, $2);
}
| '*' expr %prec UNARY
{ $$ = ast_unary (UNOP_IND, $2); }
| '&' expr %prec UNARY
{ $$ = ast_unary (UNOP_ADDR, $2); }
| '&' KW_MUT expr %prec UNARY
{ $$ = ast_unary (UNOP_ADDR, $3); }
| KW_SIZEOF '(' expr ')' %prec UNARY
{ $$ = ast_unary (UNOP_SIZEOF, $3); }
;
binop_expr:
binop_expr_expr
| type_cast_expr
| assignment_expr
| compound_assignment_expr
;
binop_expr_expr:
expr '*' expr
{ $$ = ast_operation (BINOP_MUL, $1, $3); }
| expr '@' expr
{ $$ = ast_operation (BINOP_REPEAT, $1, $3); }
| expr '/' expr
{ $$ = ast_operation (BINOP_DIV, $1, $3); }
| expr '%' expr
{ $$ = ast_operation (BINOP_REM, $1, $3); }
| expr '<' expr
{ $$ = ast_operation (BINOP_LESS, $1, $3); }
| expr '>' expr
{ $$ = ast_operation (BINOP_GTR, $1, $3); }
| expr '&' expr
{ $$ = ast_operation (BINOP_BITWISE_AND, $1, $3); }
| expr '|' expr
{ $$ = ast_operation (BINOP_BITWISE_IOR, $1, $3); }
| expr '^' expr
{ $$ = ast_operation (BINOP_BITWISE_XOR, $1, $3); }
| expr '+' expr
{ $$ = ast_operation (BINOP_ADD, $1, $3); }
| expr '-' expr
{ $$ = ast_operation (BINOP_SUB, $1, $3); }
| expr OROR expr
{ $$ = ast_operation (BINOP_LOGICAL_OR, $1, $3); }
| expr ANDAND expr
{ $$ = ast_operation (BINOP_LOGICAL_AND, $1, $3); }
| expr EQEQ expr
{ $$ = ast_operation (BINOP_EQUAL, $1, $3); }
| expr NOTEQ expr
{ $$ = ast_operation (BINOP_NOTEQUAL, $1, $3); }
| expr LTEQ expr
{ $$ = ast_operation (BINOP_LEQ, $1, $3); }
| expr GTEQ expr
{ $$ = ast_operation (BINOP_GEQ, $1, $3); }
| expr LSH expr
{ $$ = ast_operation (BINOP_LSH, $1, $3); }
| expr RSH expr
{ $$ = ast_operation (BINOP_RSH, $1, $3); }
;
type_cast_expr:
expr KW_AS type
{ $$ = ast_cast ($1, $3); }
;
assignment_expr:
expr '=' expr
{ $$ = ast_operation (BINOP_ASSIGN, $1, $3); }
;
compound_assignment_expr:
expr COMPOUND_ASSIGN expr
{ $$ = ast_compound_assignment ($2, $1, $3); }
;
paren_expr:
'(' expr ')'
{ $$ = $2; }
;
expr_list:
expr
{
$$ = current_parser->new_op_vector ();
$$->push_back ($1);
}
| expr_list ',' expr
{
$1->push_back ($3);
$$ = $1;
}
;
maybe_expr_list:
/* %empty */
{
/* The result can't be NULL. */
$$ = current_parser->new_op_vector ();
}
| expr_list
{ $$ = $1; }
;
paren_expr_list:
'('
maybe_expr_list
')'
{ $$ = $2; }
;
call_expr:
expr paren_expr_list
{ $$ = ast_call_ish (OP_FUNCALL, $1, $2); }
;
maybe_self_path:
/* %empty */
| KW_SELF COLONCOLON
;
super_path:
KW_SUPER COLONCOLON
{ $$ = 1; }
| super_path KW_SUPER COLONCOLON
{ $$ = $1 + 1; }
;
path_expr:
path_for_expr
{ $$ = $1; }
| GDBVAR
{ $$ = ast_path ($1, NULL); }
| KW_SELF
{ $$ = ast_path (make_stoken ("self"), NULL); }
;
path_for_expr:
identifier_path_for_expr
| KW_SELF COLONCOLON identifier_path_for_expr
{ $$ = super_name ($3, 0); }
| maybe_self_path super_path identifier_path_for_expr
{ $$ = super_name ($3, $2); }
| COLONCOLON identifier_path_for_expr
{ $$ = crate_name ($2); }
| KW_EXTERN identifier_path_for_expr
{
/* This is a gdb extension to make it possible to
refer to items in other crates. It just bypasses
adding the current crate to the front of the
name. */
$$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
$2->right.params);
}
;
identifier_path_for_expr:
IDENT
{ $$ = ast_path ($1, NULL); }
| identifier_path_for_expr COLONCOLON IDENT
{
$$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
$3.ptr),
NULL);
}
| identifier_path_for_expr COLONCOLON '<' type_list '>'
{ $$ = ast_path ($1->left.sval, $4); }
| identifier_path_for_expr COLONCOLON '<' type_list RSH
{
$$ = ast_path ($1->left.sval, $4);
rust_push_back ('>');
}
;
path_for_type:
identifier_path_for_type
| KW_SELF COLONCOLON identifier_path_for_type
{ $$ = super_name ($3, 0); }
| maybe_self_path super_path identifier_path_for_type
{ $$ = super_name ($3, $2); }
| COLONCOLON identifier_path_for_type
{ $$ = crate_name ($2); }
| KW_EXTERN identifier_path_for_type
{
/* This is a gdb extension to make it possible to
refer to items in other crates. It just bypasses
adding the current crate to the front of the
name. */
$$ = ast_path (rust_concat3 ("::", $2->left.sval.ptr, NULL),
$2->right.params);
}
;
just_identifiers_for_type:
IDENT
{ $$ = ast_path ($1, NULL); }
| just_identifiers_for_type COLONCOLON IDENT
{
$$ = ast_path (rust_concat3 ($1->left.sval.ptr, "::",
$3.ptr),
NULL);
}
;
identifier_path_for_type:
just_identifiers_for_type
| just_identifiers_for_type '<' type_list '>'
{ $$ = ast_path ($1->left.sval, $3); }
| just_identifiers_for_type '<' type_list RSH
{
$$ = ast_path ($1->left.sval, $3);
rust_push_back ('>');
}
;
type:
path_for_type
| '[' type ';' INTEGER ']'
{ $$ = ast_array_type ($2, $4); }
| '[' type ';' DECIMAL_INTEGER ']'
{ $$ = ast_array_type ($2, $4); }
| '&' '[' type ']'
{ $$ = ast_slice_type ($3); }
| '&' type
{ $$ = ast_reference_type ($2); }
| '*' KW_MUT type
{ $$ = ast_pointer_type ($3, 1); }
| '*' KW_CONST type
{ $$ = ast_pointer_type ($3, 0); }
| KW_FN '(' maybe_type_list ')' ARROW type
{ $$ = ast_function_type ($6, $3); }
| '(' maybe_type_list ')'
{ $$ = ast_tuple_type ($2); }
;
maybe_type_list:
/* %empty */
{ $$ = NULL; }
| type_list
{ $$ = $1; }
;
type_list:
type
{
rust_op_vector *result = current_parser->new_op_vector ();
result->push_back ($1);
$$ = result;
}
| type_list ',' type
{
$1->push_back ($3);
$$ = $1;
}
;
%%
/* A struct of this type is used to describe a token. */
struct token_info
{
const char *name;
int value;
enum exp_opcode opcode;
};
/* Identifier tokens. */
static const struct token_info identifier_tokens[] =
{
{ "as", KW_AS, OP_NULL },
{ "false", KW_FALSE, OP_NULL },
{ "if", 0, OP_NULL },
{ "mut", KW_MUT, OP_NULL },
{ "const", KW_CONST, OP_NULL },
{ "self", KW_SELF, OP_NULL },
{ "super", KW_SUPER, OP_NULL },
{ "true", KW_TRUE, OP_NULL },
{ "extern", KW_EXTERN, OP_NULL },
{ "fn", KW_FN, OP_NULL },
{ "sizeof", KW_SIZEOF, OP_NULL },
};
/* Operator tokens, sorted longest first. */
static const struct token_info operator_tokens[] =
{
{ ">>=", COMPOUND_ASSIGN, BINOP_RSH },
{ "<<=", COMPOUND_ASSIGN, BINOP_LSH },
{ "<<", LSH, OP_NULL },
{ ">>", RSH, OP_NULL },
{ "&&", ANDAND, OP_NULL },
{ "||", OROR, OP_NULL },
{ "==", EQEQ, OP_NULL },
{ "!=", NOTEQ, OP_NULL },
{ "<=", LTEQ, OP_NULL },
{ ">=", GTEQ, OP_NULL },
{ "+=", COMPOUND_ASSIGN, BINOP_ADD },
{ "-=", COMPOUND_ASSIGN, BINOP_SUB },
{ "*=", COMPOUND_ASSIGN, BINOP_MUL },
{ "/=", COMPOUND_ASSIGN, BINOP_DIV },
{ "%=", COMPOUND_ASSIGN, BINOP_REM },
{ "&=", COMPOUND_ASSIGN, BINOP_BITWISE_AND },
{ "|=", COMPOUND_ASSIGN, BINOP_BITWISE_IOR },
{ "^=", COMPOUND_ASSIGN, BINOP_BITWISE_XOR },
{ "::", COLONCOLON, OP_NULL },
{ "..", DOTDOT, OP_NULL },
{ "->", ARROW, OP_NULL }
};
/* Helper function to copy to the name obstack. */
static const char *
rust_copy_name (const char *name, int len)
{
return (const char *) obstack_copy0 (work_obstack, name, len);
}
/* Helper function to make an stoken from a C string. */
static struct stoken
make_stoken (const char *p)
{
struct stoken result;
result.ptr = p;
result.length = strlen (result.ptr);
return result;
}
/* Helper function to concatenate three strings on the name
obstack. */
static struct stoken
rust_concat3 (const char *s1, const char *s2, const char *s3)
{
return make_stoken (obconcat (work_obstack, s1, s2, s3, (char *) NULL));
}
/* Return an AST node referring to NAME, but relative to the crate's
name. */
static const struct rust_op *
crate_name (const struct rust_op *name)
{
std::string crate = rust_crate_for_block (expression_context_block);
struct stoken result;
gdb_assert (name->opcode == OP_VAR_VALUE);
if (crate.empty ())
error (_("Could not find crate for current location"));
result = make_stoken (obconcat (work_obstack, "::", crate.c_str (), "::",
name->left.sval.ptr, (char *) NULL));
return ast_path (result, name->right.params);
}
/* Create an AST node referring to a "super::" qualified name. IDENT
is the base name and N_SUPERS is how many "super::"s were
provided. N_SUPERS can be zero. */
static const struct rust_op *
super_name (const struct rust_op *ident, unsigned int n_supers)
{
const char *scope = block_scope (expression_context_block);
int offset;
gdb_assert (ident->opcode == OP_VAR_VALUE);
if (scope[0] == '\0')
error (_("Couldn't find namespace scope for self::"));
if (n_supers > 0)
{
int i;
int len;
std::vector<int> offsets;
unsigned int current_len;
current_len = cp_find_first_component (scope);
while (scope[current_len] != '\0')
{
offsets.push_back (current_len);
gdb_assert (scope[current_len] == ':');
/* The "::". */
current_len += 2;
current_len += cp_find_first_component (scope
+ current_len);
}
len = offsets.size ();
if (n_supers >= len)
error (_("Too many super:: uses from '%s'"), scope);
offset = offsets[len - n_supers];
}
else
offset = strlen (scope);
obstack_grow (work_obstack, "::", 2);
obstack_grow (work_obstack, scope, offset);
obstack_grow (work_obstack, "::", 2);
obstack_grow0 (work_obstack, ident->left.sval.ptr, ident->left.sval.length);
return ast_path (make_stoken ((const char *) obstack_finish (work_obstack)),
ident->right.params);
}
/* A helper that updates innermost_block as appropriate. */
static void
update_innermost_block (struct block_symbol sym)
{
if (symbol_read_needs_frame (sym.symbol)
&& (innermost_block == NULL
|| contained_in (sym.block, innermost_block)))
innermost_block = sym.block;
}
/* A helper to look up a Rust type, or fail. This only works for
types defined by rust_language_arch_info. */
static struct type *
rust_type (const char *name)
{
struct type *type;
/* When unit testing, we don't bother checking the types, so avoid a
possibly-failing lookup here. */
if (unit_testing)
return NULL;
type = language_lookup_primitive_type (current_parser->language (),
current_parser->arch (),
name);
if (type == NULL)
error (_("Could not find Rust type %s"), name);
return type;
}
/* Lex a hex number with at least MIN digits and at most MAX
digits. */
static uint32_t
lex_hex (int min, int max)
{
uint32_t result = 0;
int len = 0;
/* We only want to stop at MAX if we're lexing a byte escape. */
int check_max = min == max;
while ((check_max ? len <= max : 1)
&& ((lexptr[0] >= 'a' && lexptr[0] <= 'f')
|| (lexptr[0] >= 'A' && lexptr[0] <= 'F')
|| (lexptr[0] >= '0' && lexptr[0] <= '9')))
{
result *= 16;
if (lexptr[0] >= 'a' && lexptr[0] <= 'f')
result = result + 10 + lexptr[0] - 'a';
else if (lexptr[0] >= 'A' && lexptr[0] <= 'F')
result = result + 10 + lexptr[0] - 'A';
else
result = result + lexptr[0] - '0';
++lexptr;
++len;
}
if (len < min)
error (_("Not enough hex digits seen"));
if (len > max)
{
gdb_assert (min != max);
error (_("Overlong hex escape"));
}
return result;
}
/* Lex an escape. IS_BYTE is true if we're lexing a byte escape;
otherwise we're lexing a character escape. */
static uint32_t
lex_escape (int is_byte)
{
uint32_t result;
gdb_assert (lexptr[0] == '\\');
++lexptr;
switch (lexptr[0])
{
case 'x':
++lexptr;
result = lex_hex (2, 2);
break;
case 'u':
if (is_byte)
error (_("Unicode escape in byte literal"));
++lexptr;
if (lexptr[0] != '{')
error (_("Missing '{' in Unicode escape"));
++lexptr;
result = lex_hex (1, 6);
/* Could do range checks here. */
if (lexptr[0] != '}')
error (_("Missing '}' in Unicode escape"));
++lexptr;
break;
case 'n':
result = '\n';
++lexptr;
break;
case 'r':
result = '\r';
++lexptr;
break;
case 't':
result = '\t';
++lexptr;
break;
case '\\':
result = '\\';
++lexptr;
break;
case '0':
result = '\0';
++lexptr;
break;
case '\'':
result = '\'';
++lexptr;
break;
case '"':
result = '"';
++lexptr;
break;
default:
error (_("Invalid escape \\%c in literal"), lexptr[0]);
}
return result;
}
/* Lex a character constant. */
static int
lex_character (void)
{
int is_byte = 0;
uint32_t value;
if (lexptr[0] == 'b')
{
is_byte = 1;
++lexptr;
}
gdb_assert (lexptr[0] == '\'');
++lexptr;
/* This should handle UTF-8 here. */
if (lexptr[0] == '\\')
value = lex_escape (is_byte);
else
{
value = lexptr[0] & 0xff;
++lexptr;
}
if (lexptr[0] != '\'')
error (_("Unterminated character literal"));
++lexptr;
rustyylval.typed_val_int.val = value;
rustyylval.typed_val_int.type = rust_type (is_byte ? "u8" : "char");
return INTEGER;
}
/* Return the offset of the double quote if STR looks like the start
of a raw string, or 0 if STR does not start a raw string. */
static int
starts_raw_string (const char *str)
{
const char *save = str;
if (str[0] != 'r')
return 0;
++str;
while (str[0] == '#')
++str;
if (str[0] == '"')
return str - save;
return 0;
}
/* Return true if STR looks like the end of a raw string that had N
hashes at the start. */
static bool
ends_raw_string (const char *str, int n)
{
int i;
gdb_assert (str[0] == '"');
for (i = 0; i < n; ++i)
if (str[i + 1] != '#')
return false;
return true;
}
/* Lex a string constant. */
static int
lex_string (void)
{
int is_byte = lexptr[0] == 'b';
int raw_length;
int len_in_chars = 0;
if (is_byte)
++lexptr;
raw_length = starts_raw_string (lexptr);
lexptr += raw_length;
gdb_assert (lexptr[0] == '"');
++lexptr;
while (1)
{
uint32_t value;
if (raw_length > 0)
{
if (lexptr[0] == '"' && ends_raw_string (lexptr, raw_length - 1))
{
/* Exit with lexptr pointing after the final "#". */
lexptr += raw_length;
break;
}
else if (lexptr[0] == '\0')
error (_("Unexpected EOF in string"));
value = lexptr[0] & 0xff;
if (is_byte && value > 127)
error (_("Non-ASCII value in raw byte string"));
obstack_1grow (work_obstack, value);
++lexptr;
}
else if (lexptr[0] == '"')
{
/* Make sure to skip the quote. */
++lexptr;
break;
}
else if (lexptr[0] == '\\')
{
value = lex_escape (is_byte);
if (is_byte)
obstack_1grow (work_obstack, value);
else
convert_between_encodings ("UTF-32", "UTF-8", (gdb_byte *) &value,
sizeof (value), sizeof (value),
work_obstack, translit_none);
}
else if (lexptr[0] == '\0')
error (_("Unexpected EOF in string"));
else
{
value = lexptr[0] & 0xff;
if (is_byte && value > 127)
error (_("Non-ASCII value in byte string"));
obstack_1grow (work_obstack, value);
++lexptr;
}
}
rustyylval.sval.length = obstack_object_size (work_obstack);
rustyylval.sval.ptr = (const char *) obstack_finish (work_obstack);
return is_byte ? BYTESTRING : STRING;
}
/* Return true if STRING starts with whitespace followed by a digit. */
static bool
space_then_number (const char *string)
{
const char *p = string;
while (p[0] == ' ' || p[0] == '\t')
++p;
if (p == string)
return false;
return *p >= '0' && *p <= '9';
}
/* Return true if C can start an identifier. */
static bool
rust_identifier_start_p (char c)
{
return ((c >= 'a' && c <= 'z')
|| (c >= 'A' && c <= 'Z')
|| c == '_'
|| c == '$');
}
/* Lex an identifier. */
static int
lex_identifier (void)
{
const char *start = lexptr;
unsigned int length;
const struct token_info *token;
int i;
int is_gdb_var = lexptr[0] == '$';
gdb_assert (rust_identifier_start_p (lexptr[0]));
++lexptr;
/* For the time being this doesn't handle Unicode rules. Non-ASCII
identifiers are gated anyway. */
while ((lexptr[0] >= 'a' && lexptr[0] <= 'z')
|| (lexptr[0] >= 'A' && lexptr[0] <= 'Z')
|| lexptr[0] == '_'
|| (is_gdb_var && lexptr[0] == '$')
|| (lexptr[0] >= '0' && lexptr[0] <= '9'))
++lexptr;
length = lexptr - start;
token = NULL;
for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
{
if (length == strlen (identifier_tokens[i].name)
&& strncmp (identifier_tokens[i].name, start, length) == 0)
{
token = &identifier_tokens[i];
break;
}
}
if (token != NULL)
{
if (token->value == 0)
{
/* Leave the terminating token alone. */
lexptr = start;
return 0;
}
}
else if (token == NULL
&& (strncmp (start, "thread", length) == 0
|| strncmp (start, "task", length) == 0)
&& space_then_number (lexptr))
{
/* "task" or "thread" followed by a number terminates the
parse, per gdb rules. */
lexptr = start;
return 0;
}
if (token == NULL || (parse_completion && lexptr[0] == '\0'))
rustyylval.sval = make_stoken (rust_copy_name (start, length));
if (parse_completion && lexptr[0] == '\0')
{
/* Prevent rustyylex from returning two COMPLETE tokens. */
prev_lexptr = lexptr;
return COMPLETE;
}
if (token != NULL)
return token->value;
if (is_gdb_var)
return GDBVAR;
return IDENT;
}
/* Lex an operator. */
static int
lex_operator (void)
{
const struct token_info *token = NULL;
int i;
for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
{
if (strncmp (operator_tokens[i].name, lexptr,
strlen (operator_tokens[i].name)) == 0)
{
lexptr += strlen (operator_tokens[i].name);
token = &operator_tokens[i];
break;
}
}
if (token != NULL)
{
rustyylval.opcode = token->opcode;
return token->value;
}
return *lexptr++;
}
/* Lex a number. */
static int
lex_number (void)
{
regmatch_t subexps[NUM_SUBEXPRESSIONS];
int match;
int is_integer = 0;
int could_be_decimal = 1;
int implicit_i32 = 0;
const char *type_name = NULL;
struct type *type;
int end_index;
int type_index = -1;
int i;
match = regexec (&number_regex, lexptr, ARRAY_SIZE (subexps), subexps, 0);
/* Failure means the regexp is broken. */
gdb_assert (match == 0);
if (subexps[INT_TEXT].rm_so != -1)
{
/* Integer part matched. */
is_integer = 1;
end_index = subexps[INT_TEXT].rm_eo;
if (subexps[INT_TYPE].rm_so == -1)
{
type_name = "i32";
implicit_i32 = 1;
}
else
{
type_index = INT_TYPE;
could_be_decimal = 0;
}
}
else if (subexps[FLOAT_TYPE1].rm_so != -1)
{
/* Found floating point type suffix. */
end_index = subexps[FLOAT_TYPE1].rm_so;
type_index = FLOAT_TYPE1;
}
else if (subexps[FLOAT_TYPE2].rm_so != -1)
{
/* Found floating point type suffix. */
end_index = subexps[FLOAT_TYPE2].rm_so;
type_index = FLOAT_TYPE2;
}
else
{
/* Any other floating point match. */
end_index = subexps[0].rm_eo;
type_name = "f64";
}
/* We need a special case if the final character is ".". In this
case we might need to parse an integer. For example, "23.f()" is
a request for a trait method call, not a syntax error involving
the floating point number "23.". */
gdb_assert (subexps[0].rm_eo > 0);
if (lexptr[subexps[0].rm_eo - 1] == '.')
{
const char *next = skip_spaces_const (&lexptr[subexps[0].rm_eo]);
if (rust_identifier_start_p (*next) || *next == '.')
{
--subexps[0].rm_eo;
is_integer = 1;
end_index = subexps[0].rm_eo;
type_name = "i32";
could_be_decimal = 1;
implicit_i32 = 1;
}
}
/* Compute the type name if we haven't already. */
std::string type_name_holder;
if (type_name == NULL)
{
gdb_assert (type_index != -1);
type_name_holder = std::string (lexptr + subexps[type_index].rm_so,
(subexps[type_index].rm_eo
- subexps[type_index].rm_so));
type_name = type_name_holder.c_str ();
}
/* Look up the type. */
type = rust_type (type_name);
/* Copy the text of the number and remove the "_"s. */
std::string number;
for (i = 0; i < end_index && lexptr[i]; ++i)
{
if (lexptr[i] == '_')
could_be_decimal = 0;
else
number.push_back (lexptr[i]);
}
/* Advance past the match. */
lexptr += subexps[0].rm_eo;
/* Parse the number. */
if (is_integer)
{
uint64_t value;
int radix = 10;
int offset = 0;
if (number[0] == '0')
{
if (number[1] == 'x')
radix = 16;
else if (number[1] == 'o')
radix = 8;
else if (number[1] == 'b')
radix = 2;
if (radix != 10)
{
offset = 2;
could_be_decimal = 0;
}
}
value = strtoul (number.c_str () + offset, NULL, radix);
if (implicit_i32 && value >= ((uint64_t) 1) << 31)
type = rust_type ("i64");
rustyylval.typed_val_int.val = value;
rustyylval.typed_val_int.type = type;
}
else
{
rustyylval.typed_val_float.dval = strtod (number.c_str (), NULL);
rustyylval.typed_val_float.type = type;
}
return is_integer ? (could_be_decimal ? DECIMAL_INTEGER : INTEGER) : FLOAT;
}
/* The lexer. */
static int
rustyylex (void)
{
/* Skip all leading whitespace. */
while (lexptr[0] == ' ' || lexptr[0] == '\t' || lexptr[0] == '\r'
|| lexptr[0] == '\n')
++lexptr;
/* If we hit EOF and we're completing, then return COMPLETE -- maybe
we're completing an empty string at the end of a field_expr.
But, we don't want to return two COMPLETE tokens in a row. */
if (lexptr[0] == '\0' && lexptr == prev_lexptr)
return 0;
prev_lexptr = lexptr;
if (lexptr[0] == '\0')
{
if (parse_completion)
{
rustyylval.sval = make_stoken ("");
return COMPLETE;
}
return 0;
}
if (lexptr[0] >= '0' && lexptr[0] <= '9')
return lex_number ();
else if (lexptr[0] == 'b' && lexptr[1] == '\'')
return lex_character ();
else if (lexptr[0] == 'b' && lexptr[1] == '"')
return lex_string ();
else if (lexptr[0] == 'b' && starts_raw_string (lexptr + 1))
return lex_string ();
else if (starts_raw_string (lexptr))
return lex_string ();
else if (rust_identifier_start_p (lexptr[0]))
return lex_identifier ();
else if (lexptr[0] == '"')
return lex_string ();
else if (lexptr[0] == '\'')
return lex_character ();
else if (lexptr[0] == '}' || lexptr[0] == ']')
{
/* Falls through to lex_operator. */
--paren_depth;
}
else if (lexptr[0] == '(' || lexptr[0] == '{')
{
/* Falls through to lex_operator. */
++paren_depth;
}
else if (lexptr[0] == ',' && comma_terminates && paren_depth == 0)
return 0;
return lex_operator ();
}
/* Push back a single character to be re-lexed. */
static void
rust_push_back (char c)
{
/* Can't be called before any lexing. */
gdb_assert (prev_lexptr != NULL);
--lexptr;
gdb_assert (*lexptr == c);
}
/* Make an arbitrary operation and fill in the fields. */
static const struct rust_op *
ast_operation (enum exp_opcode opcode, const struct rust_op *left,
const struct rust_op *right)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = opcode;
result->left.op = left;
result->right.op = right;
return result;
}
/* Make a compound assignment operation. */
static const struct rust_op *
ast_compound_assignment (enum exp_opcode opcode, const struct rust_op *left,
const struct rust_op *right)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = opcode;
result->compound_assignment = 1;
result->left.op = left;
result->right.op = right;
return result;
}
/* Make a typed integer literal operation. */
static const struct rust_op *
ast_literal (struct typed_val_int val)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = OP_LONG;
result->left.typed_val_int = val;
return result;
}
/* Make a typed floating point literal operation. */
static const struct rust_op *
ast_dliteral (struct typed_val_float val)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = OP_DOUBLE;
result->left.typed_val_float = val;
return result;
}
/* Make a unary operation. */
static const struct rust_op *
ast_unary (enum exp_opcode opcode, const struct rust_op *expr)
{
return ast_operation (opcode, expr, NULL);
}
/* Make a cast operation. */
static const struct rust_op *
ast_cast (const struct rust_op *expr, const struct rust_op *type)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = UNOP_CAST;
result->left.op = expr;
result->right.op = type;
return result;
}
/* Make a call-like operation. This is nominally a function call, but
when lowering we may discover that it actually represents the
creation of a tuple struct. */
static const struct rust_op *
ast_call_ish (enum exp_opcode opcode, const struct rust_op *expr,
rust_op_vector *params)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = opcode;
result->left.op = expr;
result->right.params = params;
return result;
}
/* Make a structure creation operation. */
static const struct rust_op *
ast_struct (const struct rust_op *name, rust_set_vector *fields)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = OP_AGGREGATE;
result->left.op = name;
result->right.field_inits = fields;
return result;
}
/* Make an identifier path. */
static const struct rust_op *
ast_path (struct stoken path, rust_op_vector *params)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = OP_VAR_VALUE;
result->left.sval = path;
result->right.params = params;
return result;
}
/* Make a string constant operation. */
static const struct rust_op *
ast_string (struct stoken str)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = OP_STRING;
result->left.sval = str;
return result;
}
/* Make a field expression. */
static const struct rust_op *
ast_structop (const struct rust_op *left, const char *name, int completing)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = STRUCTOP_STRUCT;
result->completing = completing;
result->left.op = left;
result->right.sval = make_stoken (name);
return result;
}
/* Make an anonymous struct operation, like 'x.0'. */
static const struct rust_op *
ast_structop_anonymous (const struct rust_op *left,
struct typed_val_int number)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = STRUCTOP_ANONYMOUS;
result->left.op = left;
result->right.typed_val_int = number;
return result;
}
/* Make a range operation. */
static const struct rust_op *
ast_range (const struct rust_op *lhs, const struct rust_op *rhs)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = OP_RANGE;
result->left.op = lhs;
result->right.op = rhs;
return result;
}
/* A helper function to make a type-related AST node. */
static struct rust_op *
ast_basic_type (enum type_code typecode)
{
struct rust_op *result = OBSTACK_ZALLOC (work_obstack, struct rust_op);
result->opcode = OP_TYPE;
result->typecode = typecode;
return result;
}
/* Create an AST node describing an array type. */
static const struct rust_op *
ast_array_type (const struct rust_op *lhs, struct typed_val_int val)
{
struct rust_op *result = ast_basic_type (TYPE_CODE_ARRAY);
result->left.op = lhs;
result->right.typed_val_int = val;
return result;
}
/* Create an AST node describing a reference type. */
static const struct rust_op *
ast_slice_type (const struct rust_op *type)
{
/* Use TYPE_CODE_COMPLEX just because it is handy. */
struct rust_op *result = ast_basic_type (TYPE_CODE_COMPLEX);
result->left.op = type;
return result;
}
/* Create an AST node describing a reference type. */
static const struct rust_op *
ast_reference_type (const struct rust_op *type)
{
struct rust_op *result = ast_basic_type (TYPE_CODE_REF);
result->left.op = type;
return result;
}
/* Create an AST node describing a pointer type. */
static const struct rust_op *
ast_pointer_type (const struct rust_op *type, int is_mut)
{
struct rust_op *result = ast_basic_type (TYPE_CODE_PTR);
result->left.op = type;
/* For the time being we ignore is_mut. */
return result;
}
/* Create an AST node describing a function type. */
static const struct rust_op *
ast_function_type (const struct rust_op *rtype, rust_op_vector *params)
{
struct rust_op *result = ast_basic_type (TYPE_CODE_FUNC);
result->left.op = rtype;
result->right.params = params;
return result;
}
/* Create an AST node describing a tuple type. */
static const struct rust_op *
ast_tuple_type (rust_op_vector *params)
{
struct rust_op *result = ast_basic_type (TYPE_CODE_STRUCT);
result->left.params = params;
return result;
}
/* A helper to appropriately munge NAME and BLOCK depending on the
presence of a leading "::". */
static void
munge_name_and_block (const char **name, const struct block **block)
{
/* If it is a global reference, skip the current block in favor of
the static block. */
if (strncmp (*name, "::", 2) == 0)
{
*name += 2;
*block = block_static_block (*block);
}
}
/* Like lookup_symbol, but handles Rust namespace conventions, and
doesn't require field_of_this_result. */
static struct block_symbol
rust_lookup_symbol (const char *name, const struct block *block,
const domain_enum domain)
{
struct block_symbol result;
munge_name_and_block (&name, &block);
result = lookup_symbol (name, block, domain, NULL);
if (result.symbol != NULL)
update_innermost_block (result);
return result;
}
/* Look up a type, following Rust namespace conventions. */
static struct type *
rust_lookup_type (const char *name, const struct block *block)
{
struct block_symbol result;
struct type *type;
munge_name_and_block (&name, &block);
result = lookup_symbol (name, block, STRUCT_DOMAIN, NULL);
if (result.symbol != NULL)
{
update_innermost_block (result);
return SYMBOL_TYPE (result.symbol);
}
type = lookup_typename (current_parser->language (), current_parser->arch (),
name, NULL, 1);
if (type != NULL)
return type;
/* Last chance, try a built-in type. */
return language_lookup_primitive_type (current_parser->language (),
current_parser->arch (),
name);
}
static struct type *convert_ast_to_type (struct parser_state *state,
const struct rust_op *operation);
static const char *convert_name (struct parser_state *state,
const struct rust_op *operation);
/* Convert a vector of rust_ops representing types to a vector of
types. */
static std::vector<struct type *>
convert_params_to_types (struct parser_state *state, rust_op_vector *params)
{
std::vector<struct type *> result;
for (const rust_op *op : *params)
result.push_back (convert_ast_to_type (state, op));
return result;
}
/* Convert a rust_op representing a type to a struct type *. */
static struct type *
convert_ast_to_type (struct parser_state *state,
const struct rust_op *operation)
{
struct type *type, *result = NULL;
if (operation->opcode == OP_VAR_VALUE)
{
const char *varname = convert_name (state, operation);
result = rust_lookup_type (varname, expression_context_block);
if (result == NULL)
error (_("No typed name '%s' in current context"), varname);
return result;
}
gdb_assert (operation->opcode == OP_TYPE);
switch (operation->typecode)
{
case TYPE_CODE_ARRAY:
type = convert_ast_to_type (state, operation->left.op);
if (operation->right.typed_val_int.val < 0)
error (_("Negative array length"));
result = lookup_array_range_type (type, 0,
operation->right.typed_val_int.val - 1);
break;
case TYPE_CODE_COMPLEX:
{
struct type *usize = rust_type ("usize");
type = convert_ast_to_type (state, operation->left.op);
result = rust_slice_type ("&[*gdb*]", type, usize);
}
break;
case TYPE_CODE_REF:
case TYPE_CODE_PTR:
/* For now we treat &x and *x identically. */
type = convert_ast_to_type (state, operation->left.op);
result = lookup_pointer_type (type);
break;
case TYPE_CODE_FUNC:
{
std::vector<struct type *> args
(convert_params_to_types (state, operation->right.params));
struct type **argtypes = NULL;
type = convert_ast_to_type (state, operation->left.op);
if (!args.empty ())
argtypes = args.data ();
result
= lookup_function_type_with_arguments (type, args.size (),
argtypes);
result = lookup_pointer_type (result);
}
break;
case TYPE_CODE_STRUCT:
{
std::vector<struct type *> args
(convert_params_to_types (state, operation->left.params));
int i;
struct type *type;
const char *name;
obstack_1grow (work_obstack, '(');
for (i = 0; i < args.size (); ++i)
{
std::string type_name = type_to_string (args[i]);
if (i > 0)
obstack_1grow (work_obstack, ',');
obstack_grow_str (work_obstack, type_name.c_str ());
}
obstack_grow_str0 (work_obstack, ")");
name = (const char *) obstack_finish (work_obstack);
/* We don't allow creating new tuple types (yet), but we do
allow looking up existing tuple types. */
result = rust_lookup_type (name, expression_context_block);
if (result == NULL)
error (_("could not find tuple type '%s'"), name);
}
break;
default:
gdb_assert_not_reached ("unhandled opcode in convert_ast_to_type");
}
gdb_assert (result != NULL);
return result;
}
/* A helper function to turn a rust_op representing a name into a full
name. This applies generic arguments as needed. The returned name
is allocated on the work obstack. */
static const char *
convert_name (struct parser_state *state, const struct rust_op *operation)
{
int i;
gdb_assert (operation->opcode == OP_VAR_VALUE);
if (operation->right.params == NULL)
return operation->left.sval.ptr;
std::vector<struct type *> types
(convert_params_to_types (state, operation->right.params));
obstack_grow_str (work_obstack, operation->left.sval.ptr);
obstack_1grow (work_obstack, '<');
for (i = 0; i < types.size (); ++i)
{
std::string type_name = type_to_string (types[i]);
if (i > 0)
obstack_1grow (work_obstack, ',');
obstack_grow_str (work_obstack, type_name.c_str ());
}
obstack_grow_str0 (work_obstack, ">");
return (const char *) obstack_finish (work_obstack);
}
static void convert_ast_to_expression (struct parser_state *state,
const struct rust_op *operation,
const struct rust_op *top,
bool want_type = false);
/* A helper function that converts a vec of rust_ops to a gdb
expression. */
static void
convert_params_to_expression (struct parser_state *state,
rust_op_vector *params,
const struct rust_op *top)
{
for (const rust_op *elem : *params)
convert_ast_to_expression (state, elem, top);
}
/* Lower a rust_op to a gdb expression. STATE is the parser state.
OPERATION is the operation to lower. TOP is a pointer to the
top-most operation; it is used to handle the special case where the
top-most expression is an identifier and can be optionally lowered
to OP_TYPE. WANT_TYPE is a flag indicating that, if the expression
is the name of a type, then emit an OP_TYPE for it (rather than
erroring). If WANT_TYPE is set, then the similar TOP handling is
not done. */
static void
convert_ast_to_expression (struct parser_state *state,
const struct rust_op *operation,
const struct rust_op *top,
bool want_type)
{
switch (operation->opcode)
{
case OP_LONG:
write_exp_elt_opcode (state, OP_LONG);
write_exp_elt_type (state, operation->left.typed_val_int.type);
write_exp_elt_longcst (state, operation->left.typed_val_int.val);
write_exp_elt_opcode (state, OP_LONG);
break;
case OP_DOUBLE:
write_exp_elt_opcode (state, OP_DOUBLE);
write_exp_elt_type (state, operation->left.typed_val_float.type);
write_exp_elt_dblcst (state, operation->left.typed_val_float.dval);
write_exp_elt_opcode (state, OP_DOUBLE);
break;
case STRUCTOP_STRUCT:
{
convert_ast_to_expression (state, operation->left.op, top);
if (operation->completing)
mark_struct_expression (state);
write_exp_elt_opcode (state, STRUCTOP_STRUCT);
write_exp_string (state, operation->right.sval);
write_exp_elt_opcode (state, STRUCTOP_STRUCT);
}
break;
case STRUCTOP_ANONYMOUS:
{
convert_ast_to_expression (state, operation->left.op, top);
write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
write_exp_elt_longcst (state, operation->right.typed_val_int.val);
write_exp_elt_opcode (state, STRUCTOP_ANONYMOUS);
}
break;
case UNOP_SIZEOF:
convert_ast_to_expression (state, operation->left.op, top, true);
write_exp_elt_opcode (state, UNOP_SIZEOF);
break;
case UNOP_PLUS:
case UNOP_NEG:
case UNOP_COMPLEMENT:
case UNOP_IND:
case UNOP_ADDR:
convert_ast_to_expression (state, operation->left.op, top);
write_exp_elt_opcode (state, operation->opcode);
break;
case BINOP_SUBSCRIPT:
case BINOP_MUL:
case BINOP_REPEAT:
case BINOP_DIV:
case BINOP_REM:
case BINOP_LESS:
case BINOP_GTR:
case BINOP_BITWISE_AND:
case BINOP_BITWISE_IOR:
case BINOP_BITWISE_XOR:
case BINOP_ADD:
case BINOP_SUB:
case BINOP_LOGICAL_OR:
case BINOP_LOGICAL_AND:
case BINOP_EQUAL:
case BINOP_NOTEQUAL:
case BINOP_LEQ:
case BINOP_GEQ:
case BINOP_LSH:
case BINOP_RSH:
case BINOP_ASSIGN:
case OP_RUST_ARRAY:
convert_ast_to_expression (state, operation->left.op, top);
convert_ast_to_expression (state, operation->right.op, top);
if (operation->compound_assignment)
{
write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
write_exp_elt_opcode (state, operation->opcode);
write_exp_elt_opcode (state, BINOP_ASSIGN_MODIFY);
}
else
write_exp_elt_opcode (state, operation->opcode);
if (operation->compound_assignment
|| operation->opcode == BINOP_ASSIGN)
{
struct type *type;
type = language_lookup_primitive_type (parse_language (state),
parse_gdbarch (state),
"()");
write_exp_elt_opcode (state, OP_LONG);
write_exp_elt_type (state, type);
write_exp_elt_longcst (state, 0);
write_exp_elt_opcode (state, OP_LONG);
write_exp_elt_opcode (state, BINOP_COMMA);
}
break;
case UNOP_CAST:
{
struct type *type = convert_ast_to_type (state, operation->right.op);
convert_ast_to_expression (state, operation->left.op, top);
write_exp_elt_opcode (state, UNOP_CAST);
write_exp_elt_type (state, type);
write_exp_elt_opcode (state, UNOP_CAST);
}
break;
case OP_FUNCALL:
{
if (operation->left.op->opcode == OP_VAR_VALUE)
{
struct type *type;
const char *varname = convert_name (state, operation->left.op);
type = rust_lookup_type (varname, expression_context_block);
if (type != NULL)
{
/* This is actually a tuple struct expression, not a
call expression. */
rust_op_vector *params = operation->right.params;
if (TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
{
if (!rust_tuple_struct_type_p (type))
error (_("Type %s is not a tuple struct"), varname);
for (int i = 0; i < params->size (); ++i)
{
char *cell = get_print_cell ();
xsnprintf (cell, PRINT_CELL_SIZE, "__%d", i);
write_exp_elt_opcode (state, OP_NAME);
write_exp_string (state, make_stoken (cell));
write_exp_elt_opcode (state, OP_NAME);
convert_ast_to_expression (state, (*params)[i], top);
}
write_exp_elt_opcode (state, OP_AGGREGATE);
write_exp_elt_type (state, type);
write_exp_elt_longcst (state, 2 * params->size ());
write_exp_elt_opcode (state, OP_AGGREGATE);
break;
}
}
}
convert_ast_to_expression (state, operation->left.op, top);
convert_params_to_expression (state, operation->right.params, top);
write_exp_elt_opcode (state, OP_FUNCALL);
write_exp_elt_longcst (state, operation->right.params->size ());
write_exp_elt_longcst (state, OP_FUNCALL);
}
break;
case OP_ARRAY:
gdb_assert (operation->left.op == NULL);
convert_params_to_expression (state, operation->right.params, top);
write_exp_elt_opcode (state, OP_ARRAY);
write_exp_elt_longcst (state, 0);
write_exp_elt_longcst (state, operation->right.params->size () - 1);
write_exp_elt_longcst (state, OP_ARRAY);
break;
case OP_VAR_VALUE:
{
struct block_symbol sym;
const char *varname;
if (operation->left.sval.ptr[0] == '$')
{
write_dollar_variable (state, operation->left.sval);
break;
}
varname = convert_name (state, operation);
sym = rust_lookup_symbol (varname, expression_context_block,
VAR_DOMAIN);
if (sym.symbol != NULL && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
{
write_exp_elt_opcode (state, OP_VAR_VALUE);
write_exp_elt_block (state, sym.block);
write_exp_elt_sym (state, sym.symbol);
write_exp_elt_opcode (state, OP_VAR_VALUE);
}
else
{
struct type *type = NULL;
if (sym.symbol != NULL)
{
gdb_assert (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF);
type = SYMBOL_TYPE (sym.symbol);
}
if (type == NULL)
type = rust_lookup_type (varname, expression_context_block);
if (type == NULL)
error (_("No symbol '%s' in current context"), varname);
if (!want_type
&& TYPE_CODE (type) == TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type) == 0)
{
/* A unit-like struct. */
write_exp_elt_opcode (state, OP_AGGREGATE);
write_exp_elt_type (state, type);
write_exp_elt_longcst (state, 0);
write_exp_elt_opcode (state, OP_AGGREGATE);
}
else if (want_type || operation == top)
{
write_exp_elt_opcode (state, OP_TYPE);
write_exp_elt_type (state, type);
write_exp_elt_opcode (state, OP_TYPE);
}
else
error (_("Found type '%s', which can't be "
"evaluated in this context"),
varname);
}
}
break;
case OP_AGGREGATE:
{
int i;
int length;
rust_set_vector *fields = operation->right.field_inits;
struct type *type;
const char *name;
length = 0;
for (const set_field &init : *fields)
{
if (init.name.ptr != NULL)
{
write_exp_elt_opcode (state, OP_NAME);
write_exp_string (state, init.name);
write_exp_elt_opcode (state, OP_NAME);
++length;
}
convert_ast_to_expression (state, init.init, top);
++length;
if (init.name.ptr == NULL)
{
/* This is handled differently from Ada in our
evaluator. */
write_exp_elt_opcode (state, OP_OTHERS);
}
}
name = convert_name (state, operation->left.op);
type = rust_lookup_type (name, expression_context_block);
if (type == NULL)
error (_("Could not find type '%s'"), operation->left.sval.ptr);
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|| rust_tuple_type_p (type)
|| rust_tuple_struct_type_p (type))
error (_("Struct expression applied to non-struct type"));
write_exp_elt_opcode (state, OP_AGGREGATE);
write_exp_elt_type (state, type);
write_exp_elt_longcst (state, length);
write_exp_elt_opcode (state, OP_AGGREGATE);
}
break;
case OP_STRING:
{
write_exp_elt_opcode (state, OP_STRING);
write_exp_string (state, operation->left.sval);
write_exp_elt_opcode (state, OP_STRING);
}
break;
case OP_RANGE:
{
enum range_type kind = BOTH_BOUND_DEFAULT;
if (operation->left.op != NULL)
{
convert_ast_to_expression (state, operation->left.op, top);
kind = HIGH_BOUND_DEFAULT;
}
if (operation->right.op != NULL)
{
convert_ast_to_expression (state, operation->right.op, top);
if (kind == BOTH_BOUND_DEFAULT)
kind = LOW_BOUND_DEFAULT;
else
{
gdb_assert (kind == HIGH_BOUND_DEFAULT);
kind = NONE_BOUND_DEFAULT;
}
}
write_exp_elt_opcode (state, OP_RANGE);
write_exp_elt_longcst (state, kind);
write_exp_elt_opcode (state, OP_RANGE);
}
break;
default:
gdb_assert_not_reached ("unhandled opcode in convert_ast_to_expression");
}
}
/* The parser as exposed to gdb. */
int
rust_parse (struct parser_state *state)
{
int result;
/* This sets various globals and also clears them on
destruction. */
rust_parser parser (state);
Eliminate make_cleanup_obstack_free, introduce auto_obstack This commit eliminates make_cleanup_obstack_free, replacing it with a new auto_obstack type that inherits obstack to add cdtors. These changes in the parsers may not be obvious: - obstack_init (&name_obstack); - make_cleanup_obstack_free (&name_obstack); + name_obstack.clear (); Here, the 'name_obstack' variable is a global. The change means that the obstack's contents from a previous parse will stay around until the next parsing starts. I.e., memory won't be reclaimed until then. I don't think that's a problem, these objects don't really grow much at all. The other option I tried was to add a separate type that is like auto_obstack but manages an external obstack, just for those cases. I like the current approach better as that other approach adds more boilerplate and yet another type to learn. gdb/ChangeLog: 2017-06-27 Pedro Alves <palves@redhat.com> * c-exp.y (name_obstack): Now an auto_obstack. (yylex): Use auto_obstack::clear. (c_parse): Use auto_obstack::clear instead of reinitializing and freeing the obstack. * c-lang.c (evaluate_subexp_c): Use auto_obstack. * d-exp.y (name_obstack): Now an auto_obstack. (yylex): Use auto_obstack::clear. (d_parse): Use auto_obstack::clear instead of reinitializing and freeing the obstack. * dwarf2loc.c (fetch_const_value_from_synthetic_pointer): Use auto_obstack. * dwarf2read.c (create_addrmap_from_index) (dwarf2_build_psymtabs_hard) (update_enumeration_type_from_children): Likewise. * gdb_obstack.h (auto_obstack): New type. * go-exp.y (name_obstack): Now an auto_obstack. (build_packaged_name): Use auto_obstack::clear. (go_parse): Use auto_obstack::clear instead of reinitializing and freeing the obstack. * linux-tdep.c (linux_make_mappings_corefile_notes): Use auto_obstack. * printcmd.c (printf_wide_c_string, ui_printf): Use auto_obstack. * rust-exp.y (work_obstack): Now an auto_obstack. (rust_parse, rust_lex_tests): Use auto_obstack::clear instead of reinitializing and freeing the obstack. * utils.c (do_obstack_free, make_cleanup_obstack_free): Delete. (host_char_to_target): Use auto_obstack. * utils.h (make_cleanup_obstack_free): Delete declaration. * valprint.c (generic_emit_char, generic_printstr): Use auto_obstack.
2017-06-27 18:07:14 +08:00
result = rustyyparse ();
if (!result || (parse_completion && parser.rust_ast != NULL))
convert_ast_to_expression (state, parser.rust_ast, parser.rust_ast);
return result;
}
/* The parser error handler. */
void
-Wwrite-strings: The Rest This is the remainder boring constification that all looks more of less borderline obvious IMO. gdb/ChangeLog: 2017-04-05 Pedro Alves <palves@redhat.com> * ada-exp.y (yyerror): Constify. * ada-lang.c (bound_name, get_selections) (ada_variant_discrim_type) (ada_variant_discrim_name, ada_value_struct_elt) (ada_lookup_struct_elt_type, is_unchecked_variant) (ada_which_variant_applies, standard_exc, ada_get_next_arg) (catch_ada_exception_command_split) (catch_ada_assert_command_split, catch_assert_command) (ada_op_name): Constify. * ada-lang.h (ada_yyerror, get_selections) (ada_variant_discrim_name, ada_value_struct_elt): Constify. * arc-tdep.c (arc_print_frame_cache): Constify. * arm-tdep.c (arm_skip_stub): Constify. * ax-gdb.c (gen_binop, gen_struct_ref_recursive, gen_struct_ref) (gen_aggregate_elt_ref): Constify. * bcache.c (print_bcache_statistics): Constify. * bcache.h (print_bcache_statistics): Constify. * break-catch-throw.c (catch_exception_command_1): * breakpoint.c (struct ep_type_description::description): Constify. (add_solib_catchpoint): Constify. (catch_fork_command_1): Add cast. (add_catch_command): Constify. * breakpoint.h (add_catch_command, add_solib_catchpoint): Constify. * bsd-uthread.c (bsd_uthread_state): Constify. * buildsym.c (patch_subfile_names): Constify. * buildsym.h (next_symbol_text_func, patch_subfile_names): Constify. * c-exp.y (yyerror): Constify. (token::oper): Constify. * c-lang.h (c_yyerror, cp_print_class_member): Constify. * c-varobj.c (cplus_describe_child): Constify. * charset.c (find_charset_names): Add cast. (find_charset_names): Constify array and add const_cast. * cli/cli-cmds.c (complete_command, cd_command): Constify. (edit_command): Constify. * cli/cli-decode.c (lookup_cmd): Constify. * cli/cli-dump.c (dump_memory_command, dump_value_command): Constify. (struct dump_context): Constify. (add_dump_command, restore_command): Constify. * cli/cli-script.c (get_command_line): Constify. * cli/cli-script.h (get_command_line): Constify. * cli/cli-utils.c (check_for_argument): Constify. * cli/cli-utils.h (check_for_argument): Constify. * coff-pe-read.c (struct read_pe_section_data): Constify. * command.h (lookup_cmd): Constify. * common/print-utils.c (decimal2str): Constify. * completer.c (gdb_print_filename): Constify. * corefile.c (set_gnutarget): Constify. * cp-name-parser.y (yyerror): Constify. * cp-valprint.c (cp_print_class_member): Constify. * cris-tdep.c (cris_register_name, crisv32_register_name): Constify. * d-exp.y (yyerror): Constify. (struct token::oper): Constify. * d-lang.h (d_yyerror): Constify. * dbxread.c (struct header_file_location::name): Constify. (add_old_header_file, add_new_header_file, last_function_name) (dbx_next_symbol_text, add_bincl_to_list) (find_corresponding_bincl_psymtab, set_namestring) (find_stab_function_addr, read_dbx_symtab, start_psymtab) (dbx_end_psymtab, read_ofile_symtab, process_one_symbol): * defs.h (command_line_input, print_address_symbolic) (deprecated_readline_begin_hook): Constify. * dwarf2read.c (anonymous_struct_prefix, dwarf_bool_name): Constify. * event-top.c (handle_line_of_input): Constify and add cast. * exceptions.c (catch_errors): Constify. * exceptions.h (catch_errors): Constify. * expprint.c (print_subexp_standard, op_string, op_name) (op_name_standard, dump_raw_expression, dump_raw_expression): * expression.h (op_name, op_string, dump_raw_expression): Constify. * f-exp.y (yyerror): Constify. (struct token::oper): Constify. (struct f77_boolean_val::name): Constify. * f-lang.c (f_word_break_characters): Constify. * f-lang.h (f_yyerror): Constify. * fork-child.c (fork_inferior): Add cast. * frv-tdep.c (struct gdbarch_tdep::register_names): Constify. (new_variant): Constify. * gdbarch.sh (pstring_ptr, pstring_list): Constify. * gdbarch.c: Regenerate. * gdbcore.h (set_gnutarget): Constify. * go-exp.y (yyerror): Constify. (token::oper): Constify. * go-lang.h (go_yyerror): Constify. * go32-nat.c (go32_sysinfo): Constify. * guile/scm-breakpoint.c (gdbscm_breakpoint_expression): Constify. * guile/scm-cmd.c (cmdscm_function): Constify. * guile/scm-param.c (pascm_param_value): Constify. * h8300-tdep.c (h8300_register_name, h8300s_register_name) (h8300sx_register_name): Constify. * hppa-tdep.c (hppa32_register_name, hppa64_register_name): Constify. * ia64-tdep.c (ia64_register_names): Constify. * infcmd.c (construct_inferior_arguments): Constify. (path_command, attach_post_wait): Constify. * language.c (show_range_command, show_case_command) (unk_lang_error): Constify. * language.h (language_defn::la_error) (language_defn::la_name_of_this): Constify. * linespec.c (decode_line_2): Constify. * linux-thread-db.c (thread_db_err_str): Constify. * lm32-tdep.c (lm32_register_name): Constify. * m2-exp.y (yyerror): Constify. * m2-lang.h (m2_yyerror): Constify. * m32r-tdep.c (m32r_register_names): Constify and make static. * m68hc11-tdep.c (m68hc11_register_names): Constify. * m88k-tdep.c (m88k_register_name): Constify. * macroexp.c (appendmem): Constify. * mdebugread.c (fdr_name, add_data_symbol, parse_type) (upgrade_type, parse_external, parse_partial_symbols) (mdebug_next_symbol_text, cross_ref, mylookup_symbol, new_psymtab) (new_symbol): Constify. * memattr.c (mem_info_command): Constify. * mep-tdep.c (register_name_from_keyword): Constify. * mi/mi-cmd-env.c (mi_cmd_env_path, _initialize_mi_cmd_env): Constify. * mi/mi-cmd-stack.c (list_args_or_locals): Constify. * mi/mi-cmd-var.c (mi_cmd_var_show_attributes): Constify. * mi/mi-main.c (captured_mi_execute_command): Constify and add cast. (mi_execute_async_cli_command): Constify. * mips-tdep.c (mips_register_name): Constify. * mn10300-tdep.c (register_name, mn10300_generic_register_name) (am33_register_name, am33_2_register_name) * moxie-tdep.c (moxie_register_names): Constify. * nat/linux-osdata.c (osdata_type): Constify fields. * nto-tdep.c (nto_parse_redirection): Constify. * objc-lang.c (lookup_struct_typedef, lookup_objc_class) (lookup_child_selector): Constify. (objc_methcall::name): Constify. * objc-lang.h (lookup_objc_class, lookup_child_selector) (lookup_struct_typedef): Constify. * objfiles.c (pc_in_section): Constify. * objfiles.h (pc_in_section): Constify. * p-exp.y (struct token::oper): Constify. (yyerror): Constify. * p-lang.h (pascal_yyerror): Constify. * parser-defs.h (op_name_standard): Constify. (op_print::string): Constify. (exp_descriptor::op_name): Constify. * printcmd.c (print_address_symbolic): Constify. * psymtab.c (print_partial_symbols): Constify. * python/py-breakpoint.c (stop_func): Constify. (bppy_get_expression): Constify. * python/py-cmd.c (cmdpy_completer::name): Constify. (cmdpy_function): Constify. * python/py-event.c (evpy_add_attribute) (gdbpy_initialize_event_generic): Constify. * python/py-event.h (evpy_add_attribute) (gdbpy_initialize_event_generic): Constify. * python/py-evts.c (add_new_registry): Constify. * python/py-finishbreakpoint.c (outofscope_func): Constify. * python/py-framefilter.c (get_py_iter_from_func): Constify. * python/py-inferior.c (get_buffer): Add cast. * python/py-param.c (parm_constant::name): Constify. * python/py-unwind.c (fprint_frame_id): Constify. * python/python.c (gdbpy_parameter_value): Constify. * remote-fileio.c (remote_fio_func_map): Make 'name' const. * remote.c (memory_packet_config::name): Constify. (show_packet_config_cmd, remote_write_bytes) (remote_buffer_add_string): * reverse.c (exec_reverse_once): Constify. * rs6000-tdep.c (variant::name, variant::description): Constify. * rust-exp.y (rustyyerror): Constify. * rust-lang.c (rust_op_name): Constify. * rust-lang.h (rustyyerror): Constify. * serial.h (serial_ops::name): Constify. * sh-tdep.c (sh_sh_register_name, sh_sh3_register_name) (sh_sh3e_register_name, sh_sh2e_register_name) (sh_sh2a_register_name, sh_sh2a_nofpu_register_name) (sh_sh_dsp_register_name, sh_sh3_dsp_register_name) (sh_sh4_register_name, sh_sh4_nofpu_register_name) (sh_sh4al_dsp_register_name): Constify. * sh64-tdep.c (sh64_register_name): Constify. * solib-darwin.c (lookup_symbol_from_bfd): Constify. * spu-tdep.c (spu_register_name, info_spu_dma_cmdlist): Constify. * stabsread.c (patch_block_stabs, read_type_number) (ref_map::stabs, ref_add, process_reference) (symbol_reference_defined, define_symbol, define_symbol) (error_type, read_type, read_member_functions, read_cpp_abbrev) (read_one_struct_field, read_struct_fields, read_baseclasses) (read_tilde_fields, read_struct_type, read_array_type) (read_enum_type, read_sun_builtin_type, read_sun_floating_type) (read_huge_number, read_range_type, read_args, common_block_start) (find_name_end): Constify. * stabsread.h (common_block_start, define_symbol) (process_one_symbol, symbol_reference_defined, ref_add): * symfile.c (get_section_index, add_symbol_file_command): * symfile.h (get_section_index): Constify. * target-descriptions.c (tdesc_type::name): Constify. (tdesc_free_type): Add cast. * target.c (find_default_run_target): (add_deprecated_target_alias, find_default_run_target) (target_announce_detach): Constify. (do_option): Constify. * target.h (add_deprecated_target_alias): Constify. * thread.c (print_thread_info_1): Constify. * top.c (deprecated_readline_begin_hook, command_line_input): Constify. (init_main): Add casts. * top.h (handle_line_of_input): Constify. * tracefile-tfile.c (tfile_write_uploaded_tsv): Constify. * tracepoint.c (tvariables_info_1, trace_status_mi): Constify. (tfind_command): Rename to ... (tfind_command_1): ... this and constify. (tfind_command): New function. (tfind_end_command, tfind_start_command): Adjust. (encode_source_string): Constify. * tracepoint.h (encode_source_string): Constify. * tui/tui-data.c (tui_partial_win_by_name): Constify. * tui/tui-data.h (tui_partial_win_by_name): Constify. * tui/tui-source.c (tui_set_source_content_nil): Constify. * tui/tui-source.h (tui_set_source_content_nil): Constify. * tui/tui-win.c (parse_scrolling_args): Constify. * tui/tui-windata.c (tui_erase_data_content): Constify. * tui/tui-windata.h (tui_erase_data_content): Constify. * tui/tui-winsource.c (tui_erase_source_content): Constify. * tui/tui.c (tui_enable): Add cast. * utils.c (defaulted_query): Constify. (init_page_info): Add cast. (puts_debug, subset_compare): Constify. * utils.h (subset_compare): Constify. * varobj.c (varobj_format_string): Constify. * varobj.h (varobj_format_string): Constify. * vax-tdep.c (vax_register_name): Constify. * windows-nat.c (windows_detach): Constify. * xcoffread.c (process_linenos, xcoff_next_symbol_text): Constify. * xml-support.c (gdb_xml_end_element): Constify. * xml-tdesc.c (tdesc_start_reg): Constify. * xstormy16-tdep.c (xstormy16_register_name): Constify. * xtensa-tdep.c (xtensa_find_register_by_name): Constify. * xtensa-tdep.h (xtensa_register_t::name): Constify. gdb/gdbserver/ChangeLog: 2017-04-05 Pedro Alves <palves@redhat.com> * gdbreplay.c (sync_error): Constify. * linux-x86-low.c (push_opcode): Constify.
2017-04-06 02:21:37 +08:00
rustyyerror (const char *msg)
{
const char *where = prev_lexptr ? prev_lexptr : lexptr;
error (_("%s in expression, near `%s'."), (msg ? msg : "Error"), where);
}
#if GDB_SELF_TEST
/* Initialize the lexer for testing. */
static void
rust_lex_test_init (const char *input)
{
prev_lexptr = NULL;
lexptr = input;
paren_depth = 0;
}
/* A test helper that lexes a string, expecting a single token. It
returns the lexer data for this token. */
static RUSTSTYPE
rust_lex_test_one (const char *input, int expected)
{
int token;
RUSTSTYPE result;
rust_lex_test_init (input);
token = rustyylex ();
SELF_CHECK (token == expected);
result = rustyylval;
if (token)
{
token = rustyylex ();
SELF_CHECK (token == 0);
}
return result;
}
/* Test that INPUT lexes as the integer VALUE. */
static void
rust_lex_int_test (const char *input, int value, int kind)
{
RUSTSTYPE result = rust_lex_test_one (input, kind);
SELF_CHECK (result.typed_val_int.val == value);
}
/* Test that INPUT throws an exception with text ERR. */
static void
rust_lex_exception_test (const char *input, const char *err)
{
TRY
{
/* The "kind" doesn't matter. */
rust_lex_test_one (input, DECIMAL_INTEGER);
SELF_CHECK (0);
}
CATCH (except, RETURN_MASK_ERROR)
{
SELF_CHECK (strcmp (except.message, err) == 0);
}
END_CATCH
}
/* Test that INPUT lexes as the identifier, string, or byte-string
VALUE. KIND holds the expected token kind. */
static void
rust_lex_stringish_test (const char *input, const char *value, int kind)
{
RUSTSTYPE result = rust_lex_test_one (input, kind);
SELF_CHECK (result.sval.length == strlen (value));
SELF_CHECK (strncmp (result.sval.ptr, value, result.sval.length) == 0);
}
/* Helper to test that a string parses as a given token sequence. */
static void
rust_lex_test_sequence (const char *input, int len, const int expected[])
{
int i;
lexptr = input;
paren_depth = 0;
for (i = 0; i < len; ++i)
{
int token = rustyylex ();
SELF_CHECK (token == expected[i]);
}
}
/* Tests for an integer-parsing corner case. */
static void
rust_lex_test_trailing_dot (void)
{
const int expected1[] = { DECIMAL_INTEGER, '.', IDENT, '(', ')', 0 };
const int expected2[] = { INTEGER, '.', IDENT, '(', ')', 0 };
const int expected3[] = { FLOAT, EQEQ, '(', ')', 0 };
const int expected4[] = { DECIMAL_INTEGER, DOTDOT, DECIMAL_INTEGER, 0 };
rust_lex_test_sequence ("23.g()", ARRAY_SIZE (expected1), expected1);
rust_lex_test_sequence ("23_0.g()", ARRAY_SIZE (expected2), expected2);
rust_lex_test_sequence ("23.==()", ARRAY_SIZE (expected3), expected3);
rust_lex_test_sequence ("23..25", ARRAY_SIZE (expected4), expected4);
}
/* Tests of completion. */
static void
rust_lex_test_completion (void)
{
const int expected[] = { IDENT, '.', COMPLETE, 0 };
parse_completion = 1;
rust_lex_test_sequence ("something.wha", ARRAY_SIZE (expected), expected);
rust_lex_test_sequence ("something.", ARRAY_SIZE (expected), expected);
parse_completion = 0;
}
/* Test pushback. */
static void
rust_lex_test_push_back (void)
{
int token;
rust_lex_test_init (">>=");
token = rustyylex ();
SELF_CHECK (token == COMPOUND_ASSIGN);
SELF_CHECK (rustyylval.opcode == BINOP_RSH);
rust_push_back ('=');
token = rustyylex ();
SELF_CHECK (token == '=');
token = rustyylex ();
SELF_CHECK (token == 0);
}
/* Unit test the lexer. */
static void
rust_lex_tests (void)
{
int i;
auto_obstack test_obstack;
scoped_restore obstack_holder = make_scoped_restore (&work_obstack,
&test_obstack);
unit_testing = 1;
rust_lex_test_one ("", 0);
rust_lex_test_one (" \t \n \r ", 0);
rust_lex_test_one ("thread 23", 0);
rust_lex_test_one ("task 23", 0);
rust_lex_test_one ("th 104", 0);
rust_lex_test_one ("ta 97", 0);
rust_lex_int_test ("'z'", 'z', INTEGER);
rust_lex_int_test ("'\\xff'", 0xff, INTEGER);
rust_lex_int_test ("'\\u{1016f}'", 0x1016f, INTEGER);
rust_lex_int_test ("b'z'", 'z', INTEGER);
rust_lex_int_test ("b'\\xfe'", 0xfe, INTEGER);
rust_lex_int_test ("b'\\xFE'", 0xfe, INTEGER);
rust_lex_int_test ("b'\\xfE'", 0xfe, INTEGER);
/* Test all escapes in both modes. */
rust_lex_int_test ("'\\n'", '\n', INTEGER);
rust_lex_int_test ("'\\r'", '\r', INTEGER);
rust_lex_int_test ("'\\t'", '\t', INTEGER);
rust_lex_int_test ("'\\\\'", '\\', INTEGER);
rust_lex_int_test ("'\\0'", '\0', INTEGER);
rust_lex_int_test ("'\\''", '\'', INTEGER);
rust_lex_int_test ("'\\\"'", '"', INTEGER);
rust_lex_int_test ("b'\\n'", '\n', INTEGER);
rust_lex_int_test ("b'\\r'", '\r', INTEGER);
rust_lex_int_test ("b'\\t'", '\t', INTEGER);
rust_lex_int_test ("b'\\\\'", '\\', INTEGER);
rust_lex_int_test ("b'\\0'", '\0', INTEGER);
rust_lex_int_test ("b'\\''", '\'', INTEGER);
rust_lex_int_test ("b'\\\"'", '"', INTEGER);
rust_lex_exception_test ("'z", "Unterminated character literal");
rust_lex_exception_test ("b'\\x0'", "Not enough hex digits seen");
rust_lex_exception_test ("b'\\u{0}'", "Unicode escape in byte literal");
rust_lex_exception_test ("'\\x0'", "Not enough hex digits seen");
rust_lex_exception_test ("'\\u0'", "Missing '{' in Unicode escape");
rust_lex_exception_test ("'\\u{0", "Missing '}' in Unicode escape");
rust_lex_exception_test ("'\\u{0000007}", "Overlong hex escape");
rust_lex_exception_test ("'\\u{}", "Not enough hex digits seen");
rust_lex_exception_test ("'\\Q'", "Invalid escape \\Q in literal");
rust_lex_exception_test ("b'\\Q'", "Invalid escape \\Q in literal");
rust_lex_int_test ("23", 23, DECIMAL_INTEGER);
rust_lex_int_test ("2_344__29", 234429, INTEGER);
rust_lex_int_test ("0x1f", 0x1f, INTEGER);
rust_lex_int_test ("23usize", 23, INTEGER);
rust_lex_int_test ("23i32", 23, INTEGER);
rust_lex_int_test ("0x1_f", 0x1f, INTEGER);
rust_lex_int_test ("0b1_101011__", 0x6b, INTEGER);
rust_lex_int_test ("0o001177i64", 639, INTEGER);
rust_lex_test_trailing_dot ();
rust_lex_test_one ("23.", FLOAT);
rust_lex_test_one ("23.99f32", FLOAT);
rust_lex_test_one ("23e7", FLOAT);
rust_lex_test_one ("23E-7", FLOAT);
rust_lex_test_one ("23e+7", FLOAT);
rust_lex_test_one ("23.99e+7f64", FLOAT);
rust_lex_test_one ("23.82f32", FLOAT);
rust_lex_stringish_test ("hibob", "hibob", IDENT);
rust_lex_stringish_test ("hibob__93", "hibob__93", IDENT);
rust_lex_stringish_test ("thread", "thread", IDENT);
rust_lex_stringish_test ("\"string\"", "string", STRING);
rust_lex_stringish_test ("\"str\\ting\"", "str\ting", STRING);
rust_lex_stringish_test ("\"str\\\"ing\"", "str\"ing", STRING);
rust_lex_stringish_test ("r\"str\\ing\"", "str\\ing", STRING);
rust_lex_stringish_test ("r#\"str\\ting\"#", "str\\ting", STRING);
rust_lex_stringish_test ("r###\"str\\\"ing\"###", "str\\\"ing", STRING);
rust_lex_stringish_test ("b\"string\"", "string", BYTESTRING);
rust_lex_stringish_test ("b\"\x73tring\"", "string", BYTESTRING);
rust_lex_stringish_test ("b\"str\\\"ing\"", "str\"ing", BYTESTRING);
rust_lex_stringish_test ("br####\"\\x73tring\"####", "\\x73tring",
BYTESTRING);
for (i = 0; i < ARRAY_SIZE (identifier_tokens); ++i)
rust_lex_test_one (identifier_tokens[i].name, identifier_tokens[i].value);
for (i = 0; i < ARRAY_SIZE (operator_tokens); ++i)
rust_lex_test_one (operator_tokens[i].name, operator_tokens[i].value);
rust_lex_test_completion ();
rust_lex_test_push_back ();
unit_testing = 0;
}
#endif /* GDB_SELF_TEST */
void
_initialize_rust_exp (void)
{
int code = regcomp (&number_regex, number_regex_text, REG_EXTENDED);
/* If the regular expression was incorrect, it was a programming
error. */
gdb_assert (code == 0);
#if GDB_SELF_TEST
selftests::register_test (rust_lex_tests);
#endif
}