binutils-gdb/gdb/gcore.h

41 lines
1.4 KiB
C
Raw Normal View History

/* Support for reading/writing gcore files.
Copyright (C) 2009-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (GCORE_H)
#define GCORE_H 1
Use class to manage BFD reference counts This introduces a new specialization of gdb::ref_ptr that can be used to manage BFD reference counts. Then it changes most places in gdb to use this new class, rather than explicit reference-counting or cleanups. This patch removes make_cleanup_bfd_unref. If you look you will see a couple of spots using "release" where a use of gdb_bfd_ref_ptr would be cleaner. These will be fixed in the next patch. I think this patch fixes some latent bugs. For example, it seems to me that previously objfpy_add_separate_debug_file leaked a BFD. I'm not 100% certain that the macho_symfile_read_all_oso change is correct. The existing code here is hard for me to follow. One goal of this sort of automated reference counting, though, is to make it more difficult to make logic errors; so hopefully the code is clear now. 2017-01-10 Tom Tromey <tom@tromey.com> * windows-tdep.c (windows_xfer_shared_library): Update. * windows-nat.c (windows_make_so): Update. * utils.h (make_cleanup_bfd_unref): Remove. * utils.c (do_bfd_close_cleanup, make_cleanup_bfd_unref): Remove. * symfile.h (symfile_bfd_open) (find_separate_debug_file_in_section): Return gdb_bfd_ref_ptr. * symfile.c (read_symbols, symbol_file_add) (separate_debug_file_exists): Update. (symfile_bfd_open): Return gdb_bfd_ref_ptr. (generic_load, reread_symbols): Update. * symfile-mem.c (symbol_file_add_from_memory): Update. * spu-linux-nat.c (spu_bfd_open): Return gdb_bfd_ref_ptr. (spu_symbol_file_add_from_memory): Update. * solist.h (struct target_so_ops) <bfd_open>: Return gdb_bfd_ref_ptr. (solib_bfd_fopen, solib_bfd_open): Return gdb_bfd_ref_ptr. * solib.c (solib_bfd_fopen, solib_bfd_open): Return gdb_bfd_ref_ptr. (solib_map_sections, reload_shared_libraries_1): Update. * solib-svr4.c (enable_break): Update. * solib-spu.c (spu_bfd_fopen): Return gdb_bfd_ref_ptr. * solib-frv.c (enable_break2): Update. * solib-dsbt.c (enable_break): Update. * solib-darwin.c (gdb_bfd_mach_o_fat_extract): Return gdb_bfd_ref_ptr. (darwin_solib_get_all_image_info_addr_at_init): Update. (darwin_bfd_open): Return gdb_bfd_ref_ptr. * solib-aix.c (solib_aix_bfd_open): Return gdb_bfd_ref_ptr. * record-full.c (record_full_save): Update. * python/py-objfile.c (objfpy_add_separate_debug_file): Update. * procfs.c (insert_dbx_link_bpt_in_file): Update. * minidebug.c (find_separate_debug_file_in_section): Return gdb_bfd_ref_ptr. * machoread.c (macho_add_oso_symfile): Change abfd to gdb_bfd_ref_ptr. (macho_symfile_read_all_oso): Update. (macho_check_dsym): Return gdb_bfd_ref_ptr. (macho_symfile_read): Update. * jit.c (bfd_open_from_target_memory): Return gdb_bfd_ref_ptr. (jit_bfd_try_read_symtab): Update. * gdb_bfd.h (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr) (gdb_bfd_openw, gdb_bfd_openr_iovec) (gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return gdb_bfd_ref_ptr. (gdb_bfd_ref_policy): New struct. (gdb_bfd_ref_ptr): New typedef. * gdb_bfd.c (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr) (gdb_bfd_openw, gdb_bfd_openr_iovec) (gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return gdb_bfd_ref_ptr. * gcore.h (create_gcore_bfd): Return gdb_bfd_ref_ptr. * gcore.c (create_gcore_bfd): Return gdb_bfd_ref_ptr. (gcore_command): Update. * exec.c (exec_file_attach): Update. * elfread.c (elf_symfile_read): Update. * dwarf2read.c (dwarf2_get_dwz_file): Update. (try_open_dwop_file, open_dwo_file): Return gdb_bfd_ref_ptr. (open_and_init_dwo_file): Update. (open_dwp_file): Return gdb_bfd_ref_ptr. (open_and_init_dwp_file): Update. * corelow.c (core_open): Update. * compile/compile-object-load.c (compile_object_load): Update. * common/gdb_ref_ptr.h (ref_ptr::operator->): New operator. * coffread.c (coff_symfile_read): Update. * cli/cli-dump.c (bfd_openr_or_error, bfd_openw_or_error): Return gdb_bfd_ref_ptr. Rename. (dump_bfd_file, restore_command): Update. * build-id.h (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr. * build-id.c (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr. (find_separate_debug_file_by_buildid): Update.
2016-11-22 02:12:23 +08:00
#include "gdb_bfd.h"
gdb: unify parts of the Linux and FreeBSD core dumping code While reviewing the Linux and FreeBSD core dumping code within GDB for another patch series, I noticed that the code that collects the registers for each thread and writes these into ELF note format is basically identical between Linux and FreeBSD. This commit merges this code and moves it into a new file gcore-elf.c. The function find_signalled_thread is moved from linux-tdep.c to gcore.c despite not being shared. A later commit will make use of this function. I did merge, and then revert a previous version of this patch (commit 82a1fd3a4935 for the original patch and 03642b7189bc for the revert). The problem with the original patch is that it introduced a unconditional dependency between GDB and some ELF specific functions in the BFD library, e.g. elfcore_write_prstatus and elfcore_write_register_note. It was pointed out in this mailing list post: https://sourceware.org/pipermail/gdb-patches/2021-February/175750.html that this change was breaking any build of GDB for non-ELF targets. To confirm this breakage, and to test this new version of GDB I configured and built for the target x86_64-apple-darwin20.3.0. Where the previous version of this patch placed all of the common code into gcore.c, which is included in all builds of GDB, this new patch only places non-ELF specific generic code (i.e. find_signalled_thread) into gcore.c, the ELF specific code is put into the new gcore-elf.c file, which is only included in GDB if BFD has ELF support. The contents of gcore-elf.c are referenced unconditionally from linux-tdep.c and fbsd-tdep.c, this is fine, we previously always assumed that these two targets required ELF support, and we continue to make that assumption after this patch; nothing has changed there. With my previous version of this patch the darwin target mentioned above failed to build, but with the new version, the target builds fine. There are a couple of minor changes to the FreeBSD target after this commit, but I believe that these are changes for the better: (1) For FreeBSD we always used to record the thread-id in the core file by using ptid_t.lwp (). In contrast the Linux code did this: /* For remote targets the LWP may not be available, so use the TID. */ long lwp = ptid.lwp (); if (lwp == 0) lwp = ptid.tid (); Both target now do this: /* The LWP is often not available for bare metal target, in which case use the tid instead. */ if (ptid.lwp_p ()) lwp = ptid.lwp (); else lwp = ptid.tid (); Which is equivalent for Linux, but is a change for FreeBSD. I think that all this means is that in some cases where GDB might have previously recorded a thread-id of 0 for each thread, we might now get something more useful. (2) When collecting the registers for Linux we collected into a zero initialised buffer. By contrast on FreeBSD the buffer is left uninitialised. In the new code the buffer is always zero initialised. I suspect once the registers are copied into the buffer there's probably no gaps left so this makes no difference, but if it does then using zeros rather than random bits of GDB's memory is probably a good thing. Otherwise, there should be no other user visible changes after this commit. Tested this on x86-64/GNU-Linux and x86-64/FreeBSD-12.2 with no regressions. gdb/ChangeLog: * Makefile.in (SFILES): Add gcore-elf.c. (HFILES_NO_SRCDIR): Add gcore-elf.h * configure: Regenerate. * configure.ac: Add gcore-elf.o to CONFIG_OBS if we have ELF support. * fbsd-tdep.c: Add 'gcore-elf.h' include. (struct fbsd_collect_regset_section_cb_data): Delete. (fbsd_collect_regset_section_cb): Delete. (fbsd_collect_thread_registers): Delete. (struct fbsd_corefile_thread_data): Delete. (fbsd_corefile_thread): Delete. (fbsd_make_corefile_notes): Call gcore_elf_build_thread_register_notes instead of the now deleted FreeBSD code. * gcore-elf.c: New file, the content was moved here from linux-tdep.c, functions were renamed and given minor cleanup. * gcore-elf.h: New file. * gcore.c (gcore_find_signalled_thread): Moved here from linux-tdep.c and given a new name. Minor cleanups. * gcore.h (gcore_find_signalled_thread): Declare. * linux-tdep.c: Add 'gcore.h' and 'gcore-elf.h' includes. (struct linux_collect_regset_section_cb_data): Delete. (linux_collect_regset_section_cb): Delete. (linux_collect_thread_registers): Delete. (linux_corefile_thread): Call gcore_elf_build_thread_register_notes. (find_signalled_thread): Delete. (linux_make_corefile_notes): Call gcore_find_signalled_thread.
2021-01-19 00:00:38 +08:00
struct thread_info;
Use class to manage BFD reference counts This introduces a new specialization of gdb::ref_ptr that can be used to manage BFD reference counts. Then it changes most places in gdb to use this new class, rather than explicit reference-counting or cleanups. This patch removes make_cleanup_bfd_unref. If you look you will see a couple of spots using "release" where a use of gdb_bfd_ref_ptr would be cleaner. These will be fixed in the next patch. I think this patch fixes some latent bugs. For example, it seems to me that previously objfpy_add_separate_debug_file leaked a BFD. I'm not 100% certain that the macho_symfile_read_all_oso change is correct. The existing code here is hard for me to follow. One goal of this sort of automated reference counting, though, is to make it more difficult to make logic errors; so hopefully the code is clear now. 2017-01-10 Tom Tromey <tom@tromey.com> * windows-tdep.c (windows_xfer_shared_library): Update. * windows-nat.c (windows_make_so): Update. * utils.h (make_cleanup_bfd_unref): Remove. * utils.c (do_bfd_close_cleanup, make_cleanup_bfd_unref): Remove. * symfile.h (symfile_bfd_open) (find_separate_debug_file_in_section): Return gdb_bfd_ref_ptr. * symfile.c (read_symbols, symbol_file_add) (separate_debug_file_exists): Update. (symfile_bfd_open): Return gdb_bfd_ref_ptr. (generic_load, reread_symbols): Update. * symfile-mem.c (symbol_file_add_from_memory): Update. * spu-linux-nat.c (spu_bfd_open): Return gdb_bfd_ref_ptr. (spu_symbol_file_add_from_memory): Update. * solist.h (struct target_so_ops) <bfd_open>: Return gdb_bfd_ref_ptr. (solib_bfd_fopen, solib_bfd_open): Return gdb_bfd_ref_ptr. * solib.c (solib_bfd_fopen, solib_bfd_open): Return gdb_bfd_ref_ptr. (solib_map_sections, reload_shared_libraries_1): Update. * solib-svr4.c (enable_break): Update. * solib-spu.c (spu_bfd_fopen): Return gdb_bfd_ref_ptr. * solib-frv.c (enable_break2): Update. * solib-dsbt.c (enable_break): Update. * solib-darwin.c (gdb_bfd_mach_o_fat_extract): Return gdb_bfd_ref_ptr. (darwin_solib_get_all_image_info_addr_at_init): Update. (darwin_bfd_open): Return gdb_bfd_ref_ptr. * solib-aix.c (solib_aix_bfd_open): Return gdb_bfd_ref_ptr. * record-full.c (record_full_save): Update. * python/py-objfile.c (objfpy_add_separate_debug_file): Update. * procfs.c (insert_dbx_link_bpt_in_file): Update. * minidebug.c (find_separate_debug_file_in_section): Return gdb_bfd_ref_ptr. * machoread.c (macho_add_oso_symfile): Change abfd to gdb_bfd_ref_ptr. (macho_symfile_read_all_oso): Update. (macho_check_dsym): Return gdb_bfd_ref_ptr. (macho_symfile_read): Update. * jit.c (bfd_open_from_target_memory): Return gdb_bfd_ref_ptr. (jit_bfd_try_read_symtab): Update. * gdb_bfd.h (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr) (gdb_bfd_openw, gdb_bfd_openr_iovec) (gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return gdb_bfd_ref_ptr. (gdb_bfd_ref_policy): New struct. (gdb_bfd_ref_ptr): New typedef. * gdb_bfd.c (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr) (gdb_bfd_openw, gdb_bfd_openr_iovec) (gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return gdb_bfd_ref_ptr. * gcore.h (create_gcore_bfd): Return gdb_bfd_ref_ptr. * gcore.c (create_gcore_bfd): Return gdb_bfd_ref_ptr. (gcore_command): Update. * exec.c (exec_file_attach): Update. * elfread.c (elf_symfile_read): Update. * dwarf2read.c (dwarf2_get_dwz_file): Update. (try_open_dwop_file, open_dwo_file): Return gdb_bfd_ref_ptr. (open_and_init_dwo_file): Update. (open_dwp_file): Return gdb_bfd_ref_ptr. (open_and_init_dwp_file): Update. * corelow.c (core_open): Update. * compile/compile-object-load.c (compile_object_load): Update. * common/gdb_ref_ptr.h (ref_ptr::operator->): New operator. * coffread.c (coff_symfile_read): Update. * cli/cli-dump.c (bfd_openr_or_error, bfd_openw_or_error): Return gdb_bfd_ref_ptr. Rename. (dump_bfd_file, restore_command): Update. * build-id.h (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr. * build-id.c (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr. (find_separate_debug_file_by_buildid): Update.
2016-11-22 02:12:23 +08:00
extern gdb_bfd_ref_ptr create_gcore_bfd (const char *filename);
extern void write_gcore_file (bfd *obfd);
extern int objfile_find_memory_regions (struct target_ops *self,
find_memory_region_ftype func,
void *obfd);
gdb: unify parts of the Linux and FreeBSD core dumping code While reviewing the Linux and FreeBSD core dumping code within GDB for another patch series, I noticed that the code that collects the registers for each thread and writes these into ELF note format is basically identical between Linux and FreeBSD. This commit merges this code and moves it into a new file gcore-elf.c. The function find_signalled_thread is moved from linux-tdep.c to gcore.c despite not being shared. A later commit will make use of this function. I did merge, and then revert a previous version of this patch (commit 82a1fd3a4935 for the original patch and 03642b7189bc for the revert). The problem with the original patch is that it introduced a unconditional dependency between GDB and some ELF specific functions in the BFD library, e.g. elfcore_write_prstatus and elfcore_write_register_note. It was pointed out in this mailing list post: https://sourceware.org/pipermail/gdb-patches/2021-February/175750.html that this change was breaking any build of GDB for non-ELF targets. To confirm this breakage, and to test this new version of GDB I configured and built for the target x86_64-apple-darwin20.3.0. Where the previous version of this patch placed all of the common code into gcore.c, which is included in all builds of GDB, this new patch only places non-ELF specific generic code (i.e. find_signalled_thread) into gcore.c, the ELF specific code is put into the new gcore-elf.c file, which is only included in GDB if BFD has ELF support. The contents of gcore-elf.c are referenced unconditionally from linux-tdep.c and fbsd-tdep.c, this is fine, we previously always assumed that these two targets required ELF support, and we continue to make that assumption after this patch; nothing has changed there. With my previous version of this patch the darwin target mentioned above failed to build, but with the new version, the target builds fine. There are a couple of minor changes to the FreeBSD target after this commit, but I believe that these are changes for the better: (1) For FreeBSD we always used to record the thread-id in the core file by using ptid_t.lwp (). In contrast the Linux code did this: /* For remote targets the LWP may not be available, so use the TID. */ long lwp = ptid.lwp (); if (lwp == 0) lwp = ptid.tid (); Both target now do this: /* The LWP is often not available for bare metal target, in which case use the tid instead. */ if (ptid.lwp_p ()) lwp = ptid.lwp (); else lwp = ptid.tid (); Which is equivalent for Linux, but is a change for FreeBSD. I think that all this means is that in some cases where GDB might have previously recorded a thread-id of 0 for each thread, we might now get something more useful. (2) When collecting the registers for Linux we collected into a zero initialised buffer. By contrast on FreeBSD the buffer is left uninitialised. In the new code the buffer is always zero initialised. I suspect once the registers are copied into the buffer there's probably no gaps left so this makes no difference, but if it does then using zeros rather than random bits of GDB's memory is probably a good thing. Otherwise, there should be no other user visible changes after this commit. Tested this on x86-64/GNU-Linux and x86-64/FreeBSD-12.2 with no regressions. gdb/ChangeLog: * Makefile.in (SFILES): Add gcore-elf.c. (HFILES_NO_SRCDIR): Add gcore-elf.h * configure: Regenerate. * configure.ac: Add gcore-elf.o to CONFIG_OBS if we have ELF support. * fbsd-tdep.c: Add 'gcore-elf.h' include. (struct fbsd_collect_regset_section_cb_data): Delete. (fbsd_collect_regset_section_cb): Delete. (fbsd_collect_thread_registers): Delete. (struct fbsd_corefile_thread_data): Delete. (fbsd_corefile_thread): Delete. (fbsd_make_corefile_notes): Call gcore_elf_build_thread_register_notes instead of the now deleted FreeBSD code. * gcore-elf.c: New file, the content was moved here from linux-tdep.c, functions were renamed and given minor cleanup. * gcore-elf.h: New file. * gcore.c (gcore_find_signalled_thread): Moved here from linux-tdep.c and given a new name. Minor cleanups. * gcore.h (gcore_find_signalled_thread): Declare. * linux-tdep.c: Add 'gcore.h' and 'gcore-elf.h' includes. (struct linux_collect_regset_section_cb_data): Delete. (linux_collect_regset_section_cb): Delete. (linux_collect_thread_registers): Delete. (linux_corefile_thread): Call gcore_elf_build_thread_register_notes. (find_signalled_thread): Delete. (linux_make_corefile_notes): Call gcore_find_signalled_thread.
2021-01-19 00:00:38 +08:00
/* Find the signalled thread. In case there's more than one signalled
thread, prefer the current thread, if it is signalled. If no thread was
signalled, default to the current thread, unless it has exited, in which
case return NULL. */
extern thread_info *gcore_find_signalled_thread ();
#endif /* GCORE_H */