2013-01-01 14:33:28 +08:00
|
|
|
/* Copyright (C) 2010-2013 Free Software Foundation, Inc.
|
2011-01-14 00:24:13 +08:00
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
#include "ia64-tdep.h"
|
|
|
|
#include "inferior.h"
|
|
|
|
#include "inf-ttrace.h"
|
|
|
|
#include "regcache.h"
|
|
|
|
#include "solib-ia64-hpux.h"
|
|
|
|
|
|
|
|
#include <ia64/sys/uregs.h>
|
|
|
|
#include <sys/ttrace.h>
|
|
|
|
|
|
|
|
/* The offsets used with ttrace to read the value of the raw registers. */
|
|
|
|
|
|
|
|
static int u_offsets[] =
|
|
|
|
{ /* Static General Registers. */
|
|
|
|
-1, __r1, __r2, __r3, __r4, __r5, __r6, __r7,
|
|
|
|
__r8, __r9, __r10, __r11, __r12, __r13, __r14, __r15,
|
|
|
|
__r16, __r17, __r18, __r19, __r20, __r21, __r22, __r23,
|
|
|
|
__r24, __r25, __r26, __r27, __r28, __r29, __r30, __r31,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
|
|
|
|
/* Static Floating-Point Registers. */
|
|
|
|
-1, -1, __f2, __f3, __f4, __f5, __f6, __f7,
|
|
|
|
__f8, __f9, __f10, __f11, __f12, __f13, __f14, __f15,
|
|
|
|
__f16, __f17, __f18, __f19, __f20, __f21, __f22, __f23,
|
|
|
|
__f24, __f25, __f26, __f27, __f28, __f29, __f30, __f31,
|
|
|
|
__f32, __f33, __f34, __f35, __f36, __f37, __f38, __f39,
|
|
|
|
__f40, __f41, __f42, __f43, __f44, __f45, __f46, __f47,
|
|
|
|
__f48, __f49, __f50, __f51, __f52, __f53, __f54, __f55,
|
|
|
|
__f56, __f57, __f58, __f59, __f60, __f61, __f62, __f63,
|
|
|
|
__f64, __f65, __f66, __f67, __f68, __f69, __f70, __f71,
|
|
|
|
__f72, __f73, __f74, __f75, __f76, __f77, __f78, __f79,
|
|
|
|
__f80, __f81, __f82, __f83, __f84, __f85, __f86, __f87,
|
|
|
|
__f88, __f89, __f90, __f91, __f92, __f93, __f94, __f95,
|
|
|
|
__f96, __f97, __f98, __f99, __f100, __f101, __f102, __f103,
|
|
|
|
__f104, __f105, __f106, __f107, __f108, __f109, __f110, __f111,
|
|
|
|
__f112, __f113, __f114, __f115, __f116, __f117, __f118, __f119,
|
|
|
|
__f120, __f121, __f122, __f123, __f124, __f125, __f126, __f127,
|
|
|
|
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
|
|
|
|
/* Branch Registers. */
|
|
|
|
__b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7,
|
|
|
|
|
|
|
|
/* Virtual frame pointer and virtual return address pointer. */
|
|
|
|
-1, -1,
|
|
|
|
|
|
|
|
/* Other registers. */
|
|
|
|
__pr, __ip, __cr_ipsr, __cfm,
|
|
|
|
|
|
|
|
/* Kernel registers. */
|
|
|
|
-1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1,
|
|
|
|
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
|
|
|
|
/* Some application registers. */
|
|
|
|
__ar_rsc, __ar_bsp, __ar_bspstore, __ar_rnat,
|
|
|
|
|
|
|
|
-1,
|
|
|
|
-1, /* Not available: FCR, IA32 floating control register. */
|
|
|
|
-1, -1,
|
|
|
|
|
|
|
|
-1, /* Not available: EFLAG. */
|
|
|
|
-1, /* Not available: CSD. */
|
|
|
|
-1, /* Not available: SSD. */
|
|
|
|
-1, /* Not available: CFLG. */
|
|
|
|
-1, /* Not available: FSR. */
|
|
|
|
-1, /* Not available: FIR. */
|
|
|
|
-1, /* Not available: FDR. */
|
|
|
|
-1,
|
|
|
|
__ar_ccv, -1, -1, -1, __ar_unat, -1, -1, -1,
|
|
|
|
__ar_fpsr, -1, -1, -1,
|
|
|
|
-1, /* Not available: ITC. */
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
__ar_pfs, __ar_lc, __ar_ec,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
-1
|
|
|
|
/* All following registers, starting with nat0, are handled as
|
|
|
|
pseudo registers, and hence are handled separately. */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Some register have a fixed value and can not be modified.
|
|
|
|
Store their value in static constant buffers that can be used
|
|
|
|
later to fill the register cache. */
|
|
|
|
static const char r0_value[8] = {0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00};
|
|
|
|
static const char f0_value[16] = {0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00};
|
|
|
|
static const char f1_value[16] = {0x00, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0xff, 0xff,
|
|
|
|
0x80, 0x00, 0x00, 0x00,
|
|
|
|
0x00, 0x00, 0x00, 0x00};
|
|
|
|
|
|
|
|
/* The "to_wait" routine from the "inf-ttrace" layer. */
|
|
|
|
|
|
|
|
static ptid_t (*super_to_wait) (struct target_ops *, ptid_t,
|
|
|
|
struct target_waitstatus *, int);
|
|
|
|
|
|
|
|
/* The "to_wait" target_ops routine routine for ia64-hpux. */
|
|
|
|
|
|
|
|
static ptid_t
|
|
|
|
ia64_hpux_wait (struct target_ops *ops, ptid_t ptid,
|
|
|
|
struct target_waitstatus *ourstatus, int options)
|
|
|
|
{
|
|
|
|
ptid_t new_ptid;
|
|
|
|
|
|
|
|
new_ptid = super_to_wait (ops, ptid, ourstatus, options);
|
|
|
|
|
|
|
|
/* If this is a DLD event (hard-coded breakpoint instruction
|
|
|
|
that was activated by the solib-ia64-hpux module), we need to
|
|
|
|
process it, and then resume the execution as if the event did
|
|
|
|
not happen. */
|
|
|
|
if (ourstatus->kind == TARGET_WAITKIND_STOPPED
|
2012-05-25 00:51:47 +08:00
|
|
|
&& ourstatus->value.sig == GDB_SIGNAL_TRAP
|
2011-01-14 00:24:13 +08:00
|
|
|
&& ia64_hpux_at_dld_breakpoint_p (new_ptid))
|
|
|
|
{
|
|
|
|
ia64_hpux_handle_dld_breakpoint (new_ptid);
|
|
|
|
|
2012-05-25 00:51:47 +08:00
|
|
|
target_resume (new_ptid, 0, GDB_SIGNAL_0);
|
2011-01-14 00:24:13 +08:00
|
|
|
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return new_ptid;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fetch the RNAT register and supply it to the REGCACHE. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
ia64_hpux_fetch_rnat_register (struct regcache *regcache)
|
|
|
|
{
|
|
|
|
CORE_ADDR addr;
|
|
|
|
gdb_byte buf[8];
|
|
|
|
int status;
|
|
|
|
|
|
|
|
/* The value of RNAT is stored at bsp|0x1f8, and must be read using
|
|
|
|
TT_LWP_RDRSEBS. */
|
|
|
|
|
|
|
|
regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &addr);
|
|
|
|
addr |= 0x1f8;
|
|
|
|
|
|
|
|
status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
|
|
|
|
ptid_get_lwp (inferior_ptid), addr, sizeof (buf),
|
|
|
|
(uintptr_t) buf);
|
|
|
|
if (status < 0)
|
|
|
|
error (_("failed to read RNAT register at %s"),
|
|
|
|
paddress (get_regcache_arch(regcache), addr));
|
|
|
|
|
|
|
|
regcache_raw_supply (regcache, IA64_RNAT_REGNUM, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read the value of the register saved at OFFSET in the save_state_t
|
|
|
|
structure, and store its value in BUF. LEN is the size of the register
|
|
|
|
to be read. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ia64_hpux_read_register_from_save_state_t (int offset, gdb_byte *buf, int len)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
|
|
|
|
status = ttrace (TT_LWP_RUREGS, ptid_get_pid (inferior_ptid),
|
|
|
|
ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fetch register REGNUM from the inferior. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
ia64_hpux_fetch_register (struct regcache *regcache, int regnum)
|
|
|
|
{
|
|
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
|
|
int offset, len, status;
|
|
|
|
gdb_byte *buf;
|
|
|
|
|
|
|
|
if (regnum == IA64_GR0_REGNUM)
|
|
|
|
{
|
|
|
|
/* r0 is always 0. */
|
|
|
|
regcache_raw_supply (regcache, regnum, r0_value);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (regnum == IA64_FR0_REGNUM)
|
|
|
|
{
|
|
|
|
/* f0 is always 0.0. */
|
|
|
|
regcache_raw_supply (regcache, regnum, f0_value);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (regnum == IA64_FR1_REGNUM)
|
|
|
|
{
|
|
|
|
/* f1 is always 1.0. */
|
|
|
|
regcache_raw_supply (regcache, regnum, f1_value);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (regnum == IA64_RNAT_REGNUM)
|
|
|
|
{
|
|
|
|
ia64_hpux_fetch_rnat_register (regcache);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the register location. If the register can not be fetched,
|
|
|
|
then return now. */
|
|
|
|
offset = u_offsets[regnum];
|
|
|
|
if (offset == -1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
len = register_size (gdbarch, regnum);
|
|
|
|
buf = alloca (len * sizeof (gdb_byte));
|
|
|
|
status = ia64_hpux_read_register_from_save_state_t (offset, buf, len);
|
|
|
|
if (status < 0)
|
2011-01-14 21:53:02 +08:00
|
|
|
warning (_("Failed to read register value for %s."),
|
2011-01-14 00:24:13 +08:00
|
|
|
gdbarch_register_name (gdbarch, regnum));
|
|
|
|
|
|
|
|
regcache_raw_supply (regcache, regnum, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The "to_fetch_registers" target_ops routine for ia64-hpux. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
ia64_hpux_fetch_registers (struct target_ops *ops,
|
|
|
|
struct regcache *regcache, int regnum)
|
|
|
|
{
|
|
|
|
if (regnum == -1)
|
|
|
|
for (regnum = 0;
|
|
|
|
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
|
|
|
regnum++)
|
|
|
|
ia64_hpux_fetch_register (regcache, regnum);
|
|
|
|
else
|
|
|
|
ia64_hpux_fetch_register (regcache, regnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Save register REGNUM (stored in BUF) in the save_state_t structure.
|
|
|
|
LEN is the size of the register in bytes.
|
|
|
|
|
|
|
|
Return the value from the corresponding ttrace call (a negative value
|
|
|
|
means that the operation failed). */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ia64_hpux_write_register_to_saved_state_t (int offset, gdb_byte *buf, int len)
|
|
|
|
{
|
|
|
|
return ttrace (TT_LWP_WUREGS, ptid_get_pid (inferior_ptid),
|
|
|
|
ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Store register REGNUM into the inferior. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
ia64_hpux_store_register (const struct regcache *regcache, int regnum)
|
|
|
|
{
|
|
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
|
|
int offset = u_offsets[regnum];
|
|
|
|
gdb_byte *buf;
|
|
|
|
int len, status;
|
|
|
|
|
|
|
|
/* If the register can not be stored, then return now. */
|
|
|
|
if (offset == -1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* I don't know how to store that register for now. So just ignore any
|
|
|
|
request to store it, to avoid an internal error. */
|
|
|
|
if (regnum == IA64_PSR_REGNUM)
|
|
|
|
return;
|
|
|
|
|
|
|
|
len = register_size (gdbarch, regnum);
|
|
|
|
buf = alloca (len * sizeof (gdb_byte));
|
|
|
|
regcache_raw_collect (regcache, regnum, buf);
|
|
|
|
|
|
|
|
status = ia64_hpux_write_register_to_saved_state_t (offset, buf, len);
|
|
|
|
|
|
|
|
if (status < 0)
|
2011-01-14 21:53:02 +08:00
|
|
|
error (_("failed to write register value for %s."),
|
2011-01-14 00:24:13 +08:00
|
|
|
gdbarch_register_name (gdbarch, regnum));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The "to_store_registers" target_ops routine for ia64-hpux. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
ia64_hpux_store_registers (struct target_ops *ops,
|
|
|
|
struct regcache *regcache, int regnum)
|
|
|
|
{
|
|
|
|
if (regnum == -1)
|
|
|
|
for (regnum = 0;
|
|
|
|
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
|
|
|
regnum++)
|
|
|
|
ia64_hpux_store_register (regcache, regnum);
|
|
|
|
else
|
|
|
|
ia64_hpux_store_register (regcache, regnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The "xfer_partial" routine from the "inf-ttrace" target layer.
|
|
|
|
Ideally, we would like to use this routine for all transfer
|
|
|
|
requests, but this platforms has a lot of special cases that
|
|
|
|
need to be handled manually. So we override this routine and
|
|
|
|
delegate back if we detect that we are not in a special case. */
|
|
|
|
|
2013-11-04 17:53:56 +08:00
|
|
|
static target_xfer_partial_ftype *super_xfer_partial;
|
2011-01-14 00:24:13 +08:00
|
|
|
|
|
|
|
/* The "xfer_partial" routine for a memory region that is completely
|
|
|
|
outside of the backing-store region. */
|
|
|
|
|
|
|
|
static LONGEST
|
|
|
|
ia64_hpux_xfer_memory_no_bs (struct target_ops *ops, const char *annex,
|
|
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
|
|
CORE_ADDR addr, LONGEST len)
|
|
|
|
{
|
|
|
|
/* Memory writes need to be aligned on 16byte boundaries, at least
|
|
|
|
when writing in the text section. On the other hand, the size
|
|
|
|
of the buffer does not need to be a multiple of 16bytes.
|
|
|
|
|
|
|
|
No such restriction when performing memory reads. */
|
|
|
|
|
|
|
|
if (writebuf && addr & 0x0f)
|
|
|
|
{
|
|
|
|
const CORE_ADDR aligned_addr = addr & ~0x0f;
|
|
|
|
const int aligned_len = len + (addr - aligned_addr);
|
|
|
|
gdb_byte *aligned_buf = alloca (aligned_len * sizeof (gdb_byte));
|
|
|
|
LONGEST status;
|
|
|
|
|
|
|
|
/* Read the portion of memory between ALIGNED_ADDR and ADDR, so
|
|
|
|
that we can write it back during our aligned memory write. */
|
|
|
|
status = super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
|
|
|
|
aligned_buf /* read */,
|
|
|
|
NULL /* write */,
|
|
|
|
aligned_addr, addr - aligned_addr);
|
|
|
|
if (status <= 0)
|
|
|
|
return 0;
|
|
|
|
memcpy (aligned_buf + (addr - aligned_addr), writebuf, len);
|
|
|
|
|
|
|
|
return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
|
|
|
|
NULL /* read */, aligned_buf /* write */,
|
|
|
|
aligned_addr, aligned_len);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
/* Memory read or properly aligned memory write. */
|
|
|
|
return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex, readbuf,
|
|
|
|
writebuf, addr, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read LEN bytes at ADDR from memory, and store it in BUF. This memory
|
|
|
|
region is assumed to be inside the backing store.
|
|
|
|
|
|
|
|
Return zero if the operation failed. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ia64_hpux_read_memory_bs (gdb_byte *buf, CORE_ADDR addr, int len)
|
|
|
|
{
|
|
|
|
gdb_byte tmp_buf[8];
|
|
|
|
CORE_ADDR tmp_addr = addr & ~0x7;
|
|
|
|
|
|
|
|
while (tmp_addr < addr + len)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
int skip_lo = 0;
|
|
|
|
int skip_hi = 0;
|
|
|
|
|
|
|
|
status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
|
|
|
|
ptid_get_lwp (inferior_ptid), tmp_addr,
|
|
|
|
sizeof (tmp_buf), (uintptr_t) tmp_buf);
|
|
|
|
if (status < 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (tmp_addr < addr)
|
|
|
|
skip_lo = addr - tmp_addr;
|
|
|
|
|
|
|
|
if (tmp_addr + sizeof (tmp_buf) > addr + len)
|
|
|
|
skip_hi = (tmp_addr + sizeof (tmp_buf)) - (addr + len);
|
|
|
|
|
|
|
|
memcpy (buf + (tmp_addr + skip_lo - addr),
|
|
|
|
tmp_buf + skip_lo,
|
|
|
|
sizeof (tmp_buf) - skip_lo - skip_hi);
|
|
|
|
|
|
|
|
tmp_addr += sizeof (tmp_buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Write LEN bytes from BUF in memory at ADDR. This memory region is assumed
|
|
|
|
to be inside the backing store.
|
|
|
|
|
|
|
|
Return zero if the operation failed. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ia64_hpux_write_memory_bs (const gdb_byte *buf, CORE_ADDR addr, int len)
|
|
|
|
{
|
|
|
|
gdb_byte tmp_buf[8];
|
|
|
|
CORE_ADDR tmp_addr = addr & ~0x7;
|
|
|
|
|
|
|
|
while (tmp_addr < addr + len)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
int lo = 0;
|
|
|
|
int hi = 7;
|
|
|
|
|
|
|
|
if (tmp_addr < addr || tmp_addr + sizeof (tmp_buf) > addr + len)
|
|
|
|
/* Part of the 8byte region pointed by tmp_addr needs to be preserved.
|
|
|
|
So read it in before we copy the data that needs to be changed. */
|
|
|
|
if (!ia64_hpux_read_memory_bs (tmp_buf, tmp_addr, sizeof (tmp_buf)))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (tmp_addr < addr)
|
|
|
|
lo = addr - tmp_addr;
|
|
|
|
|
|
|
|
if (tmp_addr + sizeof (tmp_buf) > addr + len)
|
|
|
|
hi = addr - tmp_addr + len - 1;
|
|
|
|
|
|
|
|
memcpy (tmp_buf + lo, buf + tmp_addr - addr + lo, hi - lo + 1);
|
|
|
|
|
|
|
|
status = ttrace (TT_LWP_WRRSEBS, ptid_get_pid (inferior_ptid),
|
|
|
|
ptid_get_lwp (inferior_ptid), tmp_addr,
|
|
|
|
sizeof (tmp_buf), (uintptr_t) tmp_buf);
|
|
|
|
if (status < 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
tmp_addr += sizeof (tmp_buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The "xfer_partial" routine for a memory region that is completely
|
|
|
|
inside of the backing-store region. */
|
|
|
|
|
|
|
|
static LONGEST
|
|
|
|
ia64_hpux_xfer_memory_bs (struct target_ops *ops, const char *annex,
|
|
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
|
|
CORE_ADDR addr, LONGEST len)
|
|
|
|
{
|
|
|
|
int success;
|
|
|
|
|
|
|
|
if (readbuf)
|
|
|
|
success = ia64_hpux_read_memory_bs (readbuf, addr, len);
|
|
|
|
else
|
|
|
|
success = ia64_hpux_write_memory_bs (writebuf, addr, len);
|
|
|
|
|
|
|
|
if (success)
|
|
|
|
return len;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
fix internal_error during fork event handling.
When running on ia64-hpux a program that calls fork, GDB currently
reports the following internal error:
internal-error: Can't determine the current address space of thread process 1882
Here is what happens:
1. GDB receives a "fork" event;
2. handle_inferior_event calls detach_breakpoints for the child process;
3. detach_breakpoints calls ia64's gdbarch remove_breakpoint hook,
which needs to read an entire instruction slot in order to remove
a breakpoint instruction from memory;
4. To read inferior memory, the ia64-hpux code needs to know where
that memory is located relative to the bsp..bspstore area,
and thus needs to read the value of those registers;
5. To get the value of those registers, ia64_hpux_xfer_memory current
uses the current regcache.
The problem is that at the time we are trying to remove the breakpoints
from the child, the child process is not part of the list of inferiors
really known to GDB (it has not been added to inferior_list), so trying
to create a regcache for it triggers an internal error when creating
address space for the regcache (as the address space is ultimately
fetched from the inferior).
To work around this limitation, ia64_hpux_xfer_memory has been modified
to detect the fact the current inferior is not in our inferior list,
and to go, in that case, straight to the source to fetch the registers
it needs.
gdb/ChangeLog:
* ia64-hpux-nat.c (ia64_hpux_get_register_from_save_state_t):
New function.
(ia64_hpux_xfer_memory): Check if inferior_ptid is known before
using the regache. Use ia64_hpux_get_register_from_save_state_t
to access the bsp and bspstore registers if not.
2012-08-17 07:55:02 +08:00
|
|
|
/* Get a register value as a unsigned value directly from the system,
|
|
|
|
instead of going through the regcache.
|
|
|
|
|
|
|
|
This function is meant to be used when inferior_ptid is not
|
|
|
|
a thread/process known to GDB. */
|
|
|
|
|
|
|
|
static ULONGEST
|
|
|
|
ia64_hpux_get_register_from_save_state_t (int regnum, int reg_size)
|
|
|
|
{
|
|
|
|
gdb_byte *buf = alloca (reg_size);
|
|
|
|
int offset = u_offsets[regnum];
|
|
|
|
int status;
|
|
|
|
|
|
|
|
/* The register is assumed to be available for fetching. */
|
|
|
|
gdb_assert (offset != -1);
|
|
|
|
|
|
|
|
status = ia64_hpux_read_register_from_save_state_t (offset, buf, reg_size);
|
|
|
|
if (status < 0)
|
|
|
|
{
|
|
|
|
/* This really should not happen. If it does, emit a warning
|
|
|
|
and pretend the register value is zero. Not exactly the best
|
|
|
|
error recovery mechanism, but better than nothing. We will
|
|
|
|
try to do better if we can demonstrate that this can happen
|
|
|
|
under normal circumstances. */
|
|
|
|
warning (_("Failed to read value of register number %d."), regnum);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return extract_unsigned_integer (buf, reg_size, BFD_ENDIAN_BIG);
|
|
|
|
}
|
|
|
|
|
2011-01-14 00:24:13 +08:00
|
|
|
/* The "xfer_partial" target_ops routine for ia64-hpux, in the case
|
|
|
|
where the requested object is TARGET_OBJECT_MEMORY. */
|
|
|
|
|
|
|
|
static LONGEST
|
|
|
|
ia64_hpux_xfer_memory (struct target_ops *ops, const char *annex,
|
|
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
|
|
CORE_ADDR addr, LONGEST len)
|
|
|
|
{
|
|
|
|
CORE_ADDR bsp, bspstore;
|
|
|
|
CORE_ADDR start_addr, short_len;
|
|
|
|
int status = 0;
|
|
|
|
|
|
|
|
/* The back-store region cannot be read/written by the standard memory
|
|
|
|
read/write operations. So we handle the memory region piecemeal:
|
|
|
|
(1) and (2) The regions before and after the backing-store region,
|
|
|
|
which can be treated as normal memory;
|
|
|
|
(3) The region inside the backing-store, which needs to be
|
|
|
|
read/written specially. */
|
|
|
|
|
fix internal_error during fork event handling.
When running on ia64-hpux a program that calls fork, GDB currently
reports the following internal error:
internal-error: Can't determine the current address space of thread process 1882
Here is what happens:
1. GDB receives a "fork" event;
2. handle_inferior_event calls detach_breakpoints for the child process;
3. detach_breakpoints calls ia64's gdbarch remove_breakpoint hook,
which needs to read an entire instruction slot in order to remove
a breakpoint instruction from memory;
4. To read inferior memory, the ia64-hpux code needs to know where
that memory is located relative to the bsp..bspstore area,
and thus needs to read the value of those registers;
5. To get the value of those registers, ia64_hpux_xfer_memory current
uses the current regcache.
The problem is that at the time we are trying to remove the breakpoints
from the child, the child process is not part of the list of inferiors
really known to GDB (it has not been added to inferior_list), so trying
to create a regcache for it triggers an internal error when creating
address space for the regcache (as the address space is ultimately
fetched from the inferior).
To work around this limitation, ia64_hpux_xfer_memory has been modified
to detect the fact the current inferior is not in our inferior list,
and to go, in that case, straight to the source to fetch the registers
it needs.
gdb/ChangeLog:
* ia64-hpux-nat.c (ia64_hpux_get_register_from_save_state_t):
New function.
(ia64_hpux_xfer_memory): Check if inferior_ptid is known before
using the regache. Use ia64_hpux_get_register_from_save_state_t
to access the bsp and bspstore registers if not.
2012-08-17 07:55:02 +08:00
|
|
|
if (in_inferior_list (ptid_get_pid (inferior_ptid)))
|
|
|
|
{
|
|
|
|
struct regcache *regcache = get_current_regcache ();
|
|
|
|
|
|
|
|
regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
|
|
|
regcache_raw_read_unsigned (regcache, IA64_BSPSTORE_REGNUM, &bspstore);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* This is probably a child of our inferior created by a fork.
|
|
|
|
Because this process has not been added to our inferior list
|
|
|
|
(we are probably in the process of handling that child
|
|
|
|
process), we do not have a regcache to read the registers
|
|
|
|
from. So get those values directly from the kernel. */
|
|
|
|
bsp = ia64_hpux_get_register_from_save_state_t (IA64_BSP_REGNUM, 8);
|
|
|
|
bspstore =
|
|
|
|
ia64_hpux_get_register_from_save_state_t (IA64_BSPSTORE_REGNUM, 8);
|
|
|
|
}
|
2011-01-14 00:24:13 +08:00
|
|
|
|
|
|
|
/* 1. Memory region before BSPSTORE. */
|
|
|
|
|
|
|
|
if (addr < bspstore)
|
|
|
|
{
|
|
|
|
short_len = len;
|
|
|
|
if (addr + len > bspstore)
|
|
|
|
short_len = bspstore - addr;
|
|
|
|
|
|
|
|
status = ia64_hpux_xfer_memory_no_bs (ops, annex, readbuf, writebuf,
|
|
|
|
addr, short_len);
|
|
|
|
if (status <= 0)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 2. Memory region after BSP. */
|
|
|
|
|
|
|
|
if (addr + len > bsp)
|
|
|
|
{
|
|
|
|
start_addr = addr;
|
|
|
|
if (start_addr < bsp)
|
|
|
|
start_addr = bsp;
|
|
|
|
short_len = len + addr - start_addr;
|
|
|
|
|
|
|
|
status = ia64_hpux_xfer_memory_no_bs
|
|
|
|
(ops, annex,
|
|
|
|
readbuf ? readbuf + (start_addr - addr) : NULL,
|
|
|
|
writebuf ? writebuf + (start_addr - addr) : NULL,
|
|
|
|
start_addr, short_len);
|
|
|
|
if (status <= 0)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 3. Memory region between BSPSTORE and BSP. */
|
|
|
|
|
|
|
|
if (bspstore != bsp
|
|
|
|
&& ((addr < bspstore && addr + len > bspstore)
|
|
|
|
|| (addr + len <= bsp && addr + len > bsp)))
|
|
|
|
{
|
|
|
|
start_addr = addr;
|
|
|
|
if (addr < bspstore)
|
|
|
|
start_addr = bspstore;
|
|
|
|
short_len = len + addr - start_addr;
|
|
|
|
|
|
|
|
if (start_addr + short_len > bsp)
|
|
|
|
short_len = bsp - start_addr;
|
|
|
|
|
|
|
|
gdb_assert (short_len > 0);
|
|
|
|
|
|
|
|
status = ia64_hpux_xfer_memory_bs
|
|
|
|
(ops, annex,
|
|
|
|
readbuf ? readbuf + (start_addr - addr) : NULL,
|
|
|
|
writebuf ? writebuf + (start_addr - addr) : NULL,
|
|
|
|
start_addr, short_len);
|
|
|
|
if (status < 0)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
2011-01-14 00:24:27 +08:00
|
|
|
/* Handle the transfer of TARGET_OBJECT_HPUX_UREGS objects on ia64-hpux.
|
|
|
|
ANNEX is currently ignored.
|
|
|
|
|
|
|
|
The current implementation does not support write transfers (because
|
|
|
|
we do not currently do not need these transfers), and will raise
|
|
|
|
a failed assertion if WRITEBUF is not NULL. */
|
|
|
|
|
|
|
|
static LONGEST
|
|
|
|
ia64_hpux_xfer_uregs (struct target_ops *ops, const char *annex,
|
|
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
|
|
ULONGEST offset, LONGEST len)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
|
|
|
|
gdb_assert (writebuf == NULL);
|
|
|
|
|
|
|
|
status = ia64_hpux_read_register_from_save_state_t (offset, readbuf, len);
|
|
|
|
if (status < 0)
|
|
|
|
return -1;
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
[ia64-hpux] inferior function call support
We have two stacks to deal with on ia64, when making a function call.
The first is the usual stack frame, and the second is the register
stack frame. On ia64-linux, the register frame is setup by adjusting
the BSP register. Unfortunately for us, the HP-UX kernel does not allow
the debugger to change the value of the BSP.
To work around that limitation, the method I am using here is to push
some assembly code on the stack. This assembly code contains, among
other things, a call to the alloc insn, which sets up our frame for us.
An extensive comment in ia64-hpux-tdep.c explains the entire procedure.
Despite this approach, most of the code in ia64-tdep.c which sets up
the function call is still applicable - and only a few things need
to be done differently: For instance, instead of changing the BSP,
we do nothing. We store the parameters at a different location, etc.
So this patch also adjusts the inf-call code in ia64-tdep.c to make it
a little more extensible: I create a new ia64_infcall_ops structure
which allows an ABI to define how the few things that need to be
differentiated.
Another element that turned out to be necessary but is more of a detail
is that the computation of the linkage pointer needs to be handled
specially for symbols inside shared libraries. This is especially
visible when calling malloc, which happens everytime memory needs to
be allocated in inferior memory... The special treatment included
again the necessity to use some routines only available on the host.
So another target object TARGET_OBJECT_HPUX_SOLIB_GOT was created for
that purpose.
gdb/ChangeLog:
* ia64-tdep.h (struct regcache): Forward declare.
(struct ia64_infcall_ops): New struct type.
(struct gdbarch_tdep): New fields "find_global_pointer_from_solib"
and "infcall_ops".
* ia64-tdep.c (ia64_find_global_pointer_from_dynamic_section):
Renames ia64_find_global_pointer.
(ia64_find_global_pointer, ia64_allocate_new_rse_frame)
(ia64_store_argument_in_slot, ia64_set_function_addr: New function.
(ia64_push_dummy_call): Adjust to use the new tdep ia64_infocall_ops
methods.
(ia64_infcall_ops): New static global constant.
(ia64_gdbarch_init): Set tdep->infcall_ops.
* ia64-hpux-nat.c (ia64_hpux_xfer_solib_got): New function.
(ia64_hpux_xfer_partial): Add TARGET_OBJECT_HPUX_SOLIB_GOT handing.
* ia64-hpux-tdep.c: Include "regcache.h", "gdbcore.h" and "inferior.h".
(ia64_hpux_dummy_code): New static global constant.
(ia64_hpux_push_dummy_code, ia64_hpux_allocate_new_rse_frame)
(ia64_hpux_store_argument_in_slot, ia64_hpux_set_function_addr)
(ia64_hpux_dummy_id, ia64_hpux_find_global_pointer_from_solib):
New function.
(ia64_hpux_infcall_ops): New static global constant.
(ia64_hpux_init_abi): Install gdbarch and tdep methods needed
for inferior function calls to work properly on ia64-hpux.
2011-01-14 00:24:42 +08:00
|
|
|
/* Handle the transfer of TARGET_OBJECT_HPUX_SOLIB_GOT objects on ia64-hpux.
|
|
|
|
|
|
|
|
The current implementation does not support write transfers (because
|
|
|
|
we do not currently do not need these transfers), and will raise
|
|
|
|
a failed assertion if WRITEBUF is not NULL. */
|
|
|
|
|
|
|
|
static LONGEST
|
|
|
|
ia64_hpux_xfer_solib_got (struct target_ops *ops, const char *annex,
|
|
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
|
|
ULONGEST offset, LONGEST len)
|
|
|
|
{
|
|
|
|
CORE_ADDR fun_addr;
|
|
|
|
/* The linkage pointer. We use a uint64_t to make sure that the size
|
|
|
|
of the object we are returning is always 64 bits long, as explained
|
|
|
|
in the description of the TARGET_OBJECT_HPUX_SOLIB_GOT object.
|
|
|
|
This is probably paranoia, but we do not use a CORE_ADDR because
|
|
|
|
it could conceivably be larger than uint64_t. */
|
|
|
|
uint64_t got;
|
|
|
|
|
|
|
|
gdb_assert (writebuf == NULL);
|
|
|
|
|
|
|
|
if (offset > sizeof (got))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fun_addr = string_to_core_addr (annex);
|
|
|
|
got = ia64_hpux_get_solib_linkage_addr (fun_addr);
|
|
|
|
|
|
|
|
if (len > sizeof (got) - offset)
|
|
|
|
len = sizeof (got) - offset;
|
|
|
|
memcpy (readbuf, &got + offset, len);
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
2011-01-14 00:24:13 +08:00
|
|
|
/* The "to_xfer_partial" target_ops routine for ia64-hpux. */
|
|
|
|
|
|
|
|
static LONGEST
|
|
|
|
ia64_hpux_xfer_partial (struct target_ops *ops, enum target_object object,
|
|
|
|
const char *annex, gdb_byte *readbuf,
|
|
|
|
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
|
|
|
|
{
|
|
|
|
LONGEST val;
|
|
|
|
|
|
|
|
if (object == TARGET_OBJECT_MEMORY)
|
|
|
|
val = ia64_hpux_xfer_memory (ops, annex, readbuf, writebuf, offset, len);
|
2011-01-14 00:24:27 +08:00
|
|
|
else if (object == TARGET_OBJECT_HPUX_UREGS)
|
|
|
|
val = ia64_hpux_xfer_uregs (ops, annex, readbuf, writebuf, offset, len);
|
[ia64-hpux] inferior function call support
We have two stacks to deal with on ia64, when making a function call.
The first is the usual stack frame, and the second is the register
stack frame. On ia64-linux, the register frame is setup by adjusting
the BSP register. Unfortunately for us, the HP-UX kernel does not allow
the debugger to change the value of the BSP.
To work around that limitation, the method I am using here is to push
some assembly code on the stack. This assembly code contains, among
other things, a call to the alloc insn, which sets up our frame for us.
An extensive comment in ia64-hpux-tdep.c explains the entire procedure.
Despite this approach, most of the code in ia64-tdep.c which sets up
the function call is still applicable - and only a few things need
to be done differently: For instance, instead of changing the BSP,
we do nothing. We store the parameters at a different location, etc.
So this patch also adjusts the inf-call code in ia64-tdep.c to make it
a little more extensible: I create a new ia64_infcall_ops structure
which allows an ABI to define how the few things that need to be
differentiated.
Another element that turned out to be necessary but is more of a detail
is that the computation of the linkage pointer needs to be handled
specially for symbols inside shared libraries. This is especially
visible when calling malloc, which happens everytime memory needs to
be allocated in inferior memory... The special treatment included
again the necessity to use some routines only available on the host.
So another target object TARGET_OBJECT_HPUX_SOLIB_GOT was created for
that purpose.
gdb/ChangeLog:
* ia64-tdep.h (struct regcache): Forward declare.
(struct ia64_infcall_ops): New struct type.
(struct gdbarch_tdep): New fields "find_global_pointer_from_solib"
and "infcall_ops".
* ia64-tdep.c (ia64_find_global_pointer_from_dynamic_section):
Renames ia64_find_global_pointer.
(ia64_find_global_pointer, ia64_allocate_new_rse_frame)
(ia64_store_argument_in_slot, ia64_set_function_addr: New function.
(ia64_push_dummy_call): Adjust to use the new tdep ia64_infocall_ops
methods.
(ia64_infcall_ops): New static global constant.
(ia64_gdbarch_init): Set tdep->infcall_ops.
* ia64-hpux-nat.c (ia64_hpux_xfer_solib_got): New function.
(ia64_hpux_xfer_partial): Add TARGET_OBJECT_HPUX_SOLIB_GOT handing.
* ia64-hpux-tdep.c: Include "regcache.h", "gdbcore.h" and "inferior.h".
(ia64_hpux_dummy_code): New static global constant.
(ia64_hpux_push_dummy_code, ia64_hpux_allocate_new_rse_frame)
(ia64_hpux_store_argument_in_slot, ia64_hpux_set_function_addr)
(ia64_hpux_dummy_id, ia64_hpux_find_global_pointer_from_solib):
New function.
(ia64_hpux_infcall_ops): New static global constant.
(ia64_hpux_init_abi): Install gdbarch and tdep methods needed
for inferior function calls to work properly on ia64-hpux.
2011-01-14 00:24:42 +08:00
|
|
|
else if (object == TARGET_OBJECT_HPUX_SOLIB_GOT)
|
|
|
|
val = ia64_hpux_xfer_solib_got (ops, annex, readbuf, writebuf, offset,
|
|
|
|
len);
|
2011-01-14 00:24:13 +08:00
|
|
|
else
|
|
|
|
val = super_xfer_partial (ops, object, annex, readbuf, writebuf, offset,
|
|
|
|
len);
|
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The "to_can_use_hw_breakpoint" target_ops routine for ia64-hpux. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ia64_hpux_can_use_hw_breakpoint (int type, int cnt, int othertype)
|
|
|
|
{
|
|
|
|
/* No hardware watchpoint/breakpoint support yet. */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The "to_mourn_inferior" routine from the "inf-ttrace" target_ops layer. */
|
|
|
|
|
|
|
|
static void (*super_mourn_inferior) (struct target_ops *);
|
|
|
|
|
|
|
|
/* The "to_mourn_inferior" target_ops routine for ia64-hpux. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
ia64_hpux_mourn_inferior (struct target_ops *ops)
|
|
|
|
{
|
|
|
|
const int pid = ptid_get_pid (inferior_ptid);
|
|
|
|
int status;
|
|
|
|
|
|
|
|
super_mourn_inferior (ops);
|
|
|
|
|
|
|
|
/* On this platform, the process still exists even after we received
|
|
|
|
an exit event. Detaching from the process isn't sufficient either,
|
|
|
|
as it only turns the process into a zombie. So the only solution
|
|
|
|
we found is to kill it. */
|
|
|
|
ttrace (TT_PROC_EXIT, pid, 0, 0, 0, 0);
|
|
|
|
wait (&status);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Prevent warning from -Wmissing-prototypes. */
|
2012-06-15 02:19:40 +08:00
|
|
|
void _initialize_ia64_hpux_nat (void);
|
2011-01-14 00:24:13 +08:00
|
|
|
|
|
|
|
void
|
2012-06-15 02:19:40 +08:00
|
|
|
_initialize_ia64_hpux_nat (void)
|
2011-01-14 00:24:13 +08:00
|
|
|
{
|
|
|
|
struct target_ops *t;
|
|
|
|
|
|
|
|
t = inf_ttrace_target ();
|
|
|
|
super_to_wait = t->to_wait;
|
|
|
|
super_xfer_partial = t->to_xfer_partial;
|
|
|
|
super_mourn_inferior = t->to_mourn_inferior;
|
|
|
|
|
|
|
|
t->to_wait = ia64_hpux_wait;
|
|
|
|
t->to_fetch_registers = ia64_hpux_fetch_registers;
|
|
|
|
t->to_store_registers = ia64_hpux_store_registers;
|
|
|
|
t->to_xfer_partial = ia64_hpux_xfer_partial;
|
|
|
|
t->to_can_use_hw_breakpoint = ia64_hpux_can_use_hw_breakpoint;
|
|
|
|
t->to_mourn_inferior = ia64_hpux_mourn_inferior;
|
|
|
|
t->to_attach_no_wait = 1;
|
|
|
|
|
|
|
|
add_target (t);
|
|
|
|
}
|