2012-08-13 22:52:54 +08:00
|
|
|
|
/* aarch64-opc.c -- AArch64 opcode support.
|
2024-01-04 19:52:08 +08:00
|
|
|
|
Copyright (C) 2009-2024 Free Software Foundation, Inc.
|
2012-08-13 22:52:54 +08:00
|
|
|
|
Contributed by ARM Ltd.
|
|
|
|
|
|
|
|
|
|
This file is part of the GNU opcodes library.
|
|
|
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
|
|
|
any later version.
|
|
|
|
|
|
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
|
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
|
|
|
License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; see the file COPYING3. If not,
|
|
|
|
|
see <http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
|
|
#include "sysdep.h"
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
#include <stdio.h>
|
2021-03-31 07:37:02 +08:00
|
|
|
|
#include <stdint.h>
|
2012-08-13 22:52:54 +08:00
|
|
|
|
#include <stdarg.h>
|
|
|
|
|
#include <inttypes.h>
|
|
|
|
|
|
|
|
|
|
#include "opintl.h"
|
2016-09-21 23:54:53 +08:00
|
|
|
|
#include "libiberty.h"
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
#include "aarch64-opc.h"
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_AARCH64
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
int debug_dump = false;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
#endif /* DEBUG_AARCH64 */
|
|
|
|
|
|
2016-09-21 23:54:53 +08:00
|
|
|
|
/* The enumeration strings associated with each value of a 5-bit SVE
|
|
|
|
|
pattern operand. A null entry indicates a reserved meaning. */
|
|
|
|
|
const char *const aarch64_sve_pattern_array[32] = {
|
|
|
|
|
/* 0-7. */
|
|
|
|
|
"pow2",
|
|
|
|
|
"vl1",
|
|
|
|
|
"vl2",
|
|
|
|
|
"vl3",
|
|
|
|
|
"vl4",
|
|
|
|
|
"vl5",
|
|
|
|
|
"vl6",
|
|
|
|
|
"vl7",
|
|
|
|
|
/* 8-15. */
|
|
|
|
|
"vl8",
|
|
|
|
|
"vl16",
|
|
|
|
|
"vl32",
|
|
|
|
|
"vl64",
|
|
|
|
|
"vl128",
|
|
|
|
|
"vl256",
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
/* 16-23. */
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
/* 24-31. */
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
"mul4",
|
|
|
|
|
"mul3",
|
|
|
|
|
"all"
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* The enumeration strings associated with each value of a 4-bit SVE
|
|
|
|
|
prefetch operand. A null entry indicates a reserved meaning. */
|
|
|
|
|
const char *const aarch64_sve_prfop_array[16] = {
|
|
|
|
|
/* 0-7. */
|
|
|
|
|
"pldl1keep",
|
|
|
|
|
"pldl1strm",
|
|
|
|
|
"pldl2keep",
|
|
|
|
|
"pldl2strm",
|
|
|
|
|
"pldl3keep",
|
|
|
|
|
"pldl3strm",
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
/* 8-15. */
|
|
|
|
|
"pstl1keep",
|
|
|
|
|
"pstl1strm",
|
|
|
|
|
"pstl2keep",
|
|
|
|
|
"pstl2strm",
|
|
|
|
|
"pstl3keep",
|
|
|
|
|
"pstl3strm",
|
|
|
|
|
0,
|
|
|
|
|
0
|
|
|
|
|
};
|
|
|
|
|
|
2023-03-30 18:09:18 +08:00
|
|
|
|
/* The enumeration strings associated with each value of a 6-bit RPRFM
|
|
|
|
|
operation. */
|
|
|
|
|
const char *const aarch64_rprfmop_array[64] = {
|
|
|
|
|
"pldkeep",
|
|
|
|
|
"pstkeep",
|
|
|
|
|
0,
|
|
|
|
|
0,
|
|
|
|
|
"pldstrm",
|
|
|
|
|
"pststrm"
|
|
|
|
|
};
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
/* Vector length multiples for a predicate-as-counter operand. Used in things
|
|
|
|
|
like AARCH64_OPND_SME_VLxN_10. */
|
|
|
|
|
const char *const aarch64_sme_vlxn_array[2] = {
|
|
|
|
|
"vlx2",
|
|
|
|
|
"vlx4"
|
|
|
|
|
};
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Helper functions to determine which operand to be used to encode/decode
|
|
|
|
|
the size:Q fields for AdvSIMD instructions. */
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
static inline bool
|
2012-08-13 22:52:54 +08:00
|
|
|
|
vector_qualifier_p (enum aarch64_opnd_qualifier qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
return (qualifier >= AARCH64_OPND_QLF_V_8B
|
|
|
|
|
&& qualifier <= AARCH64_OPND_QLF_V_1Q);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
static inline bool
|
2012-08-13 22:52:54 +08:00
|
|
|
|
fp_qualifier_p (enum aarch64_opnd_qualifier qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
return (qualifier >= AARCH64_OPND_QLF_S_B
|
|
|
|
|
&& qualifier <= AARCH64_OPND_QLF_S_Q);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum data_pattern
|
|
|
|
|
{
|
|
|
|
|
DP_UNKNOWN,
|
|
|
|
|
DP_VECTOR_3SAME,
|
|
|
|
|
DP_VECTOR_LONG,
|
|
|
|
|
DP_VECTOR_WIDE,
|
|
|
|
|
DP_VECTOR_ACROSS_LANES,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static const char significant_operand_index [] =
|
|
|
|
|
{
|
|
|
|
|
0, /* DP_UNKNOWN, by default using operand 0. */
|
|
|
|
|
0, /* DP_VECTOR_3SAME */
|
|
|
|
|
1, /* DP_VECTOR_LONG */
|
|
|
|
|
2, /* DP_VECTOR_WIDE */
|
|
|
|
|
1, /* DP_VECTOR_ACROSS_LANES */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Given a sequence of qualifiers in QUALIFIERS, determine and return
|
|
|
|
|
the data pattern.
|
|
|
|
|
N.B. QUALIFIERS is a possible sequence of qualifiers each of which
|
|
|
|
|
corresponds to one of a sequence of operands. */
|
|
|
|
|
|
|
|
|
|
static enum data_pattern
|
|
|
|
|
get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
if (vector_qualifier_p (qualifiers[0]))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
/* e.g. v.4s, v.4s, v.4s
|
|
|
|
|
or v.4h, v.4h, v.h[3]. */
|
|
|
|
|
if (qualifiers[0] == qualifiers[1]
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
&& vector_qualifier_p (qualifiers[2])
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& (aarch64_get_qualifier_esize (qualifiers[0])
|
|
|
|
|
== aarch64_get_qualifier_esize (qualifiers[1]))
|
|
|
|
|
&& (aarch64_get_qualifier_esize (qualifiers[0])
|
|
|
|
|
== aarch64_get_qualifier_esize (qualifiers[2])))
|
|
|
|
|
return DP_VECTOR_3SAME;
|
|
|
|
|
/* e.g. v.8h, v.8b, v.8b.
|
|
|
|
|
or v.4s, v.4h, v.h[2].
|
|
|
|
|
or v.8h, v.16b. */
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
if (vector_qualifier_p (qualifiers[1])
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& aarch64_get_qualifier_esize (qualifiers[0]) != 0
|
|
|
|
|
&& (aarch64_get_qualifier_esize (qualifiers[0])
|
|
|
|
|
== aarch64_get_qualifier_esize (qualifiers[1]) << 1))
|
|
|
|
|
return DP_VECTOR_LONG;
|
|
|
|
|
/* e.g. v.8h, v.8h, v.8b. */
|
|
|
|
|
if (qualifiers[0] == qualifiers[1]
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
&& vector_qualifier_p (qualifiers[2])
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& aarch64_get_qualifier_esize (qualifiers[0]) != 0
|
|
|
|
|
&& (aarch64_get_qualifier_esize (qualifiers[0])
|
|
|
|
|
== aarch64_get_qualifier_esize (qualifiers[2]) << 1)
|
|
|
|
|
&& (aarch64_get_qualifier_esize (qualifiers[0])
|
|
|
|
|
== aarch64_get_qualifier_esize (qualifiers[1])))
|
|
|
|
|
return DP_VECTOR_WIDE;
|
|
|
|
|
}
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
else if (fp_qualifier_p (qualifiers[0]))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
/* e.g. SADDLV <V><d>, <Vn>.<T>. */
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
if (vector_qualifier_p (qualifiers[1])
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& qualifiers[2] == AARCH64_OPND_QLF_NIL)
|
|
|
|
|
return DP_VECTOR_ACROSS_LANES;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return DP_UNKNOWN;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Select the operand to do the encoding/decoding of the 'size:Q' fields in
|
|
|
|
|
the AdvSIMD instructions. */
|
|
|
|
|
/* N.B. it is possible to do some optimization that doesn't call
|
|
|
|
|
get_data_pattern each time when we need to select an operand. We can
|
|
|
|
|
either buffer the caculated the result or statically generate the data,
|
|
|
|
|
however, it is not obvious that the optimization will bring significant
|
|
|
|
|
benefit. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode)
|
|
|
|
|
{
|
|
|
|
|
return
|
|
|
|
|
significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])];
|
|
|
|
|
}
|
|
|
|
|
|
2021-11-18 04:02:06 +08:00
|
|
|
|
/* Instruction bit-fields.
|
|
|
|
|
+ Keep synced with 'enum aarch64_field_kind'. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const aarch64_field fields[] =
|
|
|
|
|
{
|
|
|
|
|
{ 0, 0 }, /* NIL. */
|
|
|
|
|
{ 8, 4 }, /* CRm: in the system instructions. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 10, 2 }, /* CRm_dsb_nxs: 2-bit imm. encoded in CRm<3:2>. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{ 12, 4 }, /* CRn: in the system instructions. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 10, 8 }, /* CSSC_imm8. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{ 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */
|
|
|
|
|
{ 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */
|
2023-10-30 19:47:23 +08:00
|
|
|
|
{ 0, 5 }, /* LSE128_Rt: Shared input+output operand register. */
|
|
|
|
|
{ 16, 5 }, /* LSE128_Rt2: Shared input+output operand register 2. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{ 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 22, 1 }, /* N: in logical (immediate) instructions. */
|
|
|
|
|
{ 30, 1 }, /* Q: in most AdvSIMD instructions. */
|
|
|
|
|
{ 10, 5 }, /* Ra: in fp instructions. */
|
|
|
|
|
{ 0, 5 }, /* Rd: in many integer instructions. */
|
|
|
|
|
{ 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */
|
|
|
|
|
{ 5, 5 }, /* Rn: in many integer instructions. */
|
|
|
|
|
{ 16, 5 }, /* Rs: in load/store exclusive instructions. */
|
|
|
|
|
{ 0, 5 }, /* Rt: in load/store instructions. */
|
|
|
|
|
{ 10, 5 }, /* Rt2: in load/store pair instructions. */
|
|
|
|
|
{ 12, 1 }, /* S: in load/store reg offset instructions. */
|
|
|
|
|
{ 12, 2 }, /* SM3_imm2: Indexed element SM3 2 bits index immediate. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 1, 3 }, /* SME_Pdx2: predicate register, multiple of 2, [3:1]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 13, 3 }, /* SME_Pm: second source scalable predicate register P0-P7. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 0, 3 }, /* SME_PNd3: PN0-PN7, bits [2:0]. */
|
|
|
|
|
{ 5, 3 }, /* SME_PNn3: PN0-PN7, bits [7:5]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 16, 1 }, /* SME_Q: Q class bit, bit 16. */
|
|
|
|
|
{ 16, 2 }, /* SME_Rm: index base register W12-W15 [17:16]. */
|
|
|
|
|
{ 13, 2 }, /* SME_Rv: vector select register W12-W15, bits [14:13]. */
|
|
|
|
|
{ 15, 1 }, /* SME_V: (horizontal / vertical tiles), bit 15. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 10, 1 }, /* SME_VL_10: VLx2 or VLx4, bit [10]. */
|
|
|
|
|
{ 13, 1 }, /* SME_VL_13: VLx2 or VLx4, bit [13]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 0, 2 }, /* SME_ZAda_2b: tile ZA0-ZA3. */
|
|
|
|
|
{ 0, 3 }, /* SME_ZAda_3b: tile ZA0-ZA7. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 1, 4 }, /* SME_Zdn2: Z0-Z31, multiple of 2, bits [4:1]. */
|
|
|
|
|
{ 2, 3 }, /* SME_Zdn4: Z0-Z31, multiple of 4, bits [4:2]. */
|
2023-03-30 18:09:13 +08:00
|
|
|
|
{ 16, 4 }, /* SME_Zm: Z0-Z15, bits [19:16]. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 17, 4 }, /* SME_Zm2: Z0-Z31, multiple of 2, bits [20:17]. */
|
|
|
|
|
{ 18, 3 }, /* SME_Zm4: Z0-Z31, multiple of 4, bits [20:18]. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 6, 4 }, /* SME_Zn2: Z0-Z31, multiple of 2, bits [9:6]. */
|
|
|
|
|
{ 7, 3 }, /* SME_Zn4: Z0-Z31, multiple of 4, bits [9:7]. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 4, 1 }, /* SME_ZtT: upper bit of Zt, bit [4]. */
|
|
|
|
|
{ 0, 3 }, /* SME_Zt3: lower 3 bits of Zt, bits [2:0]. */
|
|
|
|
|
{ 0, 2 }, /* SME_Zt2: lower 2 bits of Zt, bits [1:0]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 23, 1 }, /* SME_i1: immediate field, bit 23. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 12, 2 }, /* SME_size_12: bits [13:12]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 22, 2 }, /* SME_size_22: size<1>, size<0> class field, [23:22]. */
|
2023-03-30 18:09:16 +08:00
|
|
|
|
{ 23, 1 }, /* SME_sz_23: bit [23]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 22, 1 }, /* SME_tszh: immediate and qualifier field, bit 22. */
|
|
|
|
|
{ 18, 3 }, /* SME_tszl: immediate and qualifier field, bits [20:18]. */
|
|
|
|
|
{ 0, 8 }, /* SME_zero_mask: list of up to 8 tile names separated by commas [7:0]. */
|
[AArch64][SVE 30/32] Add SVE instruction classes
The main purpose of the SVE aarch64_insn_classes is to describe how
an index into an aarch64_opnd_qualifier_seq_t is represented in the
instruction encoding. Other instructions usually use flags for this
information, but (a) we're running out of those and (b) the iclass
would otherwise be unused for SVE.
include/
* opcode/aarch64.h (sve_cpy, sve_index, sve_limm, sve_misc)
(sve_movprfx, sve_pred_zm, sve_shift_pred, sve_shift_unpred)
(sve_size_bhs, sve_size_bhsd, sve_size_hsd, sve_size_sd): New
aarch64_insn_classes.
opcodes/
* aarch64-opc.h (FLD_SVE_M_4, FLD_SVE_M_14, FLD_SVE_M_16)
(FLD_SVE_sz, FLD_SVE_tsz, FLD_SVE_tszl_8, FLD_SVE_tszl_19): New
aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
* aarch64-asm.c (aarch64_get_variant): New function.
(aarch64_encode_variant_using_iclass): Likewise.
(aarch64_opcode_encode): Call it.
* aarch64-dis.c (aarch64_decode_variant_using_iclass): New function.
(aarch64_opcode_decode): Call it.
2016-09-21 23:58:22 +08:00
|
|
|
|
{ 4, 1 }, /* SVE_M_4: Merge/zero select, bit 4. */
|
|
|
|
|
{ 14, 1 }, /* SVE_M_14: Merge/zero select, bit 14. */
|
|
|
|
|
{ 16, 1 }, /* SVE_M_16: Merge/zero select, bit 16. */
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
{ 17, 1 }, /* SVE_N: SVE equivalent of N. */
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
{ 0, 4 }, /* SVE_Pd: p0-p15, bits [3,0]. */
|
|
|
|
|
{ 10, 3 }, /* SVE_Pg3: p0-p7, bits [12,10]. */
|
|
|
|
|
{ 5, 4 }, /* SVE_Pg4_5: p0-p15, bits [8,5]. */
|
|
|
|
|
{ 10, 4 }, /* SVE_Pg4_10: p0-p15, bits [13,10]. */
|
|
|
|
|
{ 16, 4 }, /* SVE_Pg4_16: p0-p15, bits [19,16]. */
|
|
|
|
|
{ 16, 4 }, /* SVE_Pm: p0-p15, bits [19,16]. */
|
|
|
|
|
{ 5, 4 }, /* SVE_Pn: p0-p15, bits [8,5]. */
|
|
|
|
|
{ 0, 4 }, /* SVE_Pt: p0-p15, bits [3,0]. */
|
2016-09-21 23:57:43 +08:00
|
|
|
|
{ 5, 5 }, /* SVE_Rm: SVE alternative position for Rm. */
|
|
|
|
|
{ 16, 5 }, /* SVE_Rn: SVE alternative position for Rn. */
|
|
|
|
|
{ 0, 5 }, /* SVE_Vd: Scalar SIMD&FP register, bits [4,0]. */
|
|
|
|
|
{ 5, 5 }, /* SVE_Vm: Scalar SIMD&FP register, bits [9,5]. */
|
|
|
|
|
{ 5, 5 }, /* SVE_Vn: Scalar SIMD&FP register, bits [9,5]. */
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
{ 5, 5 }, /* SVE_Za_5: SVE vector register, bits [9,5]. */
|
|
|
|
|
{ 16, 5 }, /* SVE_Za_16: SVE vector register, bits [20,16]. */
|
|
|
|
|
{ 0, 5 }, /* SVE_Zd: SVE vector register. bits [4,0]. */
|
|
|
|
|
{ 5, 5 }, /* SVE_Zm_5: SVE vector register, bits [9,5]. */
|
|
|
|
|
{ 16, 5 }, /* SVE_Zm_16: SVE vector register, bits [20,16]. */
|
|
|
|
|
{ 5, 5 }, /* SVE_Zn: SVE vector register, bits [9,5]. */
|
|
|
|
|
{ 0, 5 }, /* SVE_Zt: SVE vector register, bits [4,0]. */
|
2016-09-21 23:57:22 +08:00
|
|
|
|
{ 5, 1 }, /* SVE_i1: single-bit immediate. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 20, 1 }, /* SVE_i2h: high bit of 2bit immediate, bits. */
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
{ 22, 1 }, /* SVE_i3h: high bit of 3-bit immediate. */
|
2019-05-09 17:29:17 +08:00
|
|
|
|
{ 19, 2 }, /* SVE_i3h2: two high bits of 3bit immediate, bits [20,19]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 11, 1 }, /* SVE_i3l: low bit of 3-bit immediate. */
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
{ 16, 3 }, /* SVE_imm3: 3-bit immediate field. */
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
{ 16, 4 }, /* SVE_imm4: 4-bit immediate field. */
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
{ 5, 5 }, /* SVE_imm5: 5-bit immediate field. */
|
|
|
|
|
{ 16, 5 }, /* SVE_imm5b: secondary 5-bit immediate field. */
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
{ 16, 6 }, /* SVE_imm6: 6-bit immediate field. */
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
{ 14, 7 }, /* SVE_imm7: 7-bit immediate field. */
|
|
|
|
|
{ 5, 8 }, /* SVE_imm8: 8-bit immediate field. */
|
|
|
|
|
{ 5, 9 }, /* SVE_imm9: 9-bit immediate field. */
|
|
|
|
|
{ 11, 6 }, /* SVE_immr: SVE equivalent of immr. */
|
|
|
|
|
{ 5, 6 }, /* SVE_imms: SVE equivalent of imms. */
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
{ 10, 2 }, /* SVE_msz: 2-bit shift amount for ADR. */
|
2016-09-21 23:54:53 +08:00
|
|
|
|
{ 5, 5 }, /* SVE_pattern: vector pattern enumeration. */
|
|
|
|
|
{ 0, 4 }, /* SVE_prfop: prefetch operation for SVE PRF[BHWD]. */
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
{ 16, 1 }, /* SVE_rot1: 1-bit rotation amount. */
|
|
|
|
|
{ 10, 2 }, /* SVE_rot2: 2-bit rotation amount. */
|
2019-05-09 17:29:15 +08:00
|
|
|
|
{ 10, 1 }, /* SVE_rot3: 1-bit rotation amount at bit 10. */
|
2019-05-09 17:29:16 +08:00
|
|
|
|
{ 17, 2 }, /* SVE_size: 2-bit element size, bits [18,17]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 22, 1 }, /* SVE_sz: 1-bit element size select. */
|
2019-05-09 17:29:19 +08:00
|
|
|
|
{ 30, 1 }, /* SVE_sz2: 1-bit element size select. */
|
[AArch64][SVE 30/32] Add SVE instruction classes
The main purpose of the SVE aarch64_insn_classes is to describe how
an index into an aarch64_opnd_qualifier_seq_t is represented in the
instruction encoding. Other instructions usually use flags for this
information, but (a) we're running out of those and (b) the iclass
would otherwise be unused for SVE.
include/
* opcode/aarch64.h (sve_cpy, sve_index, sve_limm, sve_misc)
(sve_movprfx, sve_pred_zm, sve_shift_pred, sve_shift_unpred)
(sve_size_bhs, sve_size_bhsd, sve_size_hsd, sve_size_sd): New
aarch64_insn_classes.
opcodes/
* aarch64-opc.h (FLD_SVE_M_4, FLD_SVE_M_14, FLD_SVE_M_16)
(FLD_SVE_sz, FLD_SVE_tsz, FLD_SVE_tszl_8, FLD_SVE_tszl_19): New
aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
* aarch64-asm.c (aarch64_get_variant): New function.
(aarch64_encode_variant_using_iclass): Likewise.
(aarch64_opcode_encode): Call it.
* aarch64-dis.c (aarch64_decode_variant_using_iclass): New function.
(aarch64_opcode_decode): Call it.
2016-09-21 23:58:22 +08:00
|
|
|
|
{ 16, 4 }, /* SVE_tsz: triangular size select. */
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
{ 22, 2 }, /* SVE_tszh: triangular size select high, bits [23,22]. */
|
[AArch64][SVE 30/32] Add SVE instruction classes
The main purpose of the SVE aarch64_insn_classes is to describe how
an index into an aarch64_opnd_qualifier_seq_t is represented in the
instruction encoding. Other instructions usually use flags for this
information, but (a) we're running out of those and (b) the iclass
would otherwise be unused for SVE.
include/
* opcode/aarch64.h (sve_cpy, sve_index, sve_limm, sve_misc)
(sve_movprfx, sve_pred_zm, sve_shift_pred, sve_shift_unpred)
(sve_size_bhs, sve_size_bhsd, sve_size_hsd, sve_size_sd): New
aarch64_insn_classes.
opcodes/
* aarch64-opc.h (FLD_SVE_M_4, FLD_SVE_M_14, FLD_SVE_M_16)
(FLD_SVE_sz, FLD_SVE_tsz, FLD_SVE_tszl_8, FLD_SVE_tszl_19): New
aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
* aarch64-asm.c (aarch64_get_variant): New function.
(aarch64_encode_variant_using_iclass): Likewise.
(aarch64_opcode_encode): Call it.
* aarch64-dis.c (aarch64_decode_variant_using_iclass): New function.
(aarch64_opcode_decode): Call it.
2016-09-21 23:58:22 +08:00
|
|
|
|
{ 8, 2 }, /* SVE_tszl_8: triangular size select low, bits [9,8]. */
|
|
|
|
|
{ 19, 2 }, /* SVE_tszl_19: triangular size select low, bits [20,19]. */
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
{ 14, 1 }, /* SVE_xs_14: UXTW/SXTW select (bit 14). */
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
{ 22, 1 }, /* SVE_xs_22: UXTW/SXTW select (bit 22). */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 22, 1 }, /* S_imm10: in LDRAA and LDRAB instructions. */
|
|
|
|
|
{ 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */
|
|
|
|
|
{ 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */
|
|
|
|
|
{ 19, 5 }, /* b40: in the test bit and branch instructions. */
|
|
|
|
|
{ 31, 1 }, /* b5: in the test bit and branch instructions. */
|
|
|
|
|
{ 12, 4 }, /* cmode: in advsimd modified immediate instructions. */
|
|
|
|
|
{ 12, 4 }, /* cond: condition flags as a source operand. */
|
|
|
|
|
{ 0, 4 }, /* cond2: condition in truly conditional-executed inst. */
|
|
|
|
|
{ 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */
|
|
|
|
|
{ 21, 2 }, /* hw: in move wide constant instructions. */
|
2023-03-30 18:09:14 +08:00
|
|
|
|
{ 0, 1 }, /* imm1_0: general immediate in bits [0]. */
|
2023-03-30 18:09:13 +08:00
|
|
|
|
{ 2, 1 }, /* imm1_2: general immediate in bits [2]. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 8, 1 }, /* imm1_8: general immediate in bits [8]. */
|
2023-03-30 18:09:13 +08:00
|
|
|
|
{ 10, 1 }, /* imm1_10: general immediate in bits [10]. */
|
2023-03-30 18:09:13 +08:00
|
|
|
|
{ 15, 1 }, /* imm1_15: general immediate in bits [15]. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 16, 1 }, /* imm1_16: general immediate in bits [16]. */
|
2023-03-30 18:09:13 +08:00
|
|
|
|
{ 0, 2 }, /* imm2_0: general immediate in bits [1:0]. */
|
2023-03-30 18:09:14 +08:00
|
|
|
|
{ 1, 2 }, /* imm2_1: general immediate in bits [2:1]. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 8, 2 }, /* imm2_8: general immediate in bits [9:8]. */
|
2023-03-30 18:09:13 +08:00
|
|
|
|
{ 10, 2 }, /* imm2_10: 2-bit immediate, bits [11:10] */
|
2023-03-30 18:09:18 +08:00
|
|
|
|
{ 12, 2 }, /* imm2_12: 2-bit immediate, bits [13:12] */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 15, 2 }, /* imm2_15: 2-bit immediate, bits [16:15] */
|
|
|
|
|
{ 16, 2 }, /* imm2_16: 2-bit immediate, bits [17:16] */
|
2023-03-30 18:09:17 +08:00
|
|
|
|
{ 19, 2 }, /* imm2_19: 2-bit immediate, bits [20:19] */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 0, 3 }, /* imm3_0: general immediate in bits [2:0]. */
|
|
|
|
|
{ 5, 3 }, /* imm3_5: general immediate in bits [7:5]. */
|
2023-03-30 18:09:10 +08:00
|
|
|
|
{ 10, 3 }, /* imm3_10: in add/sub extended reg instructions. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 12, 3 }, /* imm3_12: general immediate in bits [14:12]. */
|
|
|
|
|
{ 14, 3 }, /* imm3_14: general immediate in bits [16:14]. */
|
|
|
|
|
{ 15, 3 }, /* imm3_15: general immediate in bits [17:15]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 0, 4 }, /* imm4_0: in rmif instructions. */
|
|
|
|
|
{ 5, 4 }, /* imm4_5: in SME instructions. */
|
|
|
|
|
{ 10, 4 }, /* imm4_10: in adddg/subg instructions. */
|
|
|
|
|
{ 11, 4 }, /* imm4_11: in advsimd ext and advsimd ins instructions. */
|
2023-03-30 18:09:12 +08:00
|
|
|
|
{ 14, 4 }, /* imm4_14: general immediate in bits [17:14]. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */
|
|
|
|
|
{ 10, 6 }, /* imm6_10: in add/sub reg shifted instructions. */
|
|
|
|
|
{ 15, 6 }, /* imm6_15: in rmif instructions. */
|
|
|
|
|
{ 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */
|
|
|
|
|
{ 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */
|
|
|
|
|
{ 12, 9 }, /* imm9: in load/store pre/post index instructions. */
|
|
|
|
|
{ 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */
|
|
|
|
|
{ 5, 14 }, /* imm14: in test bit and branch instructions. */
|
|
|
|
|
{ 0, 16 }, /* imm16_0: in udf instruction. */
|
|
|
|
|
{ 5, 16 }, /* imm16_5: in exception instructions. */
|
|
|
|
|
{ 5, 19 }, /* imm19: e.g. in CBZ. */
|
|
|
|
|
{ 0, 26 }, /* imm26: in unconditional branch instructions. */
|
|
|
|
|
{ 16, 3 }, /* immb: in advsimd shift by immediate instructions. */
|
|
|
|
|
{ 19, 4 }, /* immh: in advsimd shift by immediate instructions. */
|
|
|
|
|
{ 5, 19 }, /* immhi: e.g. in ADRP. */
|
|
|
|
|
{ 29, 2 }, /* immlo: e.g. in ADRP. */
|
|
|
|
|
{ 16, 6 }, /* immr: in bitfield and logical immediate instructions. */
|
|
|
|
|
{ 10, 6 }, /* imms: in bitfield and logical immediate instructions. */
|
|
|
|
|
{ 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */
|
|
|
|
|
{ 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */
|
|
|
|
|
{ 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */
|
|
|
|
|
{ 13, 2 }, /* len: in advsimd tbl/tbx instructions. */
|
|
|
|
|
{ 30, 1 }, /* lse_sz: in LSE extension atomic instructions. */
|
|
|
|
|
{ 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */
|
|
|
|
|
{ 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */
|
|
|
|
|
{ 19, 2 }, /* op0: in the system instructions. */
|
|
|
|
|
{ 16, 3 }, /* op1: in the system instructions. */
|
|
|
|
|
{ 5, 3 }, /* op2: in the system instructions. */
|
|
|
|
|
{ 22, 2 }, /* opc: in load/store reg offset instructions. */
|
|
|
|
|
{ 23, 1 }, /* opc1: in load/store reg offset instructions. */
|
|
|
|
|
{ 12, 4 }, /* opcode: in advsimd load/store instructions. */
|
|
|
|
|
{ 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
{ 11, 2 }, /* rotate1: FCMLA immediate rotate. */
|
|
|
|
|
{ 13, 2 }, /* rotate2: Indexed element FCMLA immediate rotate. */
|
|
|
|
|
{ 12, 1 }, /* rotate3: FCADD immediate rotate. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */
|
|
|
|
|
{ 31, 1 }, /* sf: in integer data processing instructions. */
|
|
|
|
|
{ 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */
|
|
|
|
|
{ 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */
|
2019-02-08 00:55:23 +08:00
|
|
|
|
{ 22, 1 }, /* sz: 1-bit element size select. */
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{ 22, 2 }, /* type: floating point type field in fp data inst. */
|
|
|
|
|
{ 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */
|
2024-01-15 17:34:41 +08:00
|
|
|
|
{ 5, 3 }, /* off3: immediate offset used to calculate slice number in a
|
|
|
|
|
ZA tile. */
|
|
|
|
|
{ 5, 2 }, /* off2: immediate offset used to calculate slice number in
|
|
|
|
|
a ZA tile. */
|
|
|
|
|
{ 7, 1 }, /* ZAn_1: name of the 1bit encoded ZA tile. */
|
|
|
|
|
{ 5, 1 }, /* ol: immediate offset used to calculate slice number in a ZA
|
|
|
|
|
tile. */
|
|
|
|
|
{ 6, 2 }, /* ZAn_2: name of the 2bit encoded ZA tile. */
|
|
|
|
|
{ 5, 3 }, /* ZAn_3: name of the 3bit encoded ZA tile. */
|
|
|
|
|
{ 6, 1 }, /* ZAn: name of the bit encoded ZA tile. */
|
2024-01-06 01:27:04 +08:00
|
|
|
|
{ 12, 4 }, /* opc2: in rcpc3 ld/st inst deciding the pre/post-index. */
|
|
|
|
|
{ 30, 2 }, /* rcpc3_size: in rcpc3 ld/st, field controls Rt/Rt2 width. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
enum aarch64_operand_class
|
|
|
|
|
aarch64_get_operand_class (enum aarch64_opnd type)
|
|
|
|
|
{
|
|
|
|
|
return aarch64_operands[type].op_class;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const char *
|
|
|
|
|
aarch64_get_operand_name (enum aarch64_opnd type)
|
|
|
|
|
{
|
|
|
|
|
return aarch64_operands[type].name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get operand description string.
|
|
|
|
|
This is usually for the diagnosis purpose. */
|
|
|
|
|
const char *
|
|
|
|
|
aarch64_get_operand_desc (enum aarch64_opnd type)
|
|
|
|
|
{
|
|
|
|
|
return aarch64_operands[type].desc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Table of all conditional affixes. */
|
|
|
|
|
const aarch64_cond aarch64_conds[16] =
|
|
|
|
|
{
|
[AArch64] Add SVE condition codes
SVE defines new names for existing NZCV conditions, to reflect the
result of instructions like PTEST. This patch adds support for these
names.
The patch also adds comments to the disassembly output to show the
alternative names of a condition code. For example:
cinv x0, x1, cc
becomes:
cinv x0, x1, cc // cc = lo, ul, last
and:
b.cc f0 <...>
becomes:
b.cc f0 <...> // b.lo, b.ul, b.last
Doing this for the SVE names follows the practice recommended by the
SVE specification and is definitely useful when reading SVE code.
If the feeling is that it's too distracting elsewhere, we could add
an option to turn it off.
include/
* opcode/aarch64.h (aarch64_cond): Bump array size to 4.
opcodes/
* aarch64-dis.c (remove_dot_suffix): New function, split out from...
(print_mnemonic_name): ...here.
(print_comment): New function.
(print_aarch64_insn): Call it.
* aarch64-opc.c (aarch64_conds): Add SVE names.
(aarch64_print_operand): Print alternative condition names in
a comment.
gas/
* config/tc-aarch64.c (opcode_lookup): Search for the end of
a condition name, rather than assuming that it will have exactly
2 characters.
(parse_operands): Likewise.
* testsuite/gas/aarch64/alias.d: Add new condition-code comments
to the expected output.
* testsuite/gas/aarch64/beq_1.d: Likewise.
* testsuite/gas/aarch64/float-fp16.d: Likewise.
* testsuite/gas/aarch64/int-insns.d: Likewise.
* testsuite/gas/aarch64/no-aliases.d: Likewise.
* testsuite/gas/aarch64/programmer-friendly.d: Likewise.
* testsuite/gas/aarch64/reloc-insn.d: Likewise.
* testsuite/gas/aarch64/b_c_1.d, testsuite/gas/aarch64/b_c_1.s:
New test.
ld/
* testsuite/ld-aarch64/emit-relocs-280.d: Match branch comments.
* testsuite/ld-aarch64/weak-undefined.d: Likewise.
2016-09-22 00:09:59 +08:00
|
|
|
|
{{"eq", "none"}, 0x0},
|
|
|
|
|
{{"ne", "any"}, 0x1},
|
|
|
|
|
{{"cs", "hs", "nlast"}, 0x2},
|
|
|
|
|
{{"cc", "lo", "ul", "last"}, 0x3},
|
|
|
|
|
{{"mi", "first"}, 0x4},
|
|
|
|
|
{{"pl", "nfrst"}, 0x5},
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{{"vs"}, 0x6},
|
|
|
|
|
{{"vc"}, 0x7},
|
[AArch64] Add SVE condition codes
SVE defines new names for existing NZCV conditions, to reflect the
result of instructions like PTEST. This patch adds support for these
names.
The patch also adds comments to the disassembly output to show the
alternative names of a condition code. For example:
cinv x0, x1, cc
becomes:
cinv x0, x1, cc // cc = lo, ul, last
and:
b.cc f0 <...>
becomes:
b.cc f0 <...> // b.lo, b.ul, b.last
Doing this for the SVE names follows the practice recommended by the
SVE specification and is definitely useful when reading SVE code.
If the feeling is that it's too distracting elsewhere, we could add
an option to turn it off.
include/
* opcode/aarch64.h (aarch64_cond): Bump array size to 4.
opcodes/
* aarch64-dis.c (remove_dot_suffix): New function, split out from...
(print_mnemonic_name): ...here.
(print_comment): New function.
(print_aarch64_insn): Call it.
* aarch64-opc.c (aarch64_conds): Add SVE names.
(aarch64_print_operand): Print alternative condition names in
a comment.
gas/
* config/tc-aarch64.c (opcode_lookup): Search for the end of
a condition name, rather than assuming that it will have exactly
2 characters.
(parse_operands): Likewise.
* testsuite/gas/aarch64/alias.d: Add new condition-code comments
to the expected output.
* testsuite/gas/aarch64/beq_1.d: Likewise.
* testsuite/gas/aarch64/float-fp16.d: Likewise.
* testsuite/gas/aarch64/int-insns.d: Likewise.
* testsuite/gas/aarch64/no-aliases.d: Likewise.
* testsuite/gas/aarch64/programmer-friendly.d: Likewise.
* testsuite/gas/aarch64/reloc-insn.d: Likewise.
* testsuite/gas/aarch64/b_c_1.d, testsuite/gas/aarch64/b_c_1.s:
New test.
ld/
* testsuite/ld-aarch64/emit-relocs-280.d: Match branch comments.
* testsuite/ld-aarch64/weak-undefined.d: Likewise.
2016-09-22 00:09:59 +08:00
|
|
|
|
{{"hi", "pmore"}, 0x8},
|
|
|
|
|
{{"ls", "plast"}, 0x9},
|
|
|
|
|
{{"ge", "tcont"}, 0xa},
|
|
|
|
|
{{"lt", "tstop"}, 0xb},
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{{"gt"}, 0xc},
|
|
|
|
|
{{"le"}, 0xd},
|
|
|
|
|
{{"al"}, 0xe},
|
|
|
|
|
{{"nv"}, 0xf},
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const aarch64_cond *
|
|
|
|
|
get_cond_from_value (aarch64_insn value)
|
|
|
|
|
{
|
|
|
|
|
assert (value < 16);
|
|
|
|
|
return &aarch64_conds[(unsigned int) value];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const aarch64_cond *
|
|
|
|
|
get_inverted_cond (const aarch64_cond *cond)
|
|
|
|
|
{
|
|
|
|
|
return &aarch64_conds[cond->value ^ 0x1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Table describing the operand extension/shifting operators; indexed by
|
|
|
|
|
enum aarch64_modifier_kind.
|
|
|
|
|
|
|
|
|
|
The value column provides the most common values for encoding modifiers,
|
|
|
|
|
which enables table-driven encoding/decoding for the modifiers. */
|
|
|
|
|
const struct aarch64_name_value_pair aarch64_operand_modifiers [] =
|
|
|
|
|
{
|
|
|
|
|
{"none", 0x0},
|
|
|
|
|
{"msl", 0x0},
|
|
|
|
|
{"ror", 0x3},
|
|
|
|
|
{"asr", 0x2},
|
|
|
|
|
{"lsr", 0x1},
|
|
|
|
|
{"lsl", 0x0},
|
|
|
|
|
{"uxtb", 0x0},
|
|
|
|
|
{"uxth", 0x1},
|
|
|
|
|
{"uxtw", 0x2},
|
|
|
|
|
{"uxtx", 0x3},
|
|
|
|
|
{"sxtb", 0x4},
|
|
|
|
|
{"sxth", 0x5},
|
|
|
|
|
{"sxtw", 0x6},
|
|
|
|
|
{"sxtx", 0x7},
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
{"mul", 0x0},
|
[AArch64][SVE 26/32] Add SVE MUL VL addressing modes
This patch adds support for addresses of the form:
[<base>, #<offset>, MUL VL]
This involves adding a new AARCH64_MOD_MUL_VL modifier, which is
why I split it out from the other addressing modes.
For LD2, LD3 and LD4, the offset must be a multiple of the structure
size, so for LD3 the possible values are 0, 3, 6, .... The patch
therefore extends value_aligned_p to handle non-power-of-2 alignments.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4xVL): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_S4x2xVL, AARCH64_OPND_SVE_ADDR_RI_S4x3xVL)
(AARCH64_OPND_SVE_ADDR_RI_S4x4xVL, AARCH64_OPND_SVE_ADDR_RI_S6xVL)
(AARCH64_OPND_SVE_ADDR_RI_S9xVL): Likewise.
(AARCH64_MOD_MUL_VL): New aarch64_modifier_kind.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new MUL VL
operands.
* aarch64-opc.c (aarch64_operand_modifiers): Initialize
the AARCH64_MOD_MUL_VL entry.
(value_aligned_p): Cope with non-power-of-two alignments.
(operand_general_constraint_met_p): Handle the new MUL VL addresses.
(print_immediate_offset_address): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_s4xvl, ins_sve_addr_ri_s6xvl)
(ins_sve_addr_ri_s9xvl): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_s4xvl): New function.
(aarch64_ins_sve_addr_ri_s6xvl): Likewise.
(aarch64_ins_sve_addr_ri_s9xvl): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4xvl, ext_sve_addr_ri_s6xvl)
(ext_sve_addr_ri_s9xvl): New extractors.
* aarch64-dis.c (aarch64_ext_sve_addr_reg_mul_vl): New function.
(aarch64_ext_sve_addr_ri_s4xvl): Likewise.
(aarch64_ext_sve_addr_ri_s6xvl): Likewise.
(aarch64_ext_sve_addr_ri_s9xvl): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_NONE, SHIFTED_MUL_VL): New
parse_shift_modes.
(parse_shift): Handle SHIFTED_MUL_VL.
(parse_address_main): Add an imm_shift_mode parameter.
(parse_address, parse_sve_address): Update accordingly.
(parse_operands): Handle MUL VL addressing modes.
2016-09-21 23:56:15 +08:00
|
|
|
|
{"mul vl", 0x0},
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{NULL, 0},
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
enum aarch64_modifier_kind
|
|
|
|
|
aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc)
|
|
|
|
|
{
|
|
|
|
|
return desc - aarch64_operand_modifiers;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
aarch64_insn
|
|
|
|
|
aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind)
|
|
|
|
|
{
|
|
|
|
|
return aarch64_operand_modifiers[kind].value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum aarch64_modifier_kind
|
|
|
|
|
aarch64_get_operand_modifier_from_value (aarch64_insn value,
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool extend_p)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
if (extend_p)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return AARCH64_MOD_UXTB + value;
|
|
|
|
|
else
|
|
|
|
|
return AARCH64_MOD_LSL - value;
|
|
|
|
|
}
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
2012-08-13 22:52:54 +08:00
|
|
|
|
aarch64_extend_operator_p (enum aarch64_modifier_kind kind)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
return kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
static inline bool
|
2012-08-13 22:52:54 +08:00
|
|
|
|
aarch64_shift_operator_p (enum aarch64_modifier_kind kind)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
return kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const struct aarch64_name_value_pair aarch64_barrier_options[16] =
|
|
|
|
|
{
|
|
|
|
|
{ "#0x00", 0x0 },
|
|
|
|
|
{ "oshld", 0x1 },
|
|
|
|
|
{ "oshst", 0x2 },
|
|
|
|
|
{ "osh", 0x3 },
|
|
|
|
|
{ "#0x04", 0x4 },
|
|
|
|
|
{ "nshld", 0x5 },
|
|
|
|
|
{ "nshst", 0x6 },
|
|
|
|
|
{ "nsh", 0x7 },
|
|
|
|
|
{ "#0x08", 0x8 },
|
|
|
|
|
{ "ishld", 0x9 },
|
|
|
|
|
{ "ishst", 0xa },
|
|
|
|
|
{ "ish", 0xb },
|
|
|
|
|
{ "#0x0c", 0xc },
|
|
|
|
|
{ "ld", 0xd },
|
|
|
|
|
{ "st", 0xe },
|
|
|
|
|
{ "sy", 0xf },
|
|
|
|
|
};
|
|
|
|
|
|
2020-10-28 22:01:36 +08:00
|
|
|
|
const struct aarch64_name_value_pair aarch64_barrier_dsb_nxs_options[4] =
|
|
|
|
|
{ /* CRm<3:2> #imm */
|
|
|
|
|
{ "oshnxs", 16 }, /* 00 16 */
|
|
|
|
|
{ "nshnxs", 20 }, /* 01 20 */
|
|
|
|
|
{ "ishnxs", 24 }, /* 10 24 */
|
|
|
|
|
{ "synxs", 28 }, /* 11 28 */
|
|
|
|
|
};
|
|
|
|
|
|
2015-12-11 18:11:27 +08:00
|
|
|
|
/* Table describing the operands supported by the aliases of the HINT
|
|
|
|
|
instruction.
|
|
|
|
|
|
|
|
|
|
The name column is the operand that is accepted for the alias. The value
|
|
|
|
|
column is the hint number of the alias. The list of operands is terminated
|
|
|
|
|
by NULL in the name column. */
|
|
|
|
|
|
|
|
|
|
const struct aarch64_name_value_pair aarch64_hint_options[] =
|
|
|
|
|
{
|
[PATCH, BINUTILS, AARCH64, 7/9] Add BTI instruction
This patch is part of the patch series to add support for ARMv8.5-A
extensions.
(https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/bti-branch-target-identification)
The Branch Target Identification instructions (BTI) are allocated to
existing HINT space, using HINT numbers 32, 34, 36, 38, such that
bits[7:6] of the instruction identify the compatibility of the BTI
instruction to different branches.
BTI {<targets>}
where <targets> one of the following, specifying which type of
indirection is allowed:
j : Can be a target of any BR Xn isntruction.
c : Can be a target of any BLR Xn and BR {X16|X17}.
jc: Can be a target of any free branch.
A BTI instruction without any <targets> is the strictest of all and
can not be a target of nay free branch.
*** include/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (AARCH64_FEATURE_BTI): New.
(AARCH64_ARCH_V8_5): Add AARCH64_FEATURE_BTI by default.
(aarch64_opnd): Add AARCH64_OPND_BTI_TARGET.
(HINT_OPD_CSYNC, HINT_OPD_C, HINT_OPD_J): New macros to
define HINT #imm values.
(HINT_OPD_JC, HINT_OPD_NULL): Likewise.
*** opcodes/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.h (HINT_OPD_NOPRINT, HINT_ENCODE): New.
(HINT_FLAG, HINT_VALUE): New macros to encode NO_PRINT flag
with the hint immediate.
* aarch64-opc.c (aarch64_hint_options): New entries for
c, j, jc and default (with HINT_OPD_F_NOPRINT flag) for BTI.
(aarch64_print_operand): Add case for AARCH64_OPND_BTI_TARGET
while checking for HINT_OPD_F_NOPRINT flag.
* aarch64-dis.c (aarch64_ext_hint): Use new HINT_VALUE to
extract value.
* aarch64-tbl.h (aarch64_feature_bti, BTI, BTI_INSN): New.
(aarch64_opcode_table): Add entry for BTI.
(AARCH64_OPERANDS): Add new description for BTI targets.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc-2.c: Regenerate.
*** gas/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_bti_operand): New.
(process_omitted_operand): Add case for AARCH64_OPND_BTI_TARGET.
(parse_operands): Likewise.
* testsuite/gas/aarch64/system.d: Update for BTI.
* testsuite/gas/aarch64/bti.s: New.
* testsuite/gas/aarch64/bti.d: New.
* testsuite/gas/aarch64/illegal-bti.d: New.
* testsuite/gas/aarch64/illegal-bti.l: New.
2018-09-26 18:00:49 +08:00
|
|
|
|
/* BTI. This is also the F_DEFAULT entry for AARCH64_OPND_BTI_TARGET. */
|
|
|
|
|
{ " ", HINT_ENCODE (HINT_OPD_F_NOPRINT, 0x20) },
|
|
|
|
|
{ "csync", HINT_OPD_CSYNC }, /* PSB CSYNC. */
|
2023-11-02 21:07:29 +08:00
|
|
|
|
{ "dsync", HINT_OPD_DSYNC }, /* GCSB DSYNC. */
|
[PATCH, BINUTILS, AARCH64, 7/9] Add BTI instruction
This patch is part of the patch series to add support for ARMv8.5-A
extensions.
(https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/bti-branch-target-identification)
The Branch Target Identification instructions (BTI) are allocated to
existing HINT space, using HINT numbers 32, 34, 36, 38, such that
bits[7:6] of the instruction identify the compatibility of the BTI
instruction to different branches.
BTI {<targets>}
where <targets> one of the following, specifying which type of
indirection is allowed:
j : Can be a target of any BR Xn isntruction.
c : Can be a target of any BLR Xn and BR {X16|X17}.
jc: Can be a target of any free branch.
A BTI instruction without any <targets> is the strictest of all and
can not be a target of nay free branch.
*** include/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (AARCH64_FEATURE_BTI): New.
(AARCH64_ARCH_V8_5): Add AARCH64_FEATURE_BTI by default.
(aarch64_opnd): Add AARCH64_OPND_BTI_TARGET.
(HINT_OPD_CSYNC, HINT_OPD_C, HINT_OPD_J): New macros to
define HINT #imm values.
(HINT_OPD_JC, HINT_OPD_NULL): Likewise.
*** opcodes/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.h (HINT_OPD_NOPRINT, HINT_ENCODE): New.
(HINT_FLAG, HINT_VALUE): New macros to encode NO_PRINT flag
with the hint immediate.
* aarch64-opc.c (aarch64_hint_options): New entries for
c, j, jc and default (with HINT_OPD_F_NOPRINT flag) for BTI.
(aarch64_print_operand): Add case for AARCH64_OPND_BTI_TARGET
while checking for HINT_OPD_F_NOPRINT flag.
* aarch64-dis.c (aarch64_ext_hint): Use new HINT_VALUE to
extract value.
* aarch64-tbl.h (aarch64_feature_bti, BTI, BTI_INSN): New.
(aarch64_opcode_table): Add entry for BTI.
(AARCH64_OPERANDS): Add new description for BTI targets.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc-2.c: Regenerate.
*** gas/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_bti_operand): New.
(process_omitted_operand): Add case for AARCH64_OPND_BTI_TARGET.
(parse_operands): Likewise.
* testsuite/gas/aarch64/system.d: Update for BTI.
* testsuite/gas/aarch64/bti.s: New.
* testsuite/gas/aarch64/bti.d: New.
* testsuite/gas/aarch64/illegal-bti.d: New.
* testsuite/gas/aarch64/illegal-bti.l: New.
2018-09-26 18:00:49 +08:00
|
|
|
|
{ "c", HINT_OPD_C }, /* BTI C. */
|
|
|
|
|
{ "j", HINT_OPD_J }, /* BTI J. */
|
|
|
|
|
{ "jc", HINT_OPD_JC }, /* BTI JC. */
|
|
|
|
|
{ NULL, HINT_OPD_NULL },
|
2015-12-11 18:11:27 +08:00
|
|
|
|
};
|
|
|
|
|
|
2013-01-04 21:32:06 +08:00
|
|
|
|
/* op -> op: load = 0 instruction = 1 store = 2
|
2012-08-13 22:52:54 +08:00
|
|
|
|
l -> level: 1-3
|
|
|
|
|
t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */
|
2013-01-04 21:32:06 +08:00
|
|
|
|
#define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const struct aarch64_name_value_pair aarch64_prfops[32] =
|
|
|
|
|
{
|
|
|
|
|
{ "pldl1keep", B(0, 1, 0) },
|
|
|
|
|
{ "pldl1strm", B(0, 1, 1) },
|
|
|
|
|
{ "pldl2keep", B(0, 2, 0) },
|
|
|
|
|
{ "pldl2strm", B(0, 2, 1) },
|
|
|
|
|
{ "pldl3keep", B(0, 3, 0) },
|
|
|
|
|
{ "pldl3strm", B(0, 3, 1) },
|
2023-11-16 20:11:43 +08:00
|
|
|
|
{ "pldslckeep", B(0, 4, 0) },
|
|
|
|
|
{ "pldslcstrm", B(0, 4, 1) },
|
2013-01-04 21:32:06 +08:00
|
|
|
|
{ "plil1keep", B(1, 1, 0) },
|
|
|
|
|
{ "plil1strm", B(1, 1, 1) },
|
|
|
|
|
{ "plil2keep", B(1, 2, 0) },
|
|
|
|
|
{ "plil2strm", B(1, 2, 1) },
|
|
|
|
|
{ "plil3keep", B(1, 3, 0) },
|
|
|
|
|
{ "plil3strm", B(1, 3, 1) },
|
2023-11-16 20:11:43 +08:00
|
|
|
|
{ "plislckeep", B(1, 4, 0) },
|
|
|
|
|
{ "plislcstrm", B(1, 4, 1) },
|
2013-01-04 21:32:06 +08:00
|
|
|
|
{ "pstl1keep", B(2, 1, 0) },
|
|
|
|
|
{ "pstl1strm", B(2, 1, 1) },
|
|
|
|
|
{ "pstl2keep", B(2, 2, 0) },
|
|
|
|
|
{ "pstl2strm", B(2, 2, 1) },
|
|
|
|
|
{ "pstl3keep", B(2, 3, 0) },
|
|
|
|
|
{ "pstl3strm", B(2, 3, 1) },
|
2023-11-16 20:11:43 +08:00
|
|
|
|
{ "pstslckeep", B(2, 4, 0) },
|
|
|
|
|
{ "pstslcstrm", B(2, 4, 1) },
|
2013-02-15 02:12:51 +08:00
|
|
|
|
{ NULL, 0x18 },
|
|
|
|
|
{ NULL, 0x19 },
|
|
|
|
|
{ NULL, 0x1a },
|
|
|
|
|
{ NULL, 0x1b },
|
|
|
|
|
{ NULL, 0x1c },
|
|
|
|
|
{ NULL, 0x1d },
|
|
|
|
|
{ NULL, 0x1e },
|
|
|
|
|
{ NULL, 0x1f },
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
#undef B
|
|
|
|
|
|
|
|
|
|
/* Utilities on value constraint. */
|
|
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
|
value_in_range_p (int64_t value, int low, int high)
|
|
|
|
|
{
|
|
|
|
|
return (value >= low && value <= high) ? 1 : 0;
|
|
|
|
|
}
|
|
|
|
|
|
[AArch64][SVE 26/32] Add SVE MUL VL addressing modes
This patch adds support for addresses of the form:
[<base>, #<offset>, MUL VL]
This involves adding a new AARCH64_MOD_MUL_VL modifier, which is
why I split it out from the other addressing modes.
For LD2, LD3 and LD4, the offset must be a multiple of the structure
size, so for LD3 the possible values are 0, 3, 6, .... The patch
therefore extends value_aligned_p to handle non-power-of-2 alignments.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4xVL): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_S4x2xVL, AARCH64_OPND_SVE_ADDR_RI_S4x3xVL)
(AARCH64_OPND_SVE_ADDR_RI_S4x4xVL, AARCH64_OPND_SVE_ADDR_RI_S6xVL)
(AARCH64_OPND_SVE_ADDR_RI_S9xVL): Likewise.
(AARCH64_MOD_MUL_VL): New aarch64_modifier_kind.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new MUL VL
operands.
* aarch64-opc.c (aarch64_operand_modifiers): Initialize
the AARCH64_MOD_MUL_VL entry.
(value_aligned_p): Cope with non-power-of-two alignments.
(operand_general_constraint_met_p): Handle the new MUL VL addresses.
(print_immediate_offset_address): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_s4xvl, ins_sve_addr_ri_s6xvl)
(ins_sve_addr_ri_s9xvl): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_s4xvl): New function.
(aarch64_ins_sve_addr_ri_s6xvl): Likewise.
(aarch64_ins_sve_addr_ri_s9xvl): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4xvl, ext_sve_addr_ri_s6xvl)
(ext_sve_addr_ri_s9xvl): New extractors.
* aarch64-dis.c (aarch64_ext_sve_addr_reg_mul_vl): New function.
(aarch64_ext_sve_addr_ri_s4xvl): Likewise.
(aarch64_ext_sve_addr_ri_s6xvl): Likewise.
(aarch64_ext_sve_addr_ri_s9xvl): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_NONE, SHIFTED_MUL_VL): New
parse_shift_modes.
(parse_shift): Handle SHIFTED_MUL_VL.
(parse_address_main): Add an imm_shift_mode parameter.
(parse_address, parse_sve_address): Update accordingly.
(parse_operands): Handle MUL VL addressing modes.
2016-09-21 23:56:15 +08:00
|
|
|
|
/* Return true if VALUE is a multiple of ALIGN. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
static inline int
|
|
|
|
|
value_aligned_p (int64_t value, int align)
|
|
|
|
|
{
|
[AArch64][SVE 26/32] Add SVE MUL VL addressing modes
This patch adds support for addresses of the form:
[<base>, #<offset>, MUL VL]
This involves adding a new AARCH64_MOD_MUL_VL modifier, which is
why I split it out from the other addressing modes.
For LD2, LD3 and LD4, the offset must be a multiple of the structure
size, so for LD3 the possible values are 0, 3, 6, .... The patch
therefore extends value_aligned_p to handle non-power-of-2 alignments.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4xVL): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_S4x2xVL, AARCH64_OPND_SVE_ADDR_RI_S4x3xVL)
(AARCH64_OPND_SVE_ADDR_RI_S4x4xVL, AARCH64_OPND_SVE_ADDR_RI_S6xVL)
(AARCH64_OPND_SVE_ADDR_RI_S9xVL): Likewise.
(AARCH64_MOD_MUL_VL): New aarch64_modifier_kind.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new MUL VL
operands.
* aarch64-opc.c (aarch64_operand_modifiers): Initialize
the AARCH64_MOD_MUL_VL entry.
(value_aligned_p): Cope with non-power-of-two alignments.
(operand_general_constraint_met_p): Handle the new MUL VL addresses.
(print_immediate_offset_address): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_s4xvl, ins_sve_addr_ri_s6xvl)
(ins_sve_addr_ri_s9xvl): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_s4xvl): New function.
(aarch64_ins_sve_addr_ri_s6xvl): Likewise.
(aarch64_ins_sve_addr_ri_s9xvl): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4xvl, ext_sve_addr_ri_s6xvl)
(ext_sve_addr_ri_s9xvl): New extractors.
* aarch64-dis.c (aarch64_ext_sve_addr_reg_mul_vl): New function.
(aarch64_ext_sve_addr_ri_s4xvl): Likewise.
(aarch64_ext_sve_addr_ri_s6xvl): Likewise.
(aarch64_ext_sve_addr_ri_s9xvl): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_NONE, SHIFTED_MUL_VL): New
parse_shift_modes.
(parse_shift): Handle SHIFTED_MUL_VL.
(parse_address_main): Add an imm_shift_mode parameter.
(parse_address, parse_sve_address): Update accordingly.
(parse_operands): Handle MUL VL addressing modes.
2016-09-21 23:56:15 +08:00
|
|
|
|
return (value % align) == 0;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A signed value fits in a field. */
|
|
|
|
|
static inline int
|
|
|
|
|
value_fit_signed_field_p (int64_t value, unsigned width)
|
|
|
|
|
{
|
|
|
|
|
assert (width < 32);
|
|
|
|
|
if (width < sizeof (value) * 8)
|
|
|
|
|
{
|
2019-12-17 20:18:48 +08:00
|
|
|
|
int64_t lim = (uint64_t) 1 << (width - 1);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
if (value >= -lim && value < lim)
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* An unsigned value fits in a field. */
|
|
|
|
|
static inline int
|
|
|
|
|
value_fit_unsigned_field_p (int64_t value, unsigned width)
|
|
|
|
|
{
|
|
|
|
|
assert (width < 32);
|
|
|
|
|
if (width < sizeof (value) * 8)
|
|
|
|
|
{
|
2019-12-17 20:18:48 +08:00
|
|
|
|
int64_t lim = (uint64_t) 1 << width;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
if (value >= 0 && value < lim)
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return 1 if OPERAND is SP or WSP. */
|
|
|
|
|
int
|
|
|
|
|
aarch64_stack_pointer_p (const aarch64_opnd_info *operand)
|
|
|
|
|
{
|
|
|
|
|
return ((aarch64_get_operand_class (operand->type)
|
|
|
|
|
== AARCH64_OPND_CLASS_INT_REG)
|
|
|
|
|
&& operand_maybe_stack_pointer (aarch64_operands + operand->type)
|
|
|
|
|
&& operand->reg.regno == 31);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return 1 if OPERAND is XZR or WZP. */
|
|
|
|
|
int
|
|
|
|
|
aarch64_zero_register_p (const aarch64_opnd_info *operand)
|
|
|
|
|
{
|
|
|
|
|
return ((aarch64_get_operand_class (operand->type)
|
|
|
|
|
== AARCH64_OPND_CLASS_INT_REG)
|
|
|
|
|
&& !operand_maybe_stack_pointer (aarch64_operands + operand->type)
|
|
|
|
|
&& operand->reg.regno == 31);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return true if the operand *OPERAND that has the operand code
|
|
|
|
|
OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
|
|
|
|
|
qualified by the qualifier TARGET. */
|
|
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
|
operand_also_qualified_p (const struct aarch64_opnd_info *operand,
|
|
|
|
|
aarch64_opnd_qualifier_t target)
|
|
|
|
|
{
|
|
|
|
|
switch (operand->qualifier)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_QLF_W:
|
|
|
|
|
if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand))
|
|
|
|
|
return 1;
|
|
|
|
|
break;
|
|
|
|
|
case AARCH64_OPND_QLF_X:
|
|
|
|
|
if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand))
|
|
|
|
|
return 1;
|
|
|
|
|
break;
|
|
|
|
|
case AARCH64_OPND_QLF_WSP:
|
|
|
|
|
if (target == AARCH64_OPND_QLF_W
|
|
|
|
|
&& operand_maybe_stack_pointer (aarch64_operands + operand->type))
|
|
|
|
|
return 1;
|
|
|
|
|
break;
|
|
|
|
|
case AARCH64_OPND_QLF_SP:
|
|
|
|
|
if (target == AARCH64_OPND_QLF_X
|
|
|
|
|
&& operand_maybe_stack_pointer (aarch64_operands + operand->type))
|
|
|
|
|
return 1;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
|
|
|
|
|
for operand KNOWN_IDX, return the expected qualifier for operand IDX.
|
|
|
|
|
|
|
|
|
|
Return NIL if more than one expected qualifiers are found. */
|
|
|
|
|
|
|
|
|
|
aarch64_opnd_qualifier_t
|
|
|
|
|
aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list,
|
|
|
|
|
int idx,
|
|
|
|
|
const aarch64_opnd_qualifier_t known_qlf,
|
|
|
|
|
int known_idx)
|
|
|
|
|
{
|
|
|
|
|
int i, saved_i;
|
|
|
|
|
|
|
|
|
|
/* Special case.
|
|
|
|
|
|
|
|
|
|
When the known qualifier is NIL, we have to assume that there is only
|
|
|
|
|
one qualifier sequence in the *QSEQ_LIST and return the corresponding
|
|
|
|
|
qualifier directly. One scenario is that for instruction
|
|
|
|
|
PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
|
|
|
|
|
which has only one possible valid qualifier sequence
|
|
|
|
|
NIL, S_D
|
|
|
|
|
the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
|
|
|
|
|
determine the correct relocation type (i.e. LDST64_LO12) for PRFM.
|
|
|
|
|
|
|
|
|
|
Because the qualifier NIL has dual roles in the qualifier sequence:
|
|
|
|
|
it can mean no qualifier for the operand, or the qualifer sequence is
|
|
|
|
|
not in use (when all qualifiers in the sequence are NILs), we have to
|
|
|
|
|
handle this special case here. */
|
|
|
|
|
if (known_qlf == AARCH64_OPND_NIL)
|
|
|
|
|
{
|
|
|
|
|
assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL);
|
|
|
|
|
return qseq_list[0][idx];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
|
|
|
|
|
{
|
|
|
|
|
if (qseq_list[i][known_idx] == known_qlf)
|
|
|
|
|
{
|
|
|
|
|
if (saved_i != -1)
|
|
|
|
|
/* More than one sequences are found to have KNOWN_QLF at
|
|
|
|
|
KNOWN_IDX. */
|
|
|
|
|
return AARCH64_OPND_NIL;
|
|
|
|
|
saved_i = i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return qseq_list[saved_i][idx];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum operand_qualifier_kind
|
|
|
|
|
{
|
|
|
|
|
OQK_NIL,
|
|
|
|
|
OQK_OPD_VARIANT,
|
|
|
|
|
OQK_VALUE_IN_RANGE,
|
|
|
|
|
OQK_MISC,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Operand qualifier description. */
|
|
|
|
|
struct operand_qualifier_data
|
|
|
|
|
{
|
|
|
|
|
/* The usage of the three data fields depends on the qualifier kind. */
|
|
|
|
|
int data0;
|
|
|
|
|
int data1;
|
|
|
|
|
int data2;
|
|
|
|
|
/* Description. */
|
|
|
|
|
const char *desc;
|
|
|
|
|
/* Kind. */
|
|
|
|
|
enum operand_qualifier_kind kind;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Indexed by the operand qualifier enumerators. */
|
|
|
|
|
struct operand_qualifier_data aarch64_opnd_qualifiers[] =
|
|
|
|
|
{
|
|
|
|
|
{0, 0, 0, "NIL", OQK_NIL},
|
|
|
|
|
|
|
|
|
|
/* Operand variant qualifiers.
|
|
|
|
|
First 3 fields:
|
|
|
|
|
element size, number of elements and common value for encoding. */
|
|
|
|
|
|
|
|
|
|
{4, 1, 0x0, "w", OQK_OPD_VARIANT},
|
|
|
|
|
{8, 1, 0x1, "x", OQK_OPD_VARIANT},
|
|
|
|
|
{4, 1, 0x0, "wsp", OQK_OPD_VARIANT},
|
|
|
|
|
{8, 1, 0x1, "sp", OQK_OPD_VARIANT},
|
|
|
|
|
|
|
|
|
|
{1, 1, 0x0, "b", OQK_OPD_VARIANT},
|
|
|
|
|
{2, 1, 0x1, "h", OQK_OPD_VARIANT},
|
|
|
|
|
{4, 1, 0x2, "s", OQK_OPD_VARIANT},
|
|
|
|
|
{8, 1, 0x3, "d", OQK_OPD_VARIANT},
|
|
|
|
|
{16, 1, 0x4, "q", OQK_OPD_VARIANT},
|
AArch64: Fix error checking for SIMD udot (by element)
Committed on behalf of Matthew Malcomson:
The SIMD UDOT instruction assembly has an unusual operand that selects a single
32 bit element with the mnemonic 4B.
This unusual mnemonic is handled by a special operand qualifier and associated
qualifier data in `aarch64_opnd_qualifiers`.
The current qualifier data describes 4 1-byte elements with the structure
{1, 4, 0x0, "4b", OQK_OPD_VARIANT}
This makes sense, as the instruction does work on 4 1-byte elements, however
some logic in the `operand_general_constraint_met_p` makes assumptions about
the range of index allowed when selecting a SIMD_ELEMENT depending on element
size.
That function reasons that e.g. in order to select a byte-sized element in a 16
byte V register an index must allow selection of one of the 16 elements and
hence its range will be in [0,15].
This reasoning breaks with the above description of a 4 part selection of 1
byte elements and allows an index outside the valid [0,3] range, triggering an
assert later on in the program in `aarch64_ins_reglane`.
vshcmd: > echo 'udot v0.2s, v1.8b, v2.4b[4]' | ../src/binutils-build/gas/as-new -march=armv8.4-a
as-new: ../../binutils-gdb/opcodes/aarch64-asm.c:134: aarch64_ins_reglane: Assertion `reglane_index < 4' failed.
{standard input}: Assembler messages:
{standard input}:1: Internal error (Aborted).
Please report this bug.
This patch changes the operand qualifier data so that it describes a single
32 bit element.
{4, 1, 0x0, "4b", OQK_OPD_VARIANT}
Hence the calculation in `operand_general_constraint_met_p` provides the
correct answer and the usual error checking machinery is used.
vshcmd: > echo 'udot v0.2s, v1.8b, v2.4b[4]' | ../src/binutils-build/gas/as-new -march=armv8.4-a
{standard input}: Assembler messages:
{standard input}:1: Error: register element index out of range 0 to 3 at operand 3 -- `udot v0.2s,v1.8b,v2.4b[4]'
2018-10-17 01:49:36 +08:00
|
|
|
|
{4, 1, 0x0, "4b", OQK_OPD_VARIANT},
|
[binutils][aarch64] Bfloat16 enablement [2/X]
Hi,
This patch is part of a series that adds support for Armv8.6-A
(Matrix Multiply and BFloat16 extensions) to binutils.
This patch introduces the following BFloat16 instructions to the
aarch64 backend: bfdot, bfmmla, bfcvt, bfcvtnt, bfmlal[t/b],
bfcvtn2.
Committed on behalf of Mihail Ionescu.
gas/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
2019-11-07 Matthew Malcomson <matthew.malcomson@arm.com>
* config/tc-aarch64.c (vectype_to_qualifier): Special case the
S_2H operand qualifier.
* doc/c-aarch64.texi: Document bf16 and bf16mmla4 extensions.
* testsuite/gas/aarch64/bfloat16.d: New test.
* testsuite/gas/aarch64/bfloat16.s: New test.
* testsuite/gas/aarch64/illegal-bfloat16.d: New test.
* testsuite/gas/aarch64/illegal-bfloat16.l: New test.
* testsuite/gas/aarch64/illegal-bfloat16.s: New test.
* testsuite/gas/aarch64/sve-bfloat-movprfx.s: New test.
* testsuite/gas/aarch64/sve-bfloat-movprfx.d: New test.
include/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
2019-11-07 Matthew Malcomson <matthew.malcomson@arm.com>
* opcode/aarch64.h (AARCH64_FEATURE_BFLOAT16): New feature macros.
(AARCH64_ARCH_V8_6): Include BFloat16 feature macros.
(enum aarch64_opnd_qualifier): Introduce new operand qualifier
AARCH64_OPND_QLF_S_2H.
(enum aarch64_insn_class): Introduce new class "bfloat16".
(BFLOAT16_SVE_INSNC): New feature set for bfloat16
instructions to support the movprfx constraint.
opcodes/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
2019-11-07 Matthew Malcomson <matthew.malcomson@arm.com>
* aarch64-asm.c (aarch64_ins_reglane): Use AARCH64_OPND_QLF_S_2H
in reglane special case.
* aarch64-dis-2.c (aarch64_opcode_lookup_1,
aarch64_find_next_opcode): Account for new instructions.
* aarch64-dis.c (aarch64_ext_reglane): Use AARCH64_OPND_QLF_S_2H
in reglane special case.
* aarch64-opc.c (struct operand_qualifier_data): Add data for
new AARCH64_OPND_QLF_S_2H qualifier.
* aarch64-tbl.h (QL_BFDOT QL_BFDOT64, QL_BFDOT64I, QL_BFMMLA2,
QL_BFCVT64, QL_BFCVTN64, QL_BFCVTN2_64): New qualifiers.
(aarch64_feature_bfloat16, aarch64_feature_bfloat16_sve,
aarch64_feature_bfloat16_bfmmla4): New feature sets.
(BFLOAT_SVE, BFLOAT): New feature set macros.
(BFLOAT_SVE_INSN, BFLOAT_BFMMLA4_INSN, BFLOAT_INSN): New macros
to define BFloat16 instructions.
(aarch64_opcode_table): Define new instructions bfdot,
bfmmla, bfcvt, bfcvtnt, bfdot, bfdot, bfcvtn, bfmlal[b/t]
bfcvtn2, bfcvt.
Regression tested on aarch64-elf.
Is it ok for trunk?
Regards,
Mihail
2019-11-08 00:38:59 +08:00
|
|
|
|
{4, 1, 0x0, "2h", OQK_OPD_VARIANT},
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
2017-12-19 20:04:13 +08:00
|
|
|
|
{1, 4, 0x0, "4b", OQK_OPD_VARIANT},
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{1, 8, 0x0, "8b", OQK_OPD_VARIANT},
|
|
|
|
|
{1, 16, 0x1, "16b", OQK_OPD_VARIANT},
|
2015-12-15 01:27:52 +08:00
|
|
|
|
{2, 2, 0x0, "2h", OQK_OPD_VARIANT},
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{2, 4, 0x2, "4h", OQK_OPD_VARIANT},
|
|
|
|
|
{2, 8, 0x3, "8h", OQK_OPD_VARIANT},
|
|
|
|
|
{4, 2, 0x4, "2s", OQK_OPD_VARIANT},
|
|
|
|
|
{4, 4, 0x5, "4s", OQK_OPD_VARIANT},
|
|
|
|
|
{8, 1, 0x6, "1d", OQK_OPD_VARIANT},
|
|
|
|
|
{8, 2, 0x7, "2d", OQK_OPD_VARIANT},
|
|
|
|
|
{16, 1, 0x8, "1q", OQK_OPD_VARIANT},
|
|
|
|
|
|
2016-09-21 23:54:30 +08:00
|
|
|
|
{0, 0, 0, "z", OQK_OPD_VARIANT},
|
|
|
|
|
{0, 0, 0, "m", OQK_OPD_VARIANT},
|
|
|
|
|
|
[BINUTILS, AARCH64, 4/8] Add Tag setting instructions in Memory Tagging Extension
This patch is part of the patch series to add support for ARMv8.5-A
Memory Tagging Extensions which is an optional extension to
ARMv8.5-A and is enabled using the +memtag command line option.
This patch add support to the Tag setting instructions from
MTE which consists of the following instructions:
- STG [<Xn|SP>, #<simm>]
- STG [<Xn|SP>, #<simm>]!
- STG [<Xn|SP>], #<simm>
- STZG [<Xn|SP>, #<simm>]
- STZG [<Xn|SP>, #<simm>]!
- STZG [<Xn|SP>], #<simm>
- ST2G [<Xn|SP>, #<simm>]
- ST2G [<Xn|SP>, #<simm>]!
- ST2G [<Xn|SP>], #<simm>
- STZ2G [<Xn|SP>, #<simm>]
- STZ2G [<Xn|SP>, #<simm>]!
- STZ2G [<Xn|SP>], #<simm>
- STGP <Xt>, <Xt2>, [<Xn|SP>, #<imm>]
- STGP <Xt>, <Xt2>, [<Xn|SP>, #<imm>]!
- STGP <Xt>, <Xt2>, [<Xn|SP>], #<imm>
where
<Xn|SP> : Is the 64-bit GPR or Stack pointer.
<simm> : Is the optional signed immediate offset, a multiple of 16
in the range -4096 to 4080, defaulting to 0.
*** include/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (aarch64_opnd): Add AARCH64_OPND_ADDR_SIMM11
and AARCH64_OPND_ADDR_SIMM13.
(aarch64_opnd_qualifier): Add new AARCH64_OPND_QLF_imm_tag.
*** opcodes/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.c (aarch64_opnd_qualifiers): Add new data
for AARCH64_OPND_QLF_imm_tag.
(operand_general_constraint_met_p): Add case for
AARCH64_OPND_ADDR_SIMM11 and AARCH64_OPND_ADDR_SIMM13.
(aarch64_print_operand): Likewise.
* aarch64-tbl.h (QL_LDST_AT, QL_STGP): New.
(aarch64_opcode_table): Add stg, stzg, st2g, stz2g and stgp
for both offset and pre/post indexed versions.
(AARCH64_OPERANDS): Define ADDR_SIMM11 and ADDR_SIMM13.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
*** gas/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_operands): Add switch case for
AARCH64_OPND_ADDR_SIMM11 and AARCH64_OPND_ADDR_SIMM13.
(fix_insn): Likewise.
(warn_unpredictable_ldst): Exempt STGP.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: Add tests for stg, st2g,
stzg, stz2g and stgp.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
2018-11-12 21:09:55 +08:00
|
|
|
|
/* Qualifier for scaled immediate for Tag granule (stg,st2g,etc). */
|
|
|
|
|
{16, 0, 0, "tag", OQK_OPD_VARIANT},
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Qualifiers constraining the value range.
|
|
|
|
|
First 3 fields:
|
|
|
|
|
Lower bound, higher bound, unused. */
|
|
|
|
|
|
2016-12-13 20:37:18 +08:00
|
|
|
|
{0, 15, 0, "CR", OQK_VALUE_IN_RANGE},
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE},
|
|
|
|
|
{0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE},
|
|
|
|
|
{0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE},
|
|
|
|
|
{0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE},
|
|
|
|
|
{1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE},
|
|
|
|
|
{1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE},
|
|
|
|
|
|
|
|
|
|
/* Qualifiers for miscellaneous purpose.
|
|
|
|
|
First 3 fields:
|
|
|
|
|
unused, unused and unused. */
|
|
|
|
|
|
|
|
|
|
{0, 0, 0, "lsl", 0},
|
|
|
|
|
{0, 0, 0, "msl", 0},
|
|
|
|
|
|
|
|
|
|
{0, 0, 0, "retrieving", 0},
|
|
|
|
|
};
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
static inline bool
|
2012-08-13 22:52:54 +08:00
|
|
|
|
operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
static inline bool
|
2012-08-13 22:52:54 +08:00
|
|
|
|
qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const char*
|
|
|
|
|
aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].desc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given an operand qualifier, return the expected data element size
|
|
|
|
|
of a qualified operand. */
|
|
|
|
|
unsigned char
|
|
|
|
|
aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
assert (operand_variant_qualifier_p (qualifier));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].data0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unsigned char
|
|
|
|
|
aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
assert (operand_variant_qualifier_p (qualifier));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].data1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
aarch64_insn
|
|
|
|
|
aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
assert (operand_variant_qualifier_p (qualifier));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].data2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
get_lower_bound (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
assert (qualifier_value_in_range_constraint_p (qualifier));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].data0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
get_upper_bound (aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
assert (qualifier_value_in_range_constraint_p (qualifier));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return aarch64_opnd_qualifiers[qualifier].data1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG_AARCH64
|
|
|
|
|
void
|
|
|
|
|
aarch64_verbose (const char *str, ...)
|
|
|
|
|
{
|
|
|
|
|
va_list ap;
|
|
|
|
|
va_start (ap, str);
|
|
|
|
|
printf ("#### ");
|
|
|
|
|
vprintf (str, ap);
|
|
|
|
|
printf ("\n");
|
|
|
|
|
va_end (ap);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
printf ("#### \t");
|
|
|
|
|
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier)
|
|
|
|
|
printf ("%s,", aarch64_get_qualifier_name (*qualifier));
|
|
|
|
|
printf ("\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
dump_match_qualifiers (const struct aarch64_opnd_info *opnd,
|
|
|
|
|
const aarch64_opnd_qualifier_t *qualifier)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM];
|
|
|
|
|
|
|
|
|
|
aarch64_verbose ("dump_match_qualifiers:");
|
|
|
|
|
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
|
|
|
|
curr[i] = opnd[i].qualifier;
|
|
|
|
|
dump_qualifier_sequence (curr);
|
|
|
|
|
aarch64_verbose ("against");
|
|
|
|
|
dump_qualifier_sequence (qualifier);
|
|
|
|
|
}
|
|
|
|
|
#endif /* DEBUG_AARCH64 */
|
|
|
|
|
|
2018-10-04 01:38:42 +08:00
|
|
|
|
/* This function checks if the given instruction INSN is a destructive
|
|
|
|
|
instruction based on the usage of the registers. It does not recognize
|
|
|
|
|
unary destructive instructions. */
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
2018-10-04 01:38:42 +08:00
|
|
|
|
aarch64_is_destructive_by_operands (const aarch64_opcode *opcode)
|
|
|
|
|
{
|
|
|
|
|
int i = 0;
|
|
|
|
|
const enum aarch64_opnd *opnds = opcode->operands;
|
|
|
|
|
|
|
|
|
|
if (opnds[0] == AARCH64_OPND_NIL)
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return false;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
|
|
|
|
|
while (opnds[++i] != AARCH64_OPND_NIL)
|
|
|
|
|
if (opnds[i] == opnds[0])
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return false;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* TODO improve this, we can have an extra field at the runtime to
|
|
|
|
|
store the number of operands rather than calculating it every time. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
aarch64_num_of_operands (const aarch64_opcode *opcode)
|
|
|
|
|
{
|
|
|
|
|
int i = 0;
|
|
|
|
|
const enum aarch64_opnd *opnds = opcode->operands;
|
|
|
|
|
while (opnds[i++] != AARCH64_OPND_NIL)
|
|
|
|
|
;
|
|
|
|
|
--i;
|
|
|
|
|
assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM);
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
|
|
|
|
|
If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.
|
|
|
|
|
|
2023-03-30 18:09:08 +08:00
|
|
|
|
Store the smallest number of non-matching qualifiers in *INVALID_COUNT.
|
|
|
|
|
This is always 0 if the function succeeds.
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
N.B. on the entry, it is very likely that only some operands in *INST
|
|
|
|
|
have had their qualifiers been established.
|
|
|
|
|
|
|
|
|
|
If STOP_AT is not -1, the function will only try to match
|
|
|
|
|
the qualifier sequence for operands before and including the operand
|
|
|
|
|
of index STOP_AT; and on success *RET will only be filled with the first
|
|
|
|
|
(STOP_AT+1) qualifiers.
|
|
|
|
|
|
|
|
|
|
A couple examples of the matching algorithm:
|
|
|
|
|
|
|
|
|
|
X,W,NIL should match
|
|
|
|
|
X,W,NIL
|
|
|
|
|
|
|
|
|
|
NIL,NIL should match
|
|
|
|
|
X ,NIL
|
|
|
|
|
|
|
|
|
|
Apart from serving the main encoding routine, this can also be called
|
|
|
|
|
during or after the operand decoding. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
aarch64_find_best_match (const aarch64_inst *inst,
|
|
|
|
|
const aarch64_opnd_qualifier_seq_t *qualifiers_list,
|
2023-03-30 18:09:08 +08:00
|
|
|
|
int stop_at, aarch64_opnd_qualifier_t *ret,
|
|
|
|
|
int *invalid_count)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2023-03-30 18:09:08 +08:00
|
|
|
|
int i, num_opnds, invalid, min_invalid;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const aarch64_opnd_qualifier_t *qualifiers;
|
|
|
|
|
|
|
|
|
|
num_opnds = aarch64_num_of_operands (inst->opcode);
|
|
|
|
|
if (num_opnds == 0)
|
|
|
|
|
{
|
|
|
|
|
DEBUG_TRACE ("SUCCEED: no operand");
|
2023-03-30 18:09:08 +08:00
|
|
|
|
*invalid_count = 0;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (stop_at < 0 || stop_at >= num_opnds)
|
|
|
|
|
stop_at = num_opnds - 1;
|
|
|
|
|
|
|
|
|
|
/* For each pattern. */
|
2023-03-30 18:09:08 +08:00
|
|
|
|
min_invalid = num_opnds;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
|
|
|
|
|
{
|
|
|
|
|
int j;
|
|
|
|
|
qualifiers = *qualifiers_list;
|
|
|
|
|
|
|
|
|
|
/* Start as positive. */
|
2023-03-30 18:09:08 +08:00
|
|
|
|
invalid = 0;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("%d", i);
|
|
|
|
|
#ifdef DEBUG_AARCH64
|
|
|
|
|
if (debug_dump)
|
|
|
|
|
dump_match_qualifiers (inst->operands, qualifiers);
|
|
|
|
|
#endif
|
|
|
|
|
|
2022-09-30 19:34:59 +08:00
|
|
|
|
/* The first entry should be taken literally, even if it's an empty
|
|
|
|
|
qualifier sequence. (This matters for strict testing.) In other
|
|
|
|
|
positions an empty sequence acts as a terminator. */
|
|
|
|
|
if (i > 0 && empty_qualifier_sequence_p (qualifiers))
|
2023-03-30 18:09:08 +08:00
|
|
|
|
break;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers)
|
|
|
|
|
{
|
2022-09-30 19:34:59 +08:00
|
|
|
|
if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL
|
|
|
|
|
&& !(inst->opcode->flags & F_STRICT))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
/* Either the operand does not have qualifier, or the qualifier
|
|
|
|
|
for the operand needs to be deduced from the qualifier
|
|
|
|
|
sequence.
|
|
|
|
|
In the latter case, any constraint checking related with
|
|
|
|
|
the obtained qualifier should be done later in
|
|
|
|
|
operand_general_constraint_met_p. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else if (*qualifiers != inst->operands[j].qualifier)
|
|
|
|
|
{
|
|
|
|
|
/* Unless the target qualifier can also qualify the operand
|
|
|
|
|
(which has already had a non-nil qualifier), non-equal
|
|
|
|
|
qualifiers are generally un-matched. */
|
|
|
|
|
if (operand_also_qualified_p (inst->operands + j, *qualifiers))
|
|
|
|
|
continue;
|
|
|
|
|
else
|
2023-03-30 18:09:08 +08:00
|
|
|
|
invalid += 1;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
continue; /* Equal qualifiers are certainly matched. */
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:08 +08:00
|
|
|
|
if (min_invalid > invalid)
|
|
|
|
|
min_invalid = invalid;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Qualifiers established. */
|
2023-03-30 18:09:08 +08:00
|
|
|
|
if (min_invalid == 0)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:08 +08:00
|
|
|
|
*invalid_count = min_invalid;
|
|
|
|
|
if (min_invalid == 0)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
/* Fill the result in *RET. */
|
|
|
|
|
int j;
|
|
|
|
|
qualifiers = *qualifiers_list;
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("complete qualifiers using list %d", i);
|
|
|
|
|
#ifdef DEBUG_AARCH64
|
|
|
|
|
if (debug_dump)
|
|
|
|
|
dump_qualifier_sequence (qualifiers);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
for (j = 0; j <= stop_at; ++j, ++qualifiers)
|
|
|
|
|
ret[j] = *qualifiers;
|
|
|
|
|
for (; j < AARCH64_MAX_OPND_NUM; ++j)
|
|
|
|
|
ret[j] = AARCH64_OPND_QLF_NIL;
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("SUCCESS");
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("FAIL");
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Operand qualifier matching and resolving.
|
|
|
|
|
|
|
|
|
|
Return 1 if the operand qualifier(s) in *INST match one of the qualifier
|
|
|
|
|
sequences in INST->OPCODE->qualifiers_list; otherwise return 0.
|
|
|
|
|
|
2023-03-30 18:09:08 +08:00
|
|
|
|
Store the smallest number of non-matching qualifiers in *INVALID_COUNT.
|
|
|
|
|
This is always 0 if the function succeeds.
|
|
|
|
|
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
if UPDATE_P, update the qualifier(s) in *INST after the matching
|
2012-08-13 22:52:54 +08:00
|
|
|
|
succeeds. */
|
|
|
|
|
|
|
|
|
|
static int
|
2023-03-30 18:09:08 +08:00
|
|
|
|
match_operands_qualifier (aarch64_inst *inst, bool update_p,
|
|
|
|
|
int *invalid_count)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2022-09-30 19:34:59 +08:00
|
|
|
|
int i;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
aarch64_opnd_qualifier_seq_t qualifiers;
|
|
|
|
|
|
|
|
|
|
if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1,
|
2023-03-30 18:09:08 +08:00
|
|
|
|
qualifiers, invalid_count))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
DEBUG_TRACE ("matching FAIL");
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Update the qualifiers. */
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
if (update_p)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
|
|
|
|
{
|
|
|
|
|
if (inst->opcode->operands[i] == AARCH64_OPND_NIL)
|
|
|
|
|
break;
|
|
|
|
|
DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i],
|
|
|
|
|
"update %s with %s for operand %d",
|
|
|
|
|
aarch64_get_qualifier_name (inst->operands[i].qualifier),
|
|
|
|
|
aarch64_get_qualifier_name (qualifiers[i]), i);
|
|
|
|
|
inst->operands[i].qualifier = qualifiers[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("matching SUCCESS");
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return TRUE if VALUE is a wide constant that can be moved into a general
|
|
|
|
|
register by MOVZ.
|
|
|
|
|
|
|
|
|
|
IS32 indicates whether value is a 32-bit immediate or not.
|
|
|
|
|
If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
|
|
|
|
|
amount will be returned in *SHIFT_AMOUNT. */
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
2019-12-17 20:18:48 +08:00
|
|
|
|
aarch64_wide_constant_p (uint64_t value, int is32, unsigned int *shift_amount)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
int amount;
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
|
|
|
|
|
|
|
|
|
|
if (is32)
|
|
|
|
|
{
|
|
|
|
|
/* Allow all zeros or all ones in top 32-bits, so that
|
|
|
|
|
32-bit constant expressions like ~0x80000000 are
|
|
|
|
|
permitted. */
|
2019-12-17 20:18:48 +08:00
|
|
|
|
if (value >> 32 != 0 && value >> 32 != 0xffffffff)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Immediate out of range. */
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return false;
|
2019-12-17 20:18:48 +08:00
|
|
|
|
value &= 0xffffffff;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* first, try movz then movn */
|
|
|
|
|
amount = -1;
|
2019-12-17 20:18:48 +08:00
|
|
|
|
if ((value & ((uint64_t) 0xffff << 0)) == value)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
amount = 0;
|
2019-12-17 20:18:48 +08:00
|
|
|
|
else if ((value & ((uint64_t) 0xffff << 16)) == value)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
amount = 16;
|
2019-12-17 20:18:48 +08:00
|
|
|
|
else if (!is32 && (value & ((uint64_t) 0xffff << 32)) == value)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
amount = 32;
|
2019-12-17 20:18:48 +08:00
|
|
|
|
else if (!is32 && (value & ((uint64_t) 0xffff << 48)) == value)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
amount = 48;
|
|
|
|
|
|
|
|
|
|
if (amount == -1)
|
|
|
|
|
{
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
DEBUG_TRACE ("exit false with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
|
|
|
|
|
return false;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (shift_amount != NULL)
|
|
|
|
|
*shift_amount = amount;
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
DEBUG_TRACE ("exit true with amount %d", amount);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return true;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Build the accepted values for immediate logical SIMD instructions.
|
|
|
|
|
|
|
|
|
|
The standard encodings of the immediate value are:
|
|
|
|
|
N imms immr SIMD size R S
|
|
|
|
|
1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss)
|
|
|
|
|
0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss)
|
|
|
|
|
0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss)
|
|
|
|
|
0 110sss 000rrr 8 UInt(rrr) UInt(sss)
|
|
|
|
|
0 1110ss 0000rr 4 UInt(rr) UInt(ss)
|
|
|
|
|
0 11110s 00000r 2 UInt(r) UInt(s)
|
|
|
|
|
where all-ones value of S is reserved.
|
|
|
|
|
|
|
|
|
|
Let's call E the SIMD size.
|
|
|
|
|
|
|
|
|
|
The immediate value is: S+1 bits '1' rotated to the right by R.
|
|
|
|
|
|
|
|
|
|
The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
|
|
|
|
|
(remember S != E - 1). */
|
|
|
|
|
|
|
|
|
|
#define TOTAL_IMM_NB 5334
|
|
|
|
|
|
|
|
|
|
typedef struct
|
|
|
|
|
{
|
|
|
|
|
uint64_t imm;
|
|
|
|
|
aarch64_insn encoding;
|
|
|
|
|
} simd_imm_encoding;
|
|
|
|
|
|
|
|
|
|
static simd_imm_encoding simd_immediates[TOTAL_IMM_NB];
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
simd_imm_encoding_cmp(const void *i1, const void *i2)
|
|
|
|
|
{
|
|
|
|
|
const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1;
|
|
|
|
|
const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2;
|
|
|
|
|
|
|
|
|
|
if (imm1->imm < imm2->imm)
|
|
|
|
|
return -1;
|
|
|
|
|
if (imm1->imm > imm2->imm)
|
|
|
|
|
return +1;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* immediate bitfield standard encoding
|
|
|
|
|
imm13<12> imm13<5:0> imm13<11:6> SIMD size R S
|
|
|
|
|
1 ssssss rrrrrr 64 rrrrrr ssssss
|
|
|
|
|
0 0sssss 0rrrrr 32 rrrrr sssss
|
|
|
|
|
0 10ssss 00rrrr 16 rrrr ssss
|
|
|
|
|
0 110sss 000rrr 8 rrr sss
|
|
|
|
|
0 1110ss 0000rr 4 rr ss
|
|
|
|
|
0 11110s 00000r 2 r s */
|
|
|
|
|
static inline int
|
|
|
|
|
encode_immediate_bitfield (int is64, uint32_t s, uint32_t r)
|
|
|
|
|
{
|
|
|
|
|
return (is64 << 12) | (r << 6) | s;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
build_immediate_table (void)
|
|
|
|
|
{
|
|
|
|
|
uint32_t log_e, e, s, r, s_mask;
|
|
|
|
|
uint64_t mask, imm;
|
|
|
|
|
int nb_imms;
|
|
|
|
|
int is64;
|
|
|
|
|
|
|
|
|
|
nb_imms = 0;
|
|
|
|
|
for (log_e = 1; log_e <= 6; log_e++)
|
|
|
|
|
{
|
|
|
|
|
/* Get element size. */
|
|
|
|
|
e = 1u << log_e;
|
|
|
|
|
if (log_e == 6)
|
|
|
|
|
{
|
|
|
|
|
is64 = 1;
|
|
|
|
|
mask = 0xffffffffffffffffull;
|
|
|
|
|
s_mask = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
is64 = 0;
|
|
|
|
|
mask = (1ull << e) - 1;
|
|
|
|
|
/* log_e s_mask
|
|
|
|
|
1 ((1 << 4) - 1) << 2 = 111100
|
|
|
|
|
2 ((1 << 3) - 1) << 3 = 111000
|
|
|
|
|
3 ((1 << 2) - 1) << 4 = 110000
|
|
|
|
|
4 ((1 << 1) - 1) << 5 = 100000
|
|
|
|
|
5 ((1 << 0) - 1) << 6 = 000000 */
|
|
|
|
|
s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1);
|
|
|
|
|
}
|
|
|
|
|
for (s = 0; s < e - 1; s++)
|
|
|
|
|
for (r = 0; r < e; r++)
|
|
|
|
|
{
|
|
|
|
|
/* s+1 consecutive bits to 1 (s < 63) */
|
|
|
|
|
imm = (1ull << (s + 1)) - 1;
|
|
|
|
|
/* rotate right by r */
|
|
|
|
|
if (r != 0)
|
|
|
|
|
imm = (imm >> r) | ((imm << (e - r)) & mask);
|
|
|
|
|
/* replicate the constant depending on SIMD size */
|
|
|
|
|
switch (log_e)
|
|
|
|
|
{
|
|
|
|
|
case 1: imm = (imm << 2) | imm;
|
2016-10-05 15:47:02 +08:00
|
|
|
|
/* Fall through. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case 2: imm = (imm << 4) | imm;
|
2016-10-05 15:47:02 +08:00
|
|
|
|
/* Fall through. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case 3: imm = (imm << 8) | imm;
|
2016-10-05 15:47:02 +08:00
|
|
|
|
/* Fall through. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case 4: imm = (imm << 16) | imm;
|
2016-10-05 15:47:02 +08:00
|
|
|
|
/* Fall through. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case 5: imm = (imm << 32) | imm;
|
2016-10-05 15:47:02 +08:00
|
|
|
|
/* Fall through. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case 6: break;
|
|
|
|
|
default: abort ();
|
|
|
|
|
}
|
|
|
|
|
simd_immediates[nb_imms].imm = imm;
|
|
|
|
|
simd_immediates[nb_imms].encoding =
|
|
|
|
|
encode_immediate_bitfield(is64, s | s_mask, r);
|
|
|
|
|
nb_imms++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
assert (nb_imms == TOTAL_IMM_NB);
|
|
|
|
|
qsort(simd_immediates, nb_imms,
|
|
|
|
|
sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
|
|
|
|
|
be accepted by logical (immediate) instructions
|
|
|
|
|
e.g. ORR <Xd|SP>, <Xn>, #<imm>.
|
|
|
|
|
|
2016-09-21 23:51:09 +08:00
|
|
|
|
ESIZE is the number of bytes in the decoded immediate value.
|
2012-08-13 22:52:54 +08:00
|
|
|
|
If ENCODING is not NULL, on the return of TRUE, the standard encoding for
|
|
|
|
|
VALUE will be returned in *ENCODING. */
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
2016-09-21 23:51:09 +08:00
|
|
|
|
aarch64_logical_immediate_p (uint64_t value, int esize, aarch64_insn *encoding)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
simd_imm_encoding imm_enc;
|
|
|
|
|
const simd_imm_encoding *imm_encoding;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
static bool initialized = false;
|
2016-09-21 23:51:09 +08:00
|
|
|
|
uint64_t upper;
|
|
|
|
|
int i;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
2017-04-24 18:55:44 +08:00
|
|
|
|
DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), esize: %d", value,
|
|
|
|
|
value, esize);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
2017-05-18 13:17:40 +08:00
|
|
|
|
if (!initialized)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
build_immediate_table ();
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
initialized = true;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
2016-09-21 23:51:09 +08:00
|
|
|
|
/* Allow all zeros or all ones in top bits, so that
|
|
|
|
|
constant expressions like ~1 are permitted. */
|
|
|
|
|
upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
|
|
|
|
|
if ((value & ~upper) != value && (value | upper) != value)
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return false;
|
2013-08-28 18:25:36 +08:00
|
|
|
|
|
2016-09-21 23:51:09 +08:00
|
|
|
|
/* Replicate to a full 64-bit value. */
|
|
|
|
|
value &= ~upper;
|
|
|
|
|
for (i = esize * 8; i < 64; i *= 2)
|
|
|
|
|
value |= (value << i);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
imm_enc.imm = value;
|
|
|
|
|
imm_encoding = (const simd_imm_encoding *)
|
|
|
|
|
bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB,
|
|
|
|
|
sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
|
|
|
|
|
if (imm_encoding == NULL)
|
|
|
|
|
{
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
DEBUG_TRACE ("exit with false");
|
|
|
|
|
return false;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
if (encoding != NULL)
|
|
|
|
|
*encoding = imm_encoding->encoding;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
DEBUG_TRACE ("exit with true");
|
|
|
|
|
return true;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If 64-bit immediate IMM is in the format of
|
|
|
|
|
"aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
|
|
|
|
|
where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
|
|
|
|
|
of value "abcdefgh". Otherwise return -1. */
|
|
|
|
|
int
|
|
|
|
|
aarch64_shrink_expanded_imm8 (uint64_t imm)
|
|
|
|
|
{
|
|
|
|
|
int i, ret;
|
|
|
|
|
uint32_t byte;
|
|
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
|
{
|
|
|
|
|
byte = (imm >> (8 * i)) & 0xff;
|
|
|
|
|
if (byte == 0xff)
|
|
|
|
|
ret |= 1 << i;
|
|
|
|
|
else if (byte != 0x00)
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Utility inline functions for operand_general_constraint_met_p. */
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
set_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
enum aarch64_operand_error_kind kind, int idx,
|
|
|
|
|
const char* error)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
mismatch_detail->kind = kind;
|
|
|
|
|
mismatch_detail->index = idx;
|
|
|
|
|
mismatch_detail->error = error;
|
|
|
|
|
}
|
|
|
|
|
|
2013-11-06 04:46:24 +08:00
|
|
|
|
static inline void
|
|
|
|
|
set_syntax_error (aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
const char* error)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error);
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:07 +08:00
|
|
|
|
static inline void
|
|
|
|
|
set_invalid_regno_error (aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
const char *prefix, int lower_bound, int upper_bound)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_INVALID_REGNO, idx, NULL);
|
|
|
|
|
mismatch_detail->data[0].s = prefix;
|
|
|
|
|
mismatch_detail->data[1].i = lower_bound;
|
|
|
|
|
mismatch_detail->data[2].i = upper_bound;
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
static inline void
|
|
|
|
|
set_out_of_range_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int lower_bound, int upper_bound,
|
|
|
|
|
const char* error)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error);
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
mismatch_detail->data[0].i = lower_bound;
|
|
|
|
|
mismatch_detail->data[1].i = upper_bound;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int lower_bound, int upper_bound)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
|
|
|
|
|
_("immediate value"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int lower_bound, int upper_bound)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
|
|
|
|
|
_("immediate offset"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int lower_bound, int upper_bound)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
|
|
|
|
|
_("register number"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int lower_bound, int upper_bound)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
|
|
|
|
|
_("register element index"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int lower_bound, int upper_bound)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
|
|
|
|
|
_("shift amount"));
|
|
|
|
|
}
|
|
|
|
|
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
/* Report that the MUL modifier in operand IDX should be in the range
|
|
|
|
|
[LOWER_BOUND, UPPER_BOUND]. */
|
|
|
|
|
static inline void
|
|
|
|
|
set_multiplier_out_of_range_error (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int lower_bound, int upper_bound)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
|
|
|
|
|
_("multiplier"));
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
static inline void
|
|
|
|
|
set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
int alignment)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL);
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
mismatch_detail->data[0].i = alignment;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
2023-03-30 18:09:10 +08:00
|
|
|
|
set_reg_list_length_error (aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
int expected_num)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
2023-03-30 18:09:10 +08:00
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_REG_LIST_LENGTH, idx, NULL);
|
|
|
|
|
mismatch_detail->data[0].i = 1 << expected_num;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
set_reg_list_stride_error (aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
int expected_num)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_REG_LIST_STRIDE, idx, NULL);
|
2023-03-30 18:09:08 +08:00
|
|
|
|
mismatch_detail->data[0].i = 1 << expected_num;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:11 +08:00
|
|
|
|
static inline void
|
|
|
|
|
set_invalid_vg_size (aarch64_operand_error *mismatch_detail,
|
|
|
|
|
int idx, int expected)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_INVALID_VG_SIZE, idx, NULL);
|
|
|
|
|
mismatch_detail->data[0].i = expected;
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
static inline void
|
|
|
|
|
set_other_error (aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
const char* error)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail == NULL)
|
|
|
|
|
return;
|
|
|
|
|
set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error);
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:07 +08:00
|
|
|
|
/* Check that indexed register operand OPND has a register in the range
|
|
|
|
|
[MIN_REGNO, MAX_REGNO] and an index in the range [MIN_INDEX, MAX_INDEX].
|
|
|
|
|
PREFIX is the register prefix, such as "z" for SVE vector registers. */
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
check_reglane (const aarch64_opnd_info *opnd,
|
|
|
|
|
aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
const char *prefix, int min_regno, int max_regno,
|
|
|
|
|
int min_index, int max_index)
|
|
|
|
|
{
|
|
|
|
|
if (!value_in_range_p (opnd->reglane.regno, min_regno, max_regno))
|
|
|
|
|
{
|
|
|
|
|
set_invalid_regno_error (mismatch_detail, idx, prefix, min_regno,
|
|
|
|
|
max_regno);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
if (!value_in_range_p (opnd->reglane.index, min_index, max_index))
|
|
|
|
|
{
|
|
|
|
|
set_elem_idx_out_of_range_error (mismatch_detail, idx, min_index,
|
|
|
|
|
max_index);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:10 +08:00
|
|
|
|
/* Check that register list operand OPND has NUM_REGS registers and a
|
|
|
|
|
register stride of STRIDE. */
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
check_reglist (const aarch64_opnd_info *opnd,
|
|
|
|
|
aarch64_operand_error *mismatch_detail, int idx,
|
|
|
|
|
int num_regs, int stride)
|
|
|
|
|
{
|
|
|
|
|
if (opnd->reglist.num_regs != num_regs)
|
|
|
|
|
{
|
|
|
|
|
set_reg_list_length_error (mismatch_detail, idx, num_regs);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
if (opnd->reglist.stride != stride)
|
|
|
|
|
{
|
|
|
|
|
set_reg_list_stride_error (mismatch_detail, idx, stride);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:05 +08:00
|
|
|
|
/* Check that indexed ZA operand OPND has:
|
|
|
|
|
|
|
|
|
|
- a selection register in the range [MIN_WREG, MIN_WREG + 3]
|
|
|
|
|
|
2023-03-30 18:09:11 +08:00
|
|
|
|
- RANGE_SIZE consecutive immediate offsets.
|
|
|
|
|
|
|
|
|
|
- an initial immediate offset that is a multiple of RANGE_SIZE
|
|
|
|
|
in the range [0, MAX_VALUE * RANGE_SIZE]
|
2023-03-30 18:09:11 +08:00
|
|
|
|
|
|
|
|
|
- a vector group size of GROUP_SIZE. */
|
2023-03-30 18:09:05 +08:00
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
check_za_access (const aarch64_opnd_info *opnd,
|
|
|
|
|
aarch64_operand_error *mismatch_detail, int idx,
|
2023-03-30 18:09:11 +08:00
|
|
|
|
int min_wreg, int max_value, unsigned int range_size,
|
|
|
|
|
int group_size)
|
2023-03-30 18:09:05 +08:00
|
|
|
|
{
|
2023-03-30 18:09:05 +08:00
|
|
|
|
if (!value_in_range_p (opnd->indexed_za.index.regno, min_wreg, min_wreg + 3))
|
|
|
|
|
{
|
|
|
|
|
if (min_wreg == 12)
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("expected a selection register in the"
|
|
|
|
|
" range w12-w15"));
|
2023-03-30 18:09:12 +08:00
|
|
|
|
else if (min_wreg == 8)
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("expected a selection register in the"
|
|
|
|
|
" range w8-w11"));
|
2023-03-30 18:09:05 +08:00
|
|
|
|
else
|
|
|
|
|
abort ();
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:11 +08:00
|
|
|
|
int max_index = max_value * range_size;
|
|
|
|
|
if (!value_in_range_p (opnd->indexed_za.index.imm, 0, max_index))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx, 0, max_index);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((opnd->indexed_za.index.imm % range_size) != 0)
|
|
|
|
|
{
|
|
|
|
|
assert (range_size == 2 || range_size == 4);
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
range_size == 2
|
|
|
|
|
? _("starting offset is not a multiple of 2")
|
|
|
|
|
: _("starting offset is not a multiple of 4"));
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (opnd->indexed_za.index.countm1 != range_size - 1)
|
2023-03-30 18:09:05 +08:00
|
|
|
|
{
|
2023-03-30 18:09:11 +08:00
|
|
|
|
if (range_size == 1)
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("expected a single offset rather than"
|
|
|
|
|
" a range"));
|
2023-03-30 18:09:12 +08:00
|
|
|
|
else if (range_size == 2)
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("expected a range of two offsets"));
|
|
|
|
|
else if (range_size == 4)
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("expected a range of four offsets"));
|
2023-03-30 18:09:11 +08:00
|
|
|
|
else
|
|
|
|
|
abort ();
|
2023-03-30 18:09:05 +08:00
|
|
|
|
return false;
|
|
|
|
|
}
|
2023-03-30 18:09:11 +08:00
|
|
|
|
|
|
|
|
|
/* The vector group specifier is optional in assembly code. */
|
|
|
|
|
if (opnd->indexed_za.group_size != 0
|
|
|
|
|
&& opnd->indexed_za.group_size != group_size)
|
|
|
|
|
{
|
|
|
|
|
set_invalid_vg_size (mismatch_detail, idx, group_size);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:05 +08:00
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2024-01-10 00:22:07 +08:00
|
|
|
|
/* Given a load/store operation, calculate the size of transferred data via a
|
|
|
|
|
cumulative sum of qualifier sizes preceding the address operand in the
|
|
|
|
|
OPNDS operand list argument. */
|
|
|
|
|
int
|
|
|
|
|
calc_ldst_datasize (const aarch64_opnd_info *opnds)
|
|
|
|
|
{
|
|
|
|
|
unsigned num_bytes = 0; /* total number of bytes transferred. */
|
|
|
|
|
enum aarch64_operand_class opnd_class;
|
|
|
|
|
enum aarch64_opnd type;
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < AARCH64_MAX_OPND_NUM; i++)
|
|
|
|
|
{
|
|
|
|
|
type = opnds[i].type;
|
|
|
|
|
opnd_class = aarch64_operands[type].op_class;
|
|
|
|
|
if (opnd_class == AARCH64_OPND_CLASS_ADDRESS)
|
|
|
|
|
break;
|
|
|
|
|
num_bytes += aarch64_get_qualifier_esize (opnds[i].qualifier);
|
|
|
|
|
}
|
|
|
|
|
return num_bytes;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* General constraint checking based on operand code.
|
|
|
|
|
|
|
|
|
|
Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
|
|
|
|
|
as the IDXth operand of opcode OPCODE. Otherwise return 0.
|
|
|
|
|
|
|
|
|
|
This function has to be called after the qualifiers for all operands
|
|
|
|
|
have been resolved.
|
|
|
|
|
|
|
|
|
|
Mismatching error message is returned in *MISMATCH_DETAIL upon request,
|
|
|
|
|
i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation
|
|
|
|
|
of error message during the disassembling where error message is not
|
|
|
|
|
wanted. We avoid the dynamic construction of strings of error messages
|
|
|
|
|
here (i.e. in libopcodes), as it is costly and complicated; instead, we
|
|
|
|
|
use a combination of error code, static string and some integer data to
|
|
|
|
|
represent an error. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx,
|
|
|
|
|
enum aarch64_opnd type,
|
|
|
|
|
const aarch64_opcode *opcode,
|
|
|
|
|
aarch64_operand_error *mismatch_detail)
|
|
|
|
|
{
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
unsigned num, modifiers, shift;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
unsigned char size;
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
int64_t imm, min_value, max_value;
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
uint64_t uvalue, mask;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const aarch64_opnd_info *opnd = opnds + idx;
|
|
|
|
|
aarch64_opnd_qualifier_t qualifier = opnd->qualifier;
|
2021-12-02 23:00:56 +08:00
|
|
|
|
int i;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
assert (opcode->operands[idx] == opnd->type && opnd->type == type);
|
|
|
|
|
|
|
|
|
|
switch (aarch64_operands[type].op_class)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_CLASS_INT_REG:
|
2023-12-13 22:09:08 +08:00
|
|
|
|
/* Check for pair of xzr registers. */
|
|
|
|
|
if (type == AARCH64_OPND_PAIRREG_OR_XZR
|
|
|
|
|
&& opnds[idx - 1].reg.regno == 0x1f)
|
|
|
|
|
{
|
|
|
|
|
if (opnds[idx].reg.regno != 0x1f)
|
|
|
|
|
{
|
|
|
|
|
set_syntax_error (mismatch_detail, idx - 1,
|
|
|
|
|
_("second reg in pair should be xzr if first is"
|
|
|
|
|
" xzr"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Check pair reg constraints for instructions taking a pair of
|
|
|
|
|
consecutively-numbered general-purpose registers. */
|
|
|
|
|
else if (type == AARCH64_OPND_PAIRREG
|
|
|
|
|
|| type == AARCH64_OPND_PAIRREG_OR_XZR)
|
2014-09-03 21:40:41 +08:00
|
|
|
|
{
|
2023-11-21 04:40:10 +08:00
|
|
|
|
assert (idx == 1 || idx == 2 || idx == 3 || idx == 5);
|
2014-09-03 21:40:41 +08:00
|
|
|
|
if (opnds[idx - 1].reg.regno % 2 != 0)
|
|
|
|
|
{
|
|
|
|
|
set_syntax_error (mismatch_detail, idx - 1,
|
|
|
|
|
_("reg pair must start from even reg"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1)
|
|
|
|
|
{
|
|
|
|
|
set_syntax_error (mismatch_detail, idx,
|
|
|
|
|
_("reg pair must be contiguous"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* <Xt> may be optional in some IC and TLBI instructions. */
|
|
|
|
|
if (type == AARCH64_OPND_Rt_SYS)
|
|
|
|
|
{
|
|
|
|
|
assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type)
|
|
|
|
|
== AARCH64_OPND_CLASS_SYSTEM));
|
2015-12-11 00:31:35 +08:00
|
|
|
|
if (opnds[1].present
|
|
|
|
|
&& !aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx, _("extraneous register"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
2015-12-11 00:31:35 +08:00
|
|
|
|
if (!opnds[1].present
|
|
|
|
|
&& aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx, _("missing register"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
switch (qualifier)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_QLF_WSP:
|
|
|
|
|
case AARCH64_OPND_QLF_SP:
|
|
|
|
|
if (!aarch64_stack_pointer_p (opnd))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
2021-11-18 04:15:13 +08:00
|
|
|
|
_("stack pointer register expected"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
case AARCH64_OPND_CLASS_SVE_REG:
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm3_INDEX:
|
|
|
|
|
case AARCH64_OPND_SVE_Zm3_22_INDEX:
|
2023-03-30 18:09:17 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm3_19_INDEX:
|
2019-05-09 17:29:17 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm3_11_INDEX:
|
2019-05-09 17:29:24 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm4_11_INDEX:
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm4_INDEX:
|
|
|
|
|
size = get_operand_fields_width (get_operand_from_code (type));
|
|
|
|
|
shift = get_operand_specific_data (&aarch64_operands[type]);
|
2023-03-30 18:09:07 +08:00
|
|
|
|
if (!check_reglane (opnd, mismatch_detail, idx,
|
|
|
|
|
"z", 0, (1 << shift) - 1,
|
|
|
|
|
0, (1u << (size - shift)) - 1))
|
|
|
|
|
return 0;
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zn_INDEX:
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnd->qualifier);
|
2023-03-30 18:09:07 +08:00
|
|
|
|
if (!check_reglane (opnd, mismatch_detail, idx, "z", 0, 31,
|
|
|
|
|
0, 64 / size - 1))
|
|
|
|
|
return 0;
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2024-01-15 17:37:32 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm_imm4:
|
|
|
|
|
if (!check_reglane (opnd, mismatch_detail, idx, "z", 0, 31, 0, 15))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_Zn_5_INDEX:
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnd->qualifier);
|
|
|
|
|
if (!check_reglane (opnd, mismatch_detail, idx, "z", 0, 31,
|
|
|
|
|
0, 16 / size - 1))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_PNn3_INDEX1:
|
|
|
|
|
case AARCH64_OPND_SME_PNn3_INDEX2:
|
|
|
|
|
size = get_operand_field_width (get_operand_from_code (type), 1);
|
|
|
|
|
if (!check_reglane (opnd, mismatch_detail, idx, "pn", 8, 15,
|
|
|
|
|
0, (1 << size) - 1))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX1_16:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX2_15:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX2_16:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX3_14:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX3_15:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX4_14:
|
|
|
|
|
size = get_operand_fields_width (get_operand_from_code (type)) - 5;
|
|
|
|
|
if (!check_reglane (opnd, mismatch_detail, idx, "z", 0, 31,
|
|
|
|
|
0, (1 << size) - 1))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX1:
|
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX2:
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX3_1:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX3_2:
|
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX3_10:
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX4_1:
|
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX4_10:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
size = get_operand_fields_width (get_operand_from_code (type)) - 4;
|
|
|
|
|
if (!check_reglane (opnd, mismatch_detail, idx, "z", 0, 15,
|
|
|
|
|
0, (1 << size) - 1))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm:
|
|
|
|
|
if (opnd->reg.regno > 15)
|
|
|
|
|
{
|
|
|
|
|
set_invalid_regno_error (mismatch_detail, idx, "z", 0, 15);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:05 +08:00
|
|
|
|
case AARCH64_OPND_SME_PnT_Wm_imm:
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnd->qualifier);
|
|
|
|
|
max_value = 16 / size - 1;
|
2023-03-30 18:09:11 +08:00
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx,
|
|
|
|
|
12, max_value, 1, 0))
|
2023-03-30 18:09:05 +08:00
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:07 +08:00
|
|
|
|
case AARCH64_OPND_CLASS_SVE_REGLIST:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
switch (type)
|
|
|
|
|
{
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Pdx2:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zdnx2:
|
|
|
|
|
case AARCH64_OPND_SME_Zdnx4:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zmx2:
|
|
|
|
|
case AARCH64_OPND_SME_Zmx4:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Znx2:
|
|
|
|
|
case AARCH64_OPND_SME_Znx4:
|
2024-01-15 17:40:11 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zt2:
|
|
|
|
|
case AARCH64_OPND_SME_Zt3:
|
|
|
|
|
case AARCH64_OPND_SME_Zt4:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
num = get_operand_specific_data (&aarch64_operands[type]);
|
|
|
|
|
if (!check_reglist (opnd, mismatch_detail, idx, num, 1))
|
|
|
|
|
return 0;
|
|
|
|
|
if ((opnd->reglist.first_regno % num) != 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("start register out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Ztx2_STRIDED:
|
|
|
|
|
case AARCH64_OPND_SME_Ztx4_STRIDED:
|
|
|
|
|
/* 2-register lists have a stride of 8 and 4-register lists
|
|
|
|
|
have a stride of 4. */
|
|
|
|
|
num = get_operand_specific_data (&aarch64_operands[type]);
|
|
|
|
|
if (!check_reglist (opnd, mismatch_detail, idx, num, 16 / num))
|
|
|
|
|
return 0;
|
|
|
|
|
num = 16 | (opnd->reglist.stride - 1);
|
|
|
|
|
if ((opnd->reglist.first_regno & ~num) != 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("start register out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_PdxN:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ZnxN:
|
|
|
|
|
case AARCH64_OPND_SVE_ZtxN:
|
|
|
|
|
num = get_opcode_dependent_value (opcode);
|
|
|
|
|
if (!check_reglist (opnd, mismatch_detail, idx, num, 1))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
2023-03-30 18:09:07 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:05 +08:00
|
|
|
|
case AARCH64_OPND_CLASS_ZA_ACCESS:
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_src:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_dest:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_ldstr:
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnd->qualifier);
|
|
|
|
|
max_value = 16 / size - 1;
|
2023-03-30 18:09:11 +08:00
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, max_value, 1,
|
2023-03-30 18:09:11 +08:00
|
|
|
|
get_opcode_dependent_value (opcode)))
|
2023-03-30 18:09:05 +08:00
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:11 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off4:
|
2023-03-30 18:09:11 +08:00
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 15, 1,
|
2023-03-30 18:09:11 +08:00
|
|
|
|
get_opcode_dependent_value (opcode)))
|
2023-03-30 18:09:05 +08:00
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off3_0:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off3_5:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 8, 7, 1,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off1x4:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 8, 1, 4,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off2x2:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 8, 3, 2,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off2x4:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 8, 3, 4,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off3x2:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 8, 7, 2,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2024-01-15 17:34:41 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsb_1:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 7, 2,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsh_1:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 3, 2,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrss_1:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 1, 2,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsd_1:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 0, 2,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsb_2:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 3, 4,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsh_2:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 1, 4,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrss_2:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsd_2:
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx, 12, 0, 4,
|
|
|
|
|
get_opcode_dependent_value (opcode)))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_srcxN:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_destxN:
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnd->qualifier);
|
|
|
|
|
num = get_opcode_dependent_value (opcode);
|
|
|
|
|
max_value = 16 / num / size;
|
|
|
|
|
if (max_value > 0)
|
|
|
|
|
max_value -= 1;
|
|
|
|
|
if (!check_za_access (opnd, mismatch_detail, idx,
|
|
|
|
|
12, max_value, num, 0))
|
|
|
|
|
return 0;
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:05 +08:00
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
case AARCH64_OPND_CLASS_PRED_REG:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
switch (type)
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
{
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_PNd3:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_PNg3:
|
|
|
|
|
if (opnd->reg.regno < 8)
|
|
|
|
|
{
|
|
|
|
|
set_invalid_regno_error (mismatch_detail, idx, "pn", 8, 15);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
if (opnd->reg.regno >= 8
|
|
|
|
|
&& get_operand_fields_width (get_operand_from_code (type)) == 3)
|
|
|
|
|
{
|
|
|
|
|
set_invalid_regno_error (mismatch_detail, idx, "p", 0, 7);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2013-11-06 04:50:18 +08:00
|
|
|
|
case AARCH64_OPND_CLASS_COND:
|
|
|
|
|
if (type == AARCH64_OPND_COND1
|
|
|
|
|
&& (opnds[idx].cond->value & 0xe) == 0xe)
|
|
|
|
|
{
|
|
|
|
|
/* Not allow AL or NV. */
|
|
|
|
|
set_syntax_error (mismatch_detail, idx, NULL);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_CLASS_ADDRESS:
|
|
|
|
|
/* Check writeback. */
|
|
|
|
|
switch (opcode->iclass)
|
|
|
|
|
{
|
|
|
|
|
case ldst_pos:
|
|
|
|
|
case ldst_unscaled:
|
|
|
|
|
case ldstnapair_offs:
|
|
|
|
|
case ldstpair_off:
|
|
|
|
|
case ldst_unpriv:
|
|
|
|
|
if (opnd->addr.writeback == 1)
|
|
|
|
|
{
|
2013-11-06 04:46:24 +08:00
|
|
|
|
set_syntax_error (mismatch_detail, idx,
|
|
|
|
|
_("unexpected address writeback"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
2016-11-18 17:49:06 +08:00
|
|
|
|
case ldst_imm10:
|
|
|
|
|
if (opnd->addr.writeback == 1 && opnd->addr.preind != 1)
|
|
|
|
|
{
|
|
|
|
|
set_syntax_error (mismatch_detail, idx,
|
|
|
|
|
_("unexpected address writeback"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case ldst_imm9:
|
|
|
|
|
case ldstpair_indexed:
|
|
|
|
|
case asisdlsep:
|
|
|
|
|
case asisdlsop:
|
|
|
|
|
if (opnd->addr.writeback == 0)
|
|
|
|
|
{
|
2013-11-06 04:46:24 +08:00
|
|
|
|
set_syntax_error (mismatch_detail, idx,
|
|
|
|
|
_("address writeback expected"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
2024-01-09 18:04:11 +08:00
|
|
|
|
case rcpc3:
|
|
|
|
|
if (opnd->addr.writeback)
|
|
|
|
|
if ((type == AARCH64_OPND_RCPC3_ADDR_PREIND_WB
|
|
|
|
|
&& !opnd->addr.preind)
|
|
|
|
|
|| (type == AARCH64_OPND_RCPC3_ADDR_POSTIND
|
|
|
|
|
&& !opnd->addr.postind))
|
|
|
|
|
{
|
|
|
|
|
set_syntax_error (mismatch_detail, idx,
|
|
|
|
|
_("unexpected address writeback"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
default:
|
|
|
|
|
assert (opnd->addr.writeback == 0);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_ADDR_SIMM7:
|
|
|
|
|
/* Scaled signed 7 bits immediate offset. */
|
|
|
|
|
/* Get the size of the data element that is accessed, which may be
|
|
|
|
|
different from that of the source register size,
|
|
|
|
|
e.g. in strb/ldrb. */
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnd->qualifier);
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
-64 * size, 63 * size);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_aligned_p (opnd->addr.offset.imm, size))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, size);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
Adds the new Fields and Operand types for the new instructions in Armv8.4-a.
gas/
* config/tc-aarch64.c (process_omitted_operand):
Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2
and AARCH64_OPND_IMM_2.
(parse_operands): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_IMM_2, AARCH64_OPND_MASK
and AARCH64_OPND_ADDR_OFFSET.
include/
* opcode/aarch64.h:
(aarch64_opnd): Add AARCH64_OPND_Va, AARCH64_OPND_MASK,
AARCH64_OPND_IMM_2, AARCH64_OPND_ADDR_OFFSET
and AARCH64_OPND_SM3_IMM2.
(aarch64_insn_class): Add cryptosm3 and cryptosm4.
(arch64_feature_set): Make uint64_t.
opcodes/
* aarch64-asm.h (ins_addr_offset): New.
* aarch64-asm.c (aarch64_ins_reglane): Add cryptosm3.
(aarch64_ins_addr_offset): New.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_addr_offset): New.
* aarch64-dis.c (aarch64_ext_reglane): Add cryptosm3.
(aarch64_ext_addr_offset): New.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (aarch64_field_kind): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
* aarch64-opc.c (fields): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
(operand_general_constraint_met_p): Add AARCH64_OPND_ADDR_OFFSET.
(aarch64_print_operand): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_MASK, AARCH64_OPND_IMM_2 and AARCH64_OPND_ADDR_OFFSET.
* aarch64-opc-2.c (Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2): New.
* aarch64-tbl.h
(aarch64_opcode_table): Add Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2.
2017-11-09 23:22:30 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_OFFSET:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_SIMM9:
|
|
|
|
|
/* Unscaled signed 9 bits immediate offset. */
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx, -256, 255);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_SIMM9_2:
|
|
|
|
|
/* Unscaled signed 9 bits immediate offset, which has to be negative
|
|
|
|
|
or unaligned. */
|
|
|
|
|
size = aarch64_get_qualifier_esize (qualifier);
|
|
|
|
|
if ((value_in_range_p (opnd->addr.offset.imm, 0, 255)
|
|
|
|
|
&& !value_aligned_p (opnd->addr.offset.imm, size))
|
|
|
|
|
|| value_in_range_p (opnd->addr.offset.imm, -256, -1))
|
|
|
|
|
return 1;
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("negative or unaligned offset expected"));
|
|
|
|
|
return 0;
|
|
|
|
|
|
2016-11-18 17:49:06 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_SIMM10:
|
|
|
|
|
/* Scaled signed 10 bits immediate offset. */
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4088))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4088);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_aligned_p (opnd->addr.offset.imm, 8))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, 8);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[BINUTILS, AARCH64, 4/8] Add Tag setting instructions in Memory Tagging Extension
This patch is part of the patch series to add support for ARMv8.5-A
Memory Tagging Extensions which is an optional extension to
ARMv8.5-A and is enabled using the +memtag command line option.
This patch add support to the Tag setting instructions from
MTE which consists of the following instructions:
- STG [<Xn|SP>, #<simm>]
- STG [<Xn|SP>, #<simm>]!
- STG [<Xn|SP>], #<simm>
- STZG [<Xn|SP>, #<simm>]
- STZG [<Xn|SP>, #<simm>]!
- STZG [<Xn|SP>], #<simm>
- ST2G [<Xn|SP>, #<simm>]
- ST2G [<Xn|SP>, #<simm>]!
- ST2G [<Xn|SP>], #<simm>
- STZ2G [<Xn|SP>, #<simm>]
- STZ2G [<Xn|SP>, #<simm>]!
- STZ2G [<Xn|SP>], #<simm>
- STGP <Xt>, <Xt2>, [<Xn|SP>, #<imm>]
- STGP <Xt>, <Xt2>, [<Xn|SP>, #<imm>]!
- STGP <Xt>, <Xt2>, [<Xn|SP>], #<imm>
where
<Xn|SP> : Is the 64-bit GPR or Stack pointer.
<simm> : Is the optional signed immediate offset, a multiple of 16
in the range -4096 to 4080, defaulting to 0.
*** include/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (aarch64_opnd): Add AARCH64_OPND_ADDR_SIMM11
and AARCH64_OPND_ADDR_SIMM13.
(aarch64_opnd_qualifier): Add new AARCH64_OPND_QLF_imm_tag.
*** opcodes/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.c (aarch64_opnd_qualifiers): Add new data
for AARCH64_OPND_QLF_imm_tag.
(operand_general_constraint_met_p): Add case for
AARCH64_OPND_ADDR_SIMM11 and AARCH64_OPND_ADDR_SIMM13.
(aarch64_print_operand): Likewise.
* aarch64-tbl.h (QL_LDST_AT, QL_STGP): New.
(aarch64_opcode_table): Add stg, stzg, st2g, stz2g and stgp
for both offset and pre/post indexed versions.
(AARCH64_OPERANDS): Define ADDR_SIMM11 and ADDR_SIMM13.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
*** gas/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_operands): Add switch case for
AARCH64_OPND_ADDR_SIMM11 and AARCH64_OPND_ADDR_SIMM13.
(fix_insn): Likewise.
(warn_unpredictable_ldst): Exempt STGP.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: Add tests for stg, st2g,
stzg, stz2g and stgp.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
2018-11-12 21:09:55 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_SIMM11:
|
|
|
|
|
/* Signed 11 bits immediate offset (multiple of 16). */
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, -1024, 1008))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx, -1024, 1008);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!value_aligned_p (opnd->addr.offset.imm, 16))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, 16);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_SIMM13:
|
|
|
|
|
/* Signed 13 bits immediate offset (multiple of 16). */
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4080))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4080);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!value_aligned_p (opnd->addr.offset.imm, 16))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, 16);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_SIMD_ADDR_POST:
|
|
|
|
|
/* AdvSIMD load/store multiple structures, post-index. */
|
|
|
|
|
assert (idx == 1);
|
|
|
|
|
if (opnd->addr.offset.is_reg)
|
|
|
|
|
{
|
|
|
|
|
if (value_in_range_p (opnd->addr.offset.regno, 0, 30))
|
|
|
|
|
return 1;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid register offset"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
const aarch64_opnd_info *prev = &opnds[idx-1];
|
|
|
|
|
unsigned num_bytes; /* total number of bytes transferred. */
|
|
|
|
|
/* The opcode dependent area stores the number of elements in
|
|
|
|
|
each structure to be loaded/stored. */
|
|
|
|
|
int is_ld1r = get_opcode_dependent_value (opcode) == 1;
|
|
|
|
|
if (opcode->operands[0] == AARCH64_OPND_LVt_AL)
|
|
|
|
|
/* Special handling of loading single structure to all lane. */
|
|
|
|
|
num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs)
|
|
|
|
|
* aarch64_get_qualifier_esize (prev->qualifier);
|
|
|
|
|
else
|
|
|
|
|
num_bytes = prev->reglist.num_regs
|
|
|
|
|
* aarch64_get_qualifier_esize (prev->qualifier)
|
|
|
|
|
* aarch64_get_qualifier_nelem (prev->qualifier);
|
|
|
|
|
if ((int) num_bytes != opnd->addr.offset.imm)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid post-increment amount"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_REGOFF:
|
|
|
|
|
/* Get the size of the data element that is accessed, which may be
|
|
|
|
|
different from that of the source register size,
|
|
|
|
|
e.g. in strb/ldrb. */
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnd->qualifier);
|
|
|
|
|
/* It is either no shift or shift by the binary logarithm of SIZE. */
|
|
|
|
|
if (opnd->shifter.amount != 0
|
|
|
|
|
&& opnd->shifter.amount != (int)get_logsz (size))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift amount"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* Only UXTW, LSL, SXTW and SXTX are the accepted extending
|
|
|
|
|
operators. */
|
|
|
|
|
switch (opnd->shifter.kind)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_MOD_UXTW:
|
|
|
|
|
case AARCH64_MOD_LSL:
|
|
|
|
|
case AARCH64_MOD_SXTW:
|
|
|
|
|
case AARCH64_MOD_SXTX: break;
|
|
|
|
|
default:
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid extend/shift operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_UIMM12:
|
|
|
|
|
imm = opnd->addr.offset.imm;
|
|
|
|
|
/* Get the size of the data element that is accessed, which may be
|
|
|
|
|
different from that of the source register size,
|
|
|
|
|
e.g. in strb/ldrb. */
|
|
|
|
|
size = aarch64_get_qualifier_esize (qualifier);
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
0, 4095 * size);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
2012-10-15 22:52:06 +08:00
|
|
|
|
if (!value_aligned_p (opnd->addr.offset.imm, size))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, size);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL14:
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL19:
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL21:
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL26:
|
|
|
|
|
imm = opnd->imm.value;
|
|
|
|
|
if (operand_need_shift_by_two (get_operand_from_code (type)))
|
|
|
|
|
{
|
|
|
|
|
/* The offset value in a PC-relative branch instruction is alway
|
|
|
|
|
4-byte aligned and is encoded without the lowest 2 bits. */
|
|
|
|
|
if (!value_aligned_p (imm, 4))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, 4);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* Right shift by 2 so that we can carry out the following check
|
|
|
|
|
canonically. */
|
|
|
|
|
imm >>= 2;
|
|
|
|
|
}
|
|
|
|
|
size = get_operand_fields_width (get_operand_from_code (type));
|
|
|
|
|
if (!value_fit_signed_field_p (imm, size))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2021-11-18 04:02:06 +08:00
|
|
|
|
case AARCH64_OPND_SME_ADDR_RI_U4xVL:
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, 0, 15))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx, 0, 15);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 26/32] Add SVE MUL VL addressing modes
This patch adds support for addresses of the form:
[<base>, #<offset>, MUL VL]
This involves adding a new AARCH64_MOD_MUL_VL modifier, which is
why I split it out from the other addressing modes.
For LD2, LD3 and LD4, the offset must be a multiple of the structure
size, so for LD3 the possible values are 0, 3, 6, .... The patch
therefore extends value_aligned_p to handle non-power-of-2 alignments.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4xVL): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_S4x2xVL, AARCH64_OPND_SVE_ADDR_RI_S4x3xVL)
(AARCH64_OPND_SVE_ADDR_RI_S4x4xVL, AARCH64_OPND_SVE_ADDR_RI_S6xVL)
(AARCH64_OPND_SVE_ADDR_RI_S9xVL): Likewise.
(AARCH64_MOD_MUL_VL): New aarch64_modifier_kind.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new MUL VL
operands.
* aarch64-opc.c (aarch64_operand_modifiers): Initialize
the AARCH64_MOD_MUL_VL entry.
(value_aligned_p): Cope with non-power-of-two alignments.
(operand_general_constraint_met_p): Handle the new MUL VL addresses.
(print_immediate_offset_address): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_s4xvl, ins_sve_addr_ri_s6xvl)
(ins_sve_addr_ri_s9xvl): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_s4xvl): New function.
(aarch64_ins_sve_addr_ri_s6xvl): Likewise.
(aarch64_ins_sve_addr_ri_s9xvl): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4xvl, ext_sve_addr_ri_s6xvl)
(ext_sve_addr_ri_s9xvl): New extractors.
* aarch64-dis.c (aarch64_ext_sve_addr_reg_mul_vl): New function.
(aarch64_ext_sve_addr_ri_s4xvl): Likewise.
(aarch64_ext_sve_addr_ri_s6xvl): Likewise.
(aarch64_ext_sve_addr_ri_s9xvl): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_NONE, SHIFTED_MUL_VL): New
parse_shift_modes.
(parse_shift): Handle SHIFTED_MUL_VL.
(parse_address_main): Add an imm_shift_mode parameter.
(parse_address, parse_sve_address): Update accordingly.
(parse_operands): Handle MUL VL addressing modes.
2016-09-21 23:56:15 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
|
|
|
|
|
min_value = -8;
|
|
|
|
|
max_value = 7;
|
|
|
|
|
sve_imm_offset_vl:
|
|
|
|
|
assert (!opnd->addr.offset.is_reg);
|
|
|
|
|
assert (opnd->addr.preind);
|
|
|
|
|
num = 1 + get_operand_specific_data (&aarch64_operands[type]);
|
|
|
|
|
min_value *= num;
|
|
|
|
|
max_value *= num;
|
|
|
|
|
if ((opnd->addr.offset.imm != 0 && !opnd->shifter.operator_present)
|
|
|
|
|
|| (opnd->shifter.operator_present
|
|
|
|
|
&& opnd->shifter.kind != AARCH64_MOD_MUL_VL))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid addressing mode"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
min_value, max_value);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_aligned_p (opnd->addr.offset.imm, num))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, num);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
|
|
|
|
|
min_value = -32;
|
|
|
|
|
max_value = 31;
|
|
|
|
|
goto sve_imm_offset_vl;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
|
|
|
|
|
min_value = -256;
|
|
|
|
|
max_value = 255;
|
|
|
|
|
goto sve_imm_offset_vl;
|
|
|
|
|
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6x2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6x4:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6x8:
|
|
|
|
|
min_value = 0;
|
|
|
|
|
max_value = 63;
|
|
|
|
|
sve_imm_offset:
|
|
|
|
|
assert (!opnd->addr.offset.is_reg);
|
|
|
|
|
assert (opnd->addr.preind);
|
|
|
|
|
num = 1 << get_operand_specific_data (&aarch64_operands[type]);
|
|
|
|
|
min_value *= num;
|
|
|
|
|
max_value *= num;
|
|
|
|
|
if (opnd->shifter.operator_present
|
|
|
|
|
|| opnd->shifter.amount_present)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid addressing mode"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
|
|
|
|
|
{
|
|
|
|
|
set_offset_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
min_value, max_value);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_aligned_p (opnd->addr.offset.imm, num))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, num);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x16:
|
[binutils][aarch64] Matrix Multiply extension enablement [8/X]
Hi,
This patch is part of a series that adds support for Armv8.6-A
(Matrix Multiply and BFloat16 extensions) to binutils.
This patch introduces the Matrix Multiply (Int8, F32, F64) extensions
to the aarch64 backend.
The following instructions are added: {s/u}mmla, usmmla, {us/su}dot,
fmmla, ld1rob, ld1roh, d1row, ld1rod, uzip{1/2}, trn{1/2}.
Committed on behalf of Mihail Ionescu.
gas/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
* config/tc-aarch64.c: Add new arch fetures to suppport the mm extension.
(parse_operands): Add new operand.
* testsuite/gas/aarch64/i8mm.s: New test.
* testsuite/gas/aarch64/i8mm.d: New test.
* testsuite/gas/aarch64/f32mm.s: New test.
* testsuite/gas/aarch64/f32mm.d: New test.
* testsuite/gas/aarch64/f64mm.s: New test.
* testsuite/gas/aarch64/f64mm.d: New test.
* testsuite/gas/aarch64/sve-movprfx-mm.s: New test.
* testsuite/gas/aarch64/sve-movprfx-mm.d: New test.
include/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
* opcode/aarch64.h (AARCH64_FEATURE_I8MM): New.
(AARCH64_FEATURE_F32MM): New.
(AARCH64_FEATURE_F64MM): New.
(AARCH64_OPND_SVE_ADDR_RI_S4x32): New.
(enum aarch64_insn_class): Add new instruction class "aarch64_misc" for
instructions that do not require special handling.
opcodes/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
* aarch64-tbl.h (aarch64_feature_i8mm_sve, aarch64_feature_f32mm_sve,
aarch64_feature_f64mm_sve, aarch64_feature_i8mm, aarch64_feature_f32mm,
aarch64_feature_f64mm): New feature sets.
(INT8MATMUL_INSN, F64MATMUL_SVE_INSN, F64MATMUL_INSN,
F32MATMUL_SVE_INSN, F32MATMUL_INSN): New macros to define matrix multiply
instructions.
(I8MM_SVE, F32MM_SVE, F64MM_SVE, I8MM, F32MM, F64MM): New feature set
macros.
(QL_MMLA64, OP_SVE_SBB): New qualifiers.
(OP_SVE_QQQ): New qualifier.
(INT8MATMUL_SVE_INSNC, F64MATMUL_SVE_INSNC,
F32MATMUL_SVE_INSNC): New feature set for bfloat16 instructions to support
the movprfx constraint.
(aarch64_opcode_table): Support for SVE_ADDR_RI_S4x32.
(aarch64_opcode_table): Define new instructions smmla,
ummla, usmmla, usdot, sudot, fmmla, ld1rob, ld1roh, ld1row, ld1rod
uzip{1/2}, trn{1/2}.
* aarch64-opc.c (operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_ADDR_RI_S4x32.
(aarch64_print_operand): Handle AARCH64_OPND_SVE_ADDR_RI_S4x32.
* aarch64-dis-2.c (aarch64_opcode_lookup_1, aarch64_find_next_opcode):
Account for new instructions.
* opcodes/aarch64-asm-2.c (aarch64_insert_operand): Support the new
S4x32 operand.
* aarch64-opc-2.c (aarch64_operands): Support the new S4x32 operand.
Regression tested on arm-none-eabi.
Is it ok for trunk?
Regards,
Mihail
2019-11-08 01:10:01 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x32:
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
min_value = -8;
|
|
|
|
|
max_value = 7;
|
|
|
|
|
goto sve_imm_offset;
|
|
|
|
|
|
2019-05-09 17:29:18 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZX:
|
|
|
|
|
/* Everything is already ensured by parse_operands or
|
|
|
|
|
aarch64_ext_sve_addr_rr_lsl (because this is a very specific
|
|
|
|
|
argument type). */
|
|
|
|
|
assert (opnd->addr.offset.is_reg);
|
|
|
|
|
assert (opnd->addr.preind);
|
|
|
|
|
assert ((aarch64_operands[type].flags & OPD_F_NO_ZR) == 0);
|
|
|
|
|
assert (opnd->shifter.kind == AARCH64_MOD_LSL);
|
|
|
|
|
assert (opnd->shifter.operator_present == 0);
|
|
|
|
|
break;
|
|
|
|
|
|
2018-03-28 16:44:45 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_R:
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL1:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL3:
|
2021-11-18 04:02:06 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL4:
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX_LSL1:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX_LSL2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX_LSL3:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
|
|
|
|
|
modifiers = 1 << AARCH64_MOD_LSL;
|
|
|
|
|
sve_rr_operand:
|
|
|
|
|
assert (opnd->addr.offset.is_reg);
|
|
|
|
|
assert (opnd->addr.preind);
|
|
|
|
|
if ((aarch64_operands[type].flags & OPD_F_NO_ZR) != 0
|
|
|
|
|
&& opnd->addr.offset.regno == 31)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("index register xzr is not allowed"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (((1 << opnd->shifter.kind) & modifiers) == 0
|
|
|
|
|
|| (opnd->shifter.amount
|
|
|
|
|
!= get_operand_specific_data (&aarch64_operands[type])))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid addressing mode"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
|
|
|
|
|
modifiers = (1 << AARCH64_MOD_SXTW) | (1 << AARCH64_MOD_UXTW);
|
|
|
|
|
goto sve_rr_operand;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
|
|
|
|
|
min_value = 0;
|
|
|
|
|
max_value = 31;
|
|
|
|
|
goto sve_imm_offset;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
|
|
|
|
|
modifiers = 1 << AARCH64_MOD_LSL;
|
|
|
|
|
sve_zz_operand:
|
|
|
|
|
assert (opnd->addr.offset.is_reg);
|
|
|
|
|
assert (opnd->addr.preind);
|
|
|
|
|
if (((1 << opnd->shifter.kind) & modifiers) == 0
|
|
|
|
|
|| opnd->shifter.amount < 0
|
|
|
|
|
|| opnd->shifter.amount > 3)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid addressing mode"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
|
|
|
|
|
modifiers = (1 << AARCH64_MOD_SXTW);
|
|
|
|
|
goto sve_zz_operand;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
|
|
|
|
|
modifiers = 1 << AARCH64_MOD_UXTW;
|
|
|
|
|
goto sve_zz_operand;
|
|
|
|
|
|
2024-01-09 18:04:11 +08:00
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_OPT_PREIND_WB:
|
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_OPT_POSTIND:
|
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_PREIND_WB:
|
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_POSTIND:
|
|
|
|
|
{
|
|
|
|
|
int num_bytes = calc_ldst_datasize (opnds);
|
|
|
|
|
int abs_offset = (type == AARCH64_OPND_RCPC3_ADDR_OPT_PREIND_WB
|
|
|
|
|
|| type == AARCH64_OPND_RCPC3_ADDR_PREIND_WB)
|
|
|
|
|
? opnd->addr.offset.imm * -1
|
|
|
|
|
: opnd->addr.offset.imm;
|
|
|
|
|
if ((int) num_bytes != abs_offset
|
|
|
|
|
&& opnd->addr.offset.imm != 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid increment amount"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_OFFSET:
|
|
|
|
|
if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, -256, 255);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_CLASS_SIMD_REGLIST:
|
2016-06-28 16:21:04 +08:00
|
|
|
|
if (type == AARCH64_OPND_LEt)
|
|
|
|
|
{
|
|
|
|
|
/* Get the upper bound for the element index. */
|
|
|
|
|
num = 16 / aarch64_get_qualifier_esize (qualifier) - 1;
|
|
|
|
|
if (!value_in_range_p (opnd->reglist.index, 0, num))
|
|
|
|
|
{
|
|
|
|
|
set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* The opcode dependent area stores the number of elements in
|
|
|
|
|
each structure to be loaded/stored. */
|
|
|
|
|
num = get_opcode_dependent_value (opcode);
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_LVt:
|
|
|
|
|
assert (num >= 1 && num <= 4);
|
|
|
|
|
/* Unless LD1/ST1, the number of registers should be equal to that
|
|
|
|
|
of the structure elements. */
|
2023-03-30 18:09:10 +08:00
|
|
|
|
if (num != 1 && !check_reglist (opnd, mismatch_detail, idx, num, 1))
|
|
|
|
|
return 0;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
case AARCH64_OPND_LVt_AL:
|
|
|
|
|
case AARCH64_OPND_LEt:
|
|
|
|
|
assert (num >= 1 && num <= 4);
|
|
|
|
|
/* The number of registers should be equal to that of the structure
|
|
|
|
|
elements. */
|
2023-03-30 18:09:10 +08:00
|
|
|
|
if (!check_reglist (opnd, mismatch_detail, idx, num, 1))
|
|
|
|
|
return 0;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
2023-03-30 18:09:10 +08:00
|
|
|
|
if (opnd->reglist.stride != 1)
|
|
|
|
|
{
|
|
|
|
|
set_reg_list_stride_error (mismatch_detail, idx, 1);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_CLASS_IMMEDIATE:
|
|
|
|
|
/* Constraint check on immediate operand. */
|
|
|
|
|
imm = opnd->imm.value;
|
|
|
|
|
/* E.g. imm_0_31 constrains value to be 0..31. */
|
|
|
|
|
if (qualifier_value_in_range_constraint_p (qualifier)
|
|
|
|
|
&& !value_in_range_p (imm, get_lower_bound (qualifier),
|
|
|
|
|
get_upper_bound (qualifier)))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
get_lower_bound (qualifier),
|
|
|
|
|
get_upper_bound (qualifier));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_AIMM:
|
|
|
|
|
if (opnd->shifter.kind != AARCH64_MOD_LSL)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
2016-09-22 00:11:04 +08:00
|
|
|
|
_("shift amount must be 0 or 12"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_fit_unsigned_field_p (opnd->imm.value, 12))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_HALF:
|
|
|
|
|
assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd);
|
|
|
|
|
if (opnd->shifter.kind != AARCH64_MOD_LSL)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnds[0].qualifier);
|
|
|
|
|
if (!value_aligned_p (opnd->shifter.amount, 16))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
2016-09-22 00:11:04 +08:00
|
|
|
|
_("shift amount must be a multiple of 16"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16))
|
|
|
|
|
{
|
|
|
|
|
set_sft_amount_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
0, size * 8 - 16);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (opnd->imm.value < 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("negative immediate value not allowed"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!value_fit_unsigned_field_p (opnd->imm.value, 16))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_IMM_MOV:
|
|
|
|
|
{
|
2016-09-21 23:51:09 +08:00
|
|
|
|
int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
imm = opnd->imm.value;
|
|
|
|
|
assert (idx == 1);
|
|
|
|
|
switch (opcode->op)
|
|
|
|
|
{
|
|
|
|
|
case OP_MOV_IMM_WIDEN:
|
|
|
|
|
imm = ~imm;
|
2016-10-05 15:47:02 +08:00
|
|
|
|
/* Fall through. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case OP_MOV_IMM_WIDE:
|
2016-09-21 23:51:09 +08:00
|
|
|
|
if (!aarch64_wide_constant_p (imm, esize == 4, NULL))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case OP_MOV_IMM_LOG:
|
2016-09-21 23:51:09 +08:00
|
|
|
|
if (!aarch64_logical_immediate_p (imm, esize, NULL))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert (0);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_NZCV:
|
|
|
|
|
case AARCH64_OPND_CCMP_IMM:
|
|
|
|
|
case AARCH64_OPND_EXCEPTION:
|
2020-04-30 22:47:30 +08:00
|
|
|
|
case AARCH64_OPND_UNDEFINED:
|
2019-05-02 00:14:01 +08:00
|
|
|
|
case AARCH64_OPND_TME_UIMM16:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_UIMM4:
|
[BINUTILS, AARCH64, 2/8] Add Tag generation instructions in Memory Tagging Extension
This patch is part of the patch series to add support for ARMv8.5-A
Memory Tagging Extensions which is an optional extension to
ARMv8.5-A and is enabled using the +memtag command line option.
This patch add support to the Tag generation instructions from
MTE. These are the following instructions added in this patch:
- IRG <Xd|SP>, <Xn|SP>{, Xm}
- ADDG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- SUBG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- GMI <Xd>, <Xn|SP>, <Xm>
where
<Xd|SP> : Is the 64-bit destination GPR or Stack pointer.
<Xn|SP> : Is the 64-bit source GPR or Stack pointer.
<uimm6> : Is the unsigned immediate, a multiple of 16
in the range 0 to 1008.
<uimm4> : Is the unsigned immediate, in the range 0 to 15.
*** include/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (aarch64_opnd): Add
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10 as new enums.
*** opcodes/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.h (aarch64_field_kind): New FLD_imm4_3.
(OPD_F_SHIFT_BY_4, operand_need_shift_by_four): New.
* aarch64-opc.c (fields): Add entry for imm4_3.
(operand_general_constraint_met_p): Add cases for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
(aarch64_print_operand): Likewise.
* aarch64-tbl.h (QL_ADDG): New.
(aarch64_opcode_table): Add addg, subg, irg and gmi.
(AARCH64_OPERANDS): Define UIMM4_ADDG and UIMM10.
* aarch64-asm.c (aarch64_ins_imm): Add case for
operand_need_shift_by_four.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
*** gas/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_operands): Add switch case for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: New.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
* testsuite/gas/aarch64/illegal-memtag.d: Likewise.
2018-11-12 20:52:55 +08:00
|
|
|
|
case AARCH64_OPND_UIMM4_ADDG:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_UIMM7:
|
|
|
|
|
case AARCH64_OPND_UIMM3_OP1:
|
|
|
|
|
case AARCH64_OPND_UIMM3_OP2:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_UIMM3:
|
|
|
|
|
case AARCH64_OPND_SVE_UIMM7:
|
|
|
|
|
case AARCH64_OPND_SVE_UIMM8:
|
|
|
|
|
case AARCH64_OPND_SVE_UIMM8_53:
|
2022-11-15 00:47:22 +08:00
|
|
|
|
case AARCH64_OPND_CSSC_UIMM8:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
size = get_operand_fields_width (get_operand_from_code (type));
|
|
|
|
|
assert (size < 32);
|
|
|
|
|
if (!value_fit_unsigned_field_p (opnd->imm.value, size))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, 0,
|
2019-12-17 20:18:48 +08:00
|
|
|
|
(1u << size) - 1);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[BINUTILS, AARCH64, 2/8] Add Tag generation instructions in Memory Tagging Extension
This patch is part of the patch series to add support for ARMv8.5-A
Memory Tagging Extensions which is an optional extension to
ARMv8.5-A and is enabled using the +memtag command line option.
This patch add support to the Tag generation instructions from
MTE. These are the following instructions added in this patch:
- IRG <Xd|SP>, <Xn|SP>{, Xm}
- ADDG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- SUBG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- GMI <Xd>, <Xn|SP>, <Xm>
where
<Xd|SP> : Is the 64-bit destination GPR or Stack pointer.
<Xn|SP> : Is the 64-bit source GPR or Stack pointer.
<uimm6> : Is the unsigned immediate, a multiple of 16
in the range 0 to 1008.
<uimm4> : Is the unsigned immediate, in the range 0 to 15.
*** include/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (aarch64_opnd): Add
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10 as new enums.
*** opcodes/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.h (aarch64_field_kind): New FLD_imm4_3.
(OPD_F_SHIFT_BY_4, operand_need_shift_by_four): New.
* aarch64-opc.c (fields): Add entry for imm4_3.
(operand_general_constraint_met_p): Add cases for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
(aarch64_print_operand): Likewise.
* aarch64-tbl.h (QL_ADDG): New.
(aarch64_opcode_table): Add addg, subg, irg and gmi.
(AARCH64_OPERANDS): Define UIMM4_ADDG and UIMM10.
* aarch64-asm.c (aarch64_ins_imm): Add case for
operand_need_shift_by_four.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
*** gas/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_operands): Add switch case for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: New.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
* testsuite/gas/aarch64/illegal-memtag.d: Likewise.
2018-11-12 20:52:55 +08:00
|
|
|
|
case AARCH64_OPND_UIMM10:
|
|
|
|
|
/* Scaled unsigned 10 bits immediate offset. */
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 0, 1008))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, 0, 1008);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!value_aligned_p (opnd->imm.value, 16))
|
|
|
|
|
{
|
|
|
|
|
set_unaligned_error (mismatch_detail, idx, 16);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SIMM5:
|
|
|
|
|
case AARCH64_OPND_SVE_SIMM5:
|
|
|
|
|
case AARCH64_OPND_SVE_SIMM5B:
|
|
|
|
|
case AARCH64_OPND_SVE_SIMM6:
|
|
|
|
|
case AARCH64_OPND_SVE_SIMM8:
|
2022-11-15 00:47:22 +08:00
|
|
|
|
case AARCH64_OPND_CSSC_SIMM8:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
size = get_operand_fields_width (get_operand_from_code (type));
|
|
|
|
|
assert (size < 32);
|
|
|
|
|
if (!value_fit_signed_field_p (opnd->imm.value, size))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
-(1 << (size - 1)),
|
|
|
|
|
(1 << (size - 1)) - 1);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_WIDTH:
|
2015-11-27 23:25:08 +08:00
|
|
|
|
assert (idx > 1 && opnds[idx-1].type == AARCH64_OPND_IMM
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& opnds[0].type == AARCH64_OPND_Rd);
|
|
|
|
|
size = get_upper_bound (qualifier);
|
|
|
|
|
if (opnd->imm.value + opnds[idx-1].imm.value > size)
|
|
|
|
|
/* lsb+width <= reg.size */
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, 1,
|
|
|
|
|
size - opnds[idx-1].imm.value);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_LIMM:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_LIMM:
|
2016-09-21 23:51:09 +08:00
|
|
|
|
{
|
|
|
|
|
int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
|
|
|
|
|
uint64_t uimm = opnd->imm.value;
|
|
|
|
|
if (opcode->op == OP_BIC)
|
|
|
|
|
uimm = ~uimm;
|
2017-05-18 13:17:40 +08:00
|
|
|
|
if (!aarch64_logical_immediate_p (uimm, esize, NULL))
|
2016-09-21 23:51:09 +08:00
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_IMM0:
|
|
|
|
|
case AARCH64_OPND_FPIMM0:
|
|
|
|
|
if (opnd->imm.value != 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate zero expected"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
case AARCH64_OPND_IMM_ROT1:
|
|
|
|
|
case AARCH64_OPND_IMM_ROT2:
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_IMM_ROT2:
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
if (opnd->imm.value != 0
|
|
|
|
|
&& opnd->imm.value != 90
|
|
|
|
|
&& opnd->imm.value != 180
|
|
|
|
|
&& opnd->imm.value != 270)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("rotate expected to be 0, 90, 180 or 270"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_IMM_ROT3:
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_IMM_ROT1:
|
2019-05-09 17:29:15 +08:00
|
|
|
|
case AARCH64_OPND_SVE_IMM_ROT3:
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
if (opnd->imm.value != 90 && opnd->imm.value != 270)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("rotate expected to be 90 or 270"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_SHLL_IMM:
|
|
|
|
|
assert (idx == 2);
|
|
|
|
|
size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
|
|
|
|
|
if (opnd->imm.value != size)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift amount"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_IMM_VLSL:
|
|
|
|
|
size = aarch64_get_qualifier_esize (qualifier);
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, 0,
|
|
|
|
|
size * 8 - 1);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_IMM_VLSR:
|
|
|
|
|
size = aarch64_get_qualifier_esize (qualifier);
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 1, size * 8))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SIMD_IMM:
|
|
|
|
|
case AARCH64_OPND_SIMD_IMM_SFT:
|
|
|
|
|
/* Qualifier check. */
|
|
|
|
|
switch (qualifier)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_QLF_LSL:
|
|
|
|
|
if (opnd->shifter.kind != AARCH64_MOD_LSL)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case AARCH64_OPND_QLF_MSL:
|
|
|
|
|
if (opnd->shifter.kind != AARCH64_MOD_MSL)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case AARCH64_OPND_QLF_NIL:
|
|
|
|
|
if (opnd->shifter.kind != AARCH64_MOD_NONE)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("shift is not permitted"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
assert (0);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* Is the immediate valid? */
|
|
|
|
|
assert (idx == 1);
|
|
|
|
|
if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8)
|
|
|
|
|
{
|
2013-05-14 06:28:27 +08:00
|
|
|
|
/* uimm8 or simm8 */
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, -128, 255))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2013-05-14 06:28:27 +08:00
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, -128, 255);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0)
|
|
|
|
|
{
|
|
|
|
|
/* uimm64 is not
|
|
|
|
|
'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
|
|
|
|
|
ffffffffgggggggghhhhhhhh'. */
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid value for immediate"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* Is the shift amount valid? */
|
|
|
|
|
switch (opnd->shifter.kind)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_MOD_LSL:
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnds[0].qualifier);
|
2013-01-18 00:09:44 +08:00
|
|
|
|
if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2013-01-18 00:09:44 +08:00
|
|
|
|
set_sft_amount_out_of_range_error (mismatch_detail, idx, 0,
|
|
|
|
|
(size - 1) * 8);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
2013-01-18 00:09:44 +08:00
|
|
|
|
if (!value_aligned_p (opnd->shifter.amount, 8))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2013-01-18 00:09:44 +08:00
|
|
|
|
set_unaligned_error (mismatch_detail, idx, 8);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case AARCH64_MOD_MSL:
|
|
|
|
|
/* Only 8 and 16 are valid shift amount. */
|
|
|
|
|
if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
2016-09-22 00:11:04 +08:00
|
|
|
|
_("shift amount must be 0 or 16"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
if (opnd->shifter.kind != AARCH64_MOD_NONE)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_FPIMM:
|
|
|
|
|
case AARCH64_OPND_SIMD_FPIMM:
|
2016-09-21 23:57:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_FPIMM8:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
if (opnd->imm.is_fp == 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("floating-point immediate expected"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* The value is expected to be an 8-bit floating-point constant with
|
|
|
|
|
sign, 3-bit exponent and normalized 4 bits of precision, encoded
|
|
|
|
|
in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
|
|
|
|
|
instruction). */
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 0, 255))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (opnd->shifter.kind != AARCH64_MOD_NONE)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid shift operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_AIMM:
|
|
|
|
|
min_value = 0;
|
|
|
|
|
sve_aimm:
|
|
|
|
|
assert (opnd->shifter.kind == AARCH64_MOD_LSL);
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnds[0].qualifier);
|
|
|
|
|
mask = ~((uint64_t) -1 << (size * 4) << (size * 4));
|
|
|
|
|
uvalue = opnd->imm.value;
|
|
|
|
|
shift = opnd->shifter.amount;
|
|
|
|
|
if (size == 1)
|
|
|
|
|
{
|
|
|
|
|
if (shift != 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("no shift amount allowed for"
|
|
|
|
|
" 8-bit constants"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (shift != 0 && shift != 8)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("shift amount must be 0 or 8"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (shift == 0 && (uvalue & 0xff) == 0)
|
|
|
|
|
{
|
|
|
|
|
shift = 8;
|
|
|
|
|
uvalue = (int64_t) uvalue / 256;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
mask >>= shift;
|
|
|
|
|
if ((uvalue & mask) != uvalue && (uvalue | ~mask) != uvalue)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate too big for element size"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
uvalue = (uvalue - min_value) & mask;
|
|
|
|
|
if (uvalue > 0xff)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid arithmetic immediate"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ASIMM:
|
|
|
|
|
min_value = -128;
|
|
|
|
|
goto sve_aimm;
|
|
|
|
|
|
2016-09-21 23:57:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_I1_HALF_ONE:
|
|
|
|
|
assert (opnd->imm.is_fp);
|
|
|
|
|
if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x3f800000)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("floating-point value must be 0.5 or 1.0"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_I1_HALF_TWO:
|
|
|
|
|
assert (opnd->imm.is_fp);
|
|
|
|
|
if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x40000000)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("floating-point value must be 0.5 or 2.0"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_I1_ZERO_ONE:
|
|
|
|
|
assert (opnd->imm.is_fp);
|
|
|
|
|
if (opnd->imm.value != 0 && opnd->imm.value != 0x3f800000)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("floating-point value must be 0.0 or 1.0"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_INV_LIMM:
|
|
|
|
|
{
|
|
|
|
|
int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
|
|
|
|
|
uint64_t uimm = ~opnd->imm.value;
|
|
|
|
|
if (!aarch64_logical_immediate_p (uimm, esize, NULL))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_LIMM_MOV:
|
|
|
|
|
{
|
|
|
|
|
int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
|
|
|
|
|
uint64_t uimm = opnd->imm.value;
|
|
|
|
|
if (!aarch64_logical_immediate_p (uimm, esize, NULL))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("immediate out of range"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (!aarch64_sve_dupm_mov_immediate_p (uimm, esize))
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("invalid replicated MOV immediate"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_PATTERN_SCALED:
|
|
|
|
|
assert (opnd->shifter.kind == AARCH64_MOD_MUL);
|
|
|
|
|
if (!value_in_range_p (opnd->shifter.amount, 1, 16))
|
|
|
|
|
{
|
|
|
|
|
set_multiplier_out_of_range_error (mismatch_detail, idx, 1, 16);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHLIMM_PRED:
|
|
|
|
|
case AARCH64_OPND_SVE_SHLIMM_UNPRED:
|
2019-05-09 17:29:27 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 0, 8 * size - 1))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx,
|
|
|
|
|
0, 8 * size - 1);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:16 +08:00
|
|
|
|
case AARCH64_OPND_SME_SHRIMM4:
|
|
|
|
|
size = 1 << get_operand_fields_width (get_operand_from_code (type));
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 1, size))
|
|
|
|
|
{
|
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, 1, size);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_SHRIMM5:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHRIMM_PRED:
|
|
|
|
|
case AARCH64_OPND_SVE_SHRIMM_UNPRED:
|
2019-05-09 17:29:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
|
2019-11-11 20:27:47 +08:00
|
|
|
|
num = (type == AARCH64_OPND_SVE_SHRIMM_UNPRED_22) ? 2 : 1;
|
|
|
|
|
size = aarch64_get_qualifier_esize (opnds[idx - num].qualifier);
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 1, 8 * size))
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
{
|
2019-11-11 20:27:47 +08:00
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, idx, 1, 8*size);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZT0_INDEX:
|
|
|
|
|
if (!value_in_range_p (opnd->imm.value, 0, 56))
|
|
|
|
|
{
|
|
|
|
|
set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, 56);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (opnd->imm.value % 8 != 0)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("byte index must be a multiple of 8"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_CLASS_SYSTEM:
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_PSTATEFIELD:
|
2021-12-02 23:00:56 +08:00
|
|
|
|
for (i = 0; aarch64_pstatefields[i].name; ++i)
|
|
|
|
|
if (aarch64_pstatefields[i].value == opnd->pstatefield)
|
|
|
|
|
break;
|
|
|
|
|
assert (aarch64_pstatefields[i].name);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4);
|
2021-12-02 23:00:56 +08:00
|
|
|
|
max_value = F_GET_REG_MAX_VALUE (aarch64_pstatefields[i].flags);
|
|
|
|
|
if (opnds[1].imm.value < 0 || opnds[1].imm.value > max_value)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2021-12-02 23:00:56 +08:00
|
|
|
|
set_imm_out_of_range_error (mismatch_detail, 1, 0, max_value);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
2023-03-30 18:09:02 +08:00
|
|
|
|
case AARCH64_OPND_PRFOP:
|
|
|
|
|
if (opcode->iclass == ldst_regoff && opnd->prfop->value >= 24)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("the register-index form of PRFM does"
|
|
|
|
|
" not accept opcodes in the range 24-31"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_CLASS_SIMD_ELEMENT:
|
|
|
|
|
/* Get the upper bound for the element index. */
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
if (opcode->op == OP_FCMLA_ELEM)
|
|
|
|
|
/* FCMLA index range depends on the vector size of other operands
|
|
|
|
|
and is halfed because complex numbers take two elements. */
|
|
|
|
|
num = aarch64_get_qualifier_nelem (opnds[0].qualifier)
|
|
|
|
|
* aarch64_get_qualifier_esize (opnds[0].qualifier) / 2;
|
|
|
|
|
else
|
|
|
|
|
num = 16;
|
|
|
|
|
num = num / aarch64_get_qualifier_esize (qualifier) - 1;
|
AArch64: Fix error checking for SIMD udot (by element)
Committed on behalf of Matthew Malcomson:
The SIMD UDOT instruction assembly has an unusual operand that selects a single
32 bit element with the mnemonic 4B.
This unusual mnemonic is handled by a special operand qualifier and associated
qualifier data in `aarch64_opnd_qualifiers`.
The current qualifier data describes 4 1-byte elements with the structure
{1, 4, 0x0, "4b", OQK_OPD_VARIANT}
This makes sense, as the instruction does work on 4 1-byte elements, however
some logic in the `operand_general_constraint_met_p` makes assumptions about
the range of index allowed when selecting a SIMD_ELEMENT depending on element
size.
That function reasons that e.g. in order to select a byte-sized element in a 16
byte V register an index must allow selection of one of the 16 elements and
hence its range will be in [0,15].
This reasoning breaks with the above description of a 4 part selection of 1
byte elements and allows an index outside the valid [0,3] range, triggering an
assert later on in the program in `aarch64_ins_reglane`.
vshcmd: > echo 'udot v0.2s, v1.8b, v2.4b[4]' | ../src/binutils-build/gas/as-new -march=armv8.4-a
as-new: ../../binutils-gdb/opcodes/aarch64-asm.c:134: aarch64_ins_reglane: Assertion `reglane_index < 4' failed.
{standard input}: Assembler messages:
{standard input}:1: Internal error (Aborted).
Please report this bug.
This patch changes the operand qualifier data so that it describes a single
32 bit element.
{4, 1, 0x0, "4b", OQK_OPD_VARIANT}
Hence the calculation in `operand_general_constraint_met_p` provides the
correct answer and the usual error checking machinery is used.
vshcmd: > echo 'udot v0.2s, v1.8b, v2.4b[4]' | ../src/binutils-build/gas/as-new -march=armv8.4-a
{standard input}: Assembler messages:
{standard input}:1: Error: register element index out of range 0 to 3 at operand 3 -- `udot v0.2s,v1.8b,v2.4b[4]'
2018-10-17 01:49:36 +08:00
|
|
|
|
assert (aarch64_get_qualifier_nelem (qualifier) == 1);
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Index out-of-range. */
|
|
|
|
|
if (!value_in_range_p (opnd->reglane.index, 0, num))
|
|
|
|
|
{
|
|
|
|
|
set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
|
|
|
|
|
<Vm> Is the vector register (V0-V31) or (V0-V15), whose
|
|
|
|
|
number is encoded in "size:M:Rm":
|
|
|
|
|
size <Vm>
|
|
|
|
|
00 RESERVED
|
|
|
|
|
01 0:Rm
|
|
|
|
|
10 M:Rm
|
|
|
|
|
11 RESERVED */
|
Fix AArch64 encodings for by element instructions.
Some instructions in Armv8-a place a limitation on FP16 registers that can be
used as the register from which to select an element from.
e.g. fmla restricts Rm to 4 bits when using an FP16 register. This restriction
does not apply for all instructions, e.g. fcmla does not have this restriction
as it gets an extra bit from the M field.
Unfortunately, this restriction to S_H was added for all _Em operands before,
meaning for a large number of instructions you couldn't use the full register
file.
This fixes the issue by introducing a new operand _Em16 which applies this
restriction only when paired with S_H and leaves the _Em and the other
qualifiers for _Em16 unbounded (i.e. using the full 5 bit range).
Also the patch updates all instructions that should be affected by this.
opcodes/
PR binutils/23192
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
* aarch64-dis.c (aarch64_ext_reglane): Add AARCH64_OPND_Em16 constraint.
* aarch64-opc.c (operand_general_constraint_met_p,
aarch64_print_operand): Likewise.
* aarch64-tbl.h (aarch64_opcode_table): Change Em to Em16 for smlal,
smlal2, fmla, fmls, fmul, fmulx, sqrdmlah, sqrdlsh, fmlal, fmlsl,
fmlal2, fmlsl2.
(AARCH64_OPERANDS): Add Em2.
gas/
PR binutils/23192
* config/tc-aarch64.c (process_omitted_operand, parse_operands): Add
AARCH64_OPND_Em16
* testsuite/gas/aarch64/advsimd-armv8_3.s: Expand tests to cover upper
16 registers.
* testsuite/gas/aarch64/advsimd-armv8_3.d: Likewise.
* testsuite/gas/aarch64/advsimd-compnum.s: Likewise.
* testsuite/gas/aarch64/advsimd-compnum.d: Likewise.
* testsuite/gas/aarch64/sve.d: Likewise.
include/
PR binutils/23192
*opcode/aarch64.h (aarch64_opnd): Add AARCH64_OPND_Em16.
2018-06-29 19:12:27 +08:00
|
|
|
|
if (type == AARCH64_OPND_Em16 && qualifier == AARCH64_OPND_QLF_S_H
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& !value_in_range_p (opnd->reglane.regno, 0, 15))
|
|
|
|
|
{
|
|
|
|
|
set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_CLASS_MODIFIED_REG:
|
|
|
|
|
assert (idx == 1 || idx == 2);
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_Rm_EXT:
|
2017-05-18 13:17:40 +08:00
|
|
|
|
if (!aarch64_extend_operator_p (opnd->shifter.kind)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& opnd->shifter.kind != AARCH64_MOD_LSL)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("extend operator expected"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* It is not optional unless at least one of "Rd" or "Rn" is '11111'
|
|
|
|
|
(i.e. SP), in which case it defaults to LSL. The LSL alias is
|
|
|
|
|
only valid when "Rd" or "Rn" is '11111', and is preferred in that
|
|
|
|
|
case. */
|
|
|
|
|
if (!aarch64_stack_pointer_p (opnds + 0)
|
|
|
|
|
&& (idx != 2 || !aarch64_stack_pointer_p (opnds + 1)))
|
|
|
|
|
{
|
|
|
|
|
if (!opnd->shifter.operator_present)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("missing extend operator"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
else if (opnd->shifter.kind == AARCH64_MOD_LSL)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("'LSL' operator not allowed"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
assert (opnd->shifter.operator_present /* Default to LSL. */
|
|
|
|
|
|| opnd->shifter.kind == AARCH64_MOD_LSL);
|
|
|
|
|
if (!value_in_range_p (opnd->shifter.amount, 0, 4))
|
|
|
|
|
{
|
|
|
|
|
set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
/* In the 64-bit form, the final register operand is written as Wm
|
|
|
|
|
for all but the (possibly omitted) UXTX/LSL and SXTX
|
|
|
|
|
operators.
|
|
|
|
|
N.B. GAS allows X register to be used with any operator as a
|
|
|
|
|
programming convenience. */
|
|
|
|
|
if (qualifier == AARCH64_OPND_QLF_X
|
|
|
|
|
&& opnd->shifter.kind != AARCH64_MOD_LSL
|
|
|
|
|
&& opnd->shifter.kind != AARCH64_MOD_UXTX
|
|
|
|
|
&& opnd->shifter.kind != AARCH64_MOD_SXTX)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx, _("W register expected"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_Rm_SFT:
|
|
|
|
|
/* ROR is not available to the shifted register operand in
|
|
|
|
|
arithmetic instructions. */
|
2017-05-18 13:17:40 +08:00
|
|
|
|
if (!aarch64_shift_operator_p (opnd->shifter.kind))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("shift operator expected"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (opnd->shifter.kind == AARCH64_MOD_ROR
|
|
|
|
|
&& opcode->iclass != log_shift)
|
|
|
|
|
{
|
|
|
|
|
set_other_error (mismatch_detail, idx,
|
|
|
|
|
_("'ROR' operator not allowed"));
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63;
|
|
|
|
|
if (!value_in_range_p (opnd->shifter.amount, 0, num))
|
|
|
|
|
{
|
|
|
|
|
set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2024-02-21 20:52:23 +08:00
|
|
|
|
case AARCH64_OPND_Rm_LSL:
|
|
|
|
|
/* We expect here that opnd->shifter.kind != AARCH64_MOD_LSL
|
|
|
|
|
because the parser already restricts the type of shift to LSL only,
|
|
|
|
|
so another check of shift kind would be redundant. */
|
|
|
|
|
if (!value_in_range_p (opnd->shifter.amount, 0, 7))
|
|
|
|
|
{
|
|
|
|
|
set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 7);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Main entrypoint for the operand constraint checking.
|
|
|
|
|
|
|
|
|
|
Return 1 if operands of *INST meet the constraint applied by the operand
|
|
|
|
|
codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
|
|
|
|
|
not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when
|
|
|
|
|
adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
|
|
|
|
|
with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
|
|
|
|
|
error kind when it is notified that an instruction does not pass the check).
|
|
|
|
|
|
|
|
|
|
Un-determined operand qualifiers may get established during the process. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
aarch64_match_operands_constraint (aarch64_inst *inst,
|
|
|
|
|
aarch64_operand_error *mismatch_detail)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("enter");
|
|
|
|
|
|
[AArch64][SVE 20/32] Add support for tied operands
SVE has some instructions in which the same register appears twice
in the assembly string, once as an input and once as an output.
This patch adds a general mechanism for that.
The patch needs to add new information to the instruction entries.
One option would have been to extend the flags field of the opcode
to 64 bits (since we already rely on 64-bit integers being available
on the host). However, the *_INSN macros mean that it's easy to add
new information as top-level fields without affecting the existing
table entries too much. Going for that option seemed to give slightly
neater code.
include/
* opcode/aarch64.h (aarch64_opcode): Add a tied_operand field.
(AARCH64_OPDE_UNTIED_OPERAND): New aarch64_operand_error_kind.
opcodes/
* aarch64-tbl.h (CORE_INSN, __FP_INSN, SIMD_INSN, CRYP_INSN)
(_CRC_INSN, _LSE_INSN, _LOR_INSN, RDMA_INSN, FP16_INSN, SF16_INSN)
(V8_2_INSN, aarch64_opcode_table): Initialize tied_operand field.
* aarch64-opc.c (aarch64_match_operands_constraint): Check for
tied operands.
gas/
* config/tc-aarch64.c (output_operand_error_record): Handle
AARCH64_OPDE_UNTIED_OPERAND.
2016-09-21 23:52:30 +08:00
|
|
|
|
i = inst->opcode->tied_operand;
|
2021-11-18 04:02:06 +08:00
|
|
|
|
|
|
|
|
|
if (i > 0)
|
[AArch64][SVE 20/32] Add support for tied operands
SVE has some instructions in which the same register appears twice
in the assembly string, once as an input and once as an output.
This patch adds a general mechanism for that.
The patch needs to add new information to the instruction entries.
One option would have been to extend the flags field of the opcode
to 64 bits (since we already rely on 64-bit integers being available
on the host). However, the *_INSN macros mean that it's easy to add
new information as top-level fields without affecting the existing
table entries too much. Going for that option seemed to give slightly
neater code.
include/
* opcode/aarch64.h (aarch64_opcode): Add a tied_operand field.
(AARCH64_OPDE_UNTIED_OPERAND): New aarch64_operand_error_kind.
opcodes/
* aarch64-tbl.h (CORE_INSN, __FP_INSN, SIMD_INSN, CRYP_INSN)
(_CRC_INSN, _LSE_INSN, _LOR_INSN, RDMA_INSN, FP16_INSN, SF16_INSN)
(V8_2_INSN, aarch64_opcode_table): Initialize tied_operand field.
* aarch64-opc.c (aarch64_match_operands_constraint): Check for
tied operands.
gas/
* config/tc-aarch64.c (output_operand_error_record): Handle
AARCH64_OPDE_UNTIED_OPERAND.
2016-09-21 23:52:30 +08:00
|
|
|
|
{
|
2021-11-18 04:02:06 +08:00
|
|
|
|
/* Check for tied_operands with specific opcode iclass. */
|
|
|
|
|
switch (inst->opcode->iclass)
|
|
|
|
|
{
|
|
|
|
|
/* For SME LDR and STR instructions #imm must have the same numerical
|
|
|
|
|
value for both operands.
|
|
|
|
|
*/
|
|
|
|
|
case sme_ldr:
|
|
|
|
|
case sme_str:
|
2023-03-30 18:09:11 +08:00
|
|
|
|
assert (inst->operands[0].type == AARCH64_OPND_SME_ZA_array_off4);
|
2021-11-18 04:02:06 +08:00
|
|
|
|
assert (inst->operands[1].type == AARCH64_OPND_SME_ADDR_RI_U4xVL);
|
2023-03-30 18:09:04 +08:00
|
|
|
|
if (inst->operands[0].indexed_za.index.imm
|
2021-11-18 04:02:06 +08:00
|
|
|
|
!= inst->operands[1].addr.offset.imm)
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_UNTIED_IMMS;
|
|
|
|
|
mismatch_detail->index = i;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
{
|
|
|
|
|
/* Check for cases where a source register needs to be the
|
|
|
|
|
same as the destination register. Do this before
|
|
|
|
|
matching qualifiers since if an instruction has both
|
|
|
|
|
invalid tying and invalid qualifiers, the error about
|
|
|
|
|
qualifiers would suggest several alternative instructions
|
|
|
|
|
that also have invalid tying. */
|
2024-01-24 02:22:12 +08:00
|
|
|
|
enum aarch64_operand_class op_class
|
2023-03-30 18:09:13 +08:00
|
|
|
|
= aarch64_get_operand_class (inst->operands[0].type);
|
2024-01-24 02:22:12 +08:00
|
|
|
|
assert (aarch64_get_operand_class (inst->operands[i].type)
|
|
|
|
|
== op_class);
|
|
|
|
|
if (op_class == AARCH64_OPND_CLASS_SVE_REGLIST
|
2023-03-30 18:09:13 +08:00
|
|
|
|
? ((inst->operands[0].reglist.first_regno
|
|
|
|
|
!= inst->operands[i].reglist.first_regno)
|
|
|
|
|
|| (inst->operands[0].reglist.num_regs
|
|
|
|
|
!= inst->operands[i].reglist.num_regs)
|
|
|
|
|
|| (inst->operands[0].reglist.stride
|
|
|
|
|
!= inst->operands[i].reglist.stride))
|
|
|
|
|
: (inst->operands[0].reg.regno
|
|
|
|
|
!= inst->operands[i].reg.regno))
|
|
|
|
|
{
|
|
|
|
|
if (mismatch_detail)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_UNTIED_OPERAND;
|
|
|
|
|
mismatch_detail->index = i;
|
|
|
|
|
mismatch_detail->error = NULL;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
2021-11-18 04:02:06 +08:00
|
|
|
|
}
|
[AArch64][SVE 20/32] Add support for tied operands
SVE has some instructions in which the same register appears twice
in the assembly string, once as an input and once as an output.
This patch adds a general mechanism for that.
The patch needs to add new information to the instruction entries.
One option would have been to extend the flags field of the opcode
to 64 bits (since we already rely on 64-bit integers being available
on the host). However, the *_INSN macros mean that it's easy to add
new information as top-level fields without affecting the existing
table entries too much. Going for that option seemed to give slightly
neater code.
include/
* opcode/aarch64.h (aarch64_opcode): Add a tied_operand field.
(AARCH64_OPDE_UNTIED_OPERAND): New aarch64_operand_error_kind.
opcodes/
* aarch64-tbl.h (CORE_INSN, __FP_INSN, SIMD_INSN, CRYP_INSN)
(_CRC_INSN, _LSE_INSN, _LOR_INSN, RDMA_INSN, FP16_INSN, SF16_INSN)
(V8_2_INSN, aarch64_opcode_table): Initialize tied_operand field.
* aarch64-opc.c (aarch64_match_operands_constraint): Check for
tied operands.
gas/
* config/tc-aarch64.c (output_operand_error_record): Handle
AARCH64_OPDE_UNTIED_OPERAND.
2016-09-21 23:52:30 +08:00
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Match operands' qualifier.
|
|
|
|
|
*INST has already had qualifier establish for some, if not all, of
|
|
|
|
|
its operands; we need to find out whether these established
|
|
|
|
|
qualifiers match one of the qualifier sequence in
|
|
|
|
|
INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand
|
|
|
|
|
with the corresponding qualifier in such a sequence.
|
|
|
|
|
Only basic operand constraint checking is done here; the more thorough
|
|
|
|
|
constraint checking will carried out by operand_general_constraint_met_p,
|
|
|
|
|
which has be to called after this in order to get all of the operands'
|
|
|
|
|
qualifiers established. */
|
2023-03-30 18:09:08 +08:00
|
|
|
|
int invalid_count;
|
|
|
|
|
if (match_operands_qualifier (inst, true /* update_p */,
|
|
|
|
|
&invalid_count) == 0)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
DEBUG_TRACE ("FAIL on operand qualifier matching");
|
|
|
|
|
if (mismatch_detail)
|
|
|
|
|
{
|
|
|
|
|
/* Return an error type to indicate that it is the qualifier
|
|
|
|
|
matching failure; we don't care about which operand as there
|
|
|
|
|
are enough information in the opcode table to reproduce it. */
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT;
|
|
|
|
|
mismatch_detail->index = -1;
|
|
|
|
|
mismatch_detail->error = NULL;
|
2023-03-30 18:09:08 +08:00
|
|
|
|
mismatch_detail->data[0].i = invalid_count;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Match operands' constraint. */
|
|
|
|
|
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
|
|
|
|
{
|
|
|
|
|
enum aarch64_opnd type = inst->opcode->operands[i];
|
|
|
|
|
if (type == AARCH64_OPND_NIL)
|
|
|
|
|
break;
|
|
|
|
|
if (inst->operands[i].skip)
|
|
|
|
|
{
|
|
|
|
|
DEBUG_TRACE ("skip the incomplete operand %d", i);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
if (operand_general_constraint_met_p (inst->operands, i, type,
|
|
|
|
|
inst->opcode, mismatch_detail) == 0)
|
|
|
|
|
{
|
|
|
|
|
DEBUG_TRACE ("FAIL on operand %d", i);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("PASS");
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
|
|
|
|
|
Also updates the TYPE of each INST->OPERANDS with the corresponding
|
|
|
|
|
value of OPCODE->OPERANDS.
|
|
|
|
|
|
|
|
|
|
Note that some operand qualifiers may need to be manually cleared by
|
|
|
|
|
the caller before it further calls the aarch64_opcode_encode; by
|
|
|
|
|
doing this, it helps the qualifier matching facilities work
|
|
|
|
|
properly. */
|
|
|
|
|
|
|
|
|
|
const aarch64_opcode*
|
|
|
|
|
aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
const aarch64_opcode *old = inst->opcode;
|
|
|
|
|
|
|
|
|
|
inst->opcode = opcode;
|
|
|
|
|
|
|
|
|
|
/* Update the operand types. */
|
|
|
|
|
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
|
|
|
|
{
|
|
|
|
|
inst->operands[i].type = opcode->operands[i];
|
|
|
|
|
if (opcode->operands[i] == AARCH64_OPND_NIL)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DEBUG_TRACE ("replace %s with %s", old->name, opcode->name);
|
|
|
|
|
|
|
|
|
|
return old;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
|
|
|
|
|
if (operands[i] == operand)
|
|
|
|
|
return i;
|
|
|
|
|
else if (operands[i] == AARCH64_OPND_NIL)
|
|
|
|
|
break;
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
2016-09-21 23:51:37 +08:00
|
|
|
|
/* R0...R30, followed by FOR31. */
|
|
|
|
|
#define BANK(R, FOR31) \
|
|
|
|
|
{ R (0), R (1), R (2), R (3), R (4), R (5), R (6), R (7), \
|
|
|
|
|
R (8), R (9), R (10), R (11), R (12), R (13), R (14), R (15), \
|
|
|
|
|
R (16), R (17), R (18), R (19), R (20), R (21), R (22), R (23), \
|
|
|
|
|
R (24), R (25), R (26), R (27), R (28), R (29), R (30), FOR31 }
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* [0][0] 32-bit integer regs with sp Wn
|
|
|
|
|
[0][1] 64-bit integer regs with sp Xn sf=1
|
|
|
|
|
[1][0] 32-bit integer regs with #0 Wn
|
|
|
|
|
[1][1] 64-bit integer regs with #0 Xn sf=1 */
|
|
|
|
|
static const char *int_reg[2][2][32] = {
|
2016-09-21 23:51:37 +08:00
|
|
|
|
#define R32(X) "w" #X
|
|
|
|
|
#define R64(X) "x" #X
|
|
|
|
|
{ BANK (R32, "wsp"), BANK (R64, "sp") },
|
|
|
|
|
{ BANK (R32, "wzr"), BANK (R64, "xzr") }
|
2012-08-13 22:52:54 +08:00
|
|
|
|
#undef R64
|
|
|
|
|
#undef R32
|
|
|
|
|
};
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
|
|
|
|
|
/* Names of the SVE vector registers, first with .S suffixes,
|
|
|
|
|
then with .D suffixes. */
|
|
|
|
|
|
|
|
|
|
static const char *sve_reg[2][32] = {
|
|
|
|
|
#define ZS(X) "z" #X ".s"
|
|
|
|
|
#define ZD(X) "z" #X ".d"
|
|
|
|
|
BANK (ZS, ZS (31)), BANK (ZD, ZD (31))
|
|
|
|
|
#undef ZD
|
|
|
|
|
#undef ZS
|
|
|
|
|
};
|
2016-09-21 23:51:37 +08:00
|
|
|
|
#undef BANK
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
/* Return the integer register name.
|
|
|
|
|
if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */
|
|
|
|
|
|
|
|
|
|
static inline const char *
|
|
|
|
|
get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p)
|
|
|
|
|
{
|
|
|
|
|
const int has_zr = sp_reg_p ? 0 : 1;
|
|
|
|
|
const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1;
|
|
|
|
|
return int_reg[has_zr][is_64][regno];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Like get_int_reg_name, but IS_64 is always 1. */
|
|
|
|
|
|
|
|
|
|
static inline const char *
|
|
|
|
|
get_64bit_int_reg_name (int regno, int sp_reg_p)
|
|
|
|
|
{
|
|
|
|
|
const int has_zr = sp_reg_p ? 0 : 1;
|
|
|
|
|
return int_reg[has_zr][1][regno];
|
|
|
|
|
}
|
|
|
|
|
|
2016-09-21 23:51:43 +08:00
|
|
|
|
/* Get the name of the integer offset register in OPND, using the shift type
|
|
|
|
|
to decide whether it's a word or doubleword. */
|
|
|
|
|
|
|
|
|
|
static inline const char *
|
|
|
|
|
get_offset_int_reg_name (const aarch64_opnd_info *opnd)
|
|
|
|
|
{
|
|
|
|
|
switch (opnd->shifter.kind)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_MOD_UXTW:
|
|
|
|
|
case AARCH64_MOD_SXTW:
|
|
|
|
|
return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_W, 0);
|
|
|
|
|
|
|
|
|
|
case AARCH64_MOD_LSL:
|
|
|
|
|
case AARCH64_MOD_SXTX:
|
|
|
|
|
return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_X, 0);
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
/* Get the name of the SVE vector offset register in OPND, using the operand
|
|
|
|
|
qualifier to decide whether the suffix should be .S or .D. */
|
|
|
|
|
|
|
|
|
|
static inline const char *
|
|
|
|
|
get_addr_sve_reg_name (int regno, aarch64_opnd_qualifier_t qualifier)
|
|
|
|
|
{
|
|
|
|
|
assert (qualifier == AARCH64_OPND_QLF_S_S
|
|
|
|
|
|| qualifier == AARCH64_OPND_QLF_S_D);
|
|
|
|
|
return sve_reg[qualifier == AARCH64_OPND_QLF_S_D][regno];
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Types for expanding an encoded 8-bit value to a floating-point value. */
|
|
|
|
|
|
|
|
|
|
typedef union
|
|
|
|
|
{
|
|
|
|
|
uint64_t i;
|
|
|
|
|
double d;
|
|
|
|
|
} double_conv_t;
|
|
|
|
|
|
|
|
|
|
typedef union
|
|
|
|
|
{
|
|
|
|
|
uint32_t i;
|
|
|
|
|
float f;
|
|
|
|
|
} single_conv_t;
|
|
|
|
|
|
2015-11-28 00:25:52 +08:00
|
|
|
|
typedef union
|
|
|
|
|
{
|
|
|
|
|
uint32_t i;
|
|
|
|
|
float f;
|
|
|
|
|
} half_conv_t;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
|
|
|
|
|
normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
|
|
|
|
|
(depending on the type of the instruction). IMM8 will be expanded to a
|
2015-11-28 00:25:52 +08:00
|
|
|
|
single-precision floating-point value (SIZE == 4) or a double-precision
|
|
|
|
|
floating-point value (SIZE == 8). A half-precision floating-point value
|
|
|
|
|
(SIZE == 2) is expanded to a single-precision floating-point value. The
|
|
|
|
|
expanded value is returned. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
static uint64_t
|
2015-11-28 00:25:52 +08:00
|
|
|
|
expand_fp_imm (int size, uint32_t imm8)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2017-09-21 23:46:48 +08:00
|
|
|
|
uint64_t imm = 0;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4;
|
|
|
|
|
|
|
|
|
|
imm8_7 = (imm8 >> 7) & 0x01; /* imm8<7> */
|
|
|
|
|
imm8_6_0 = imm8 & 0x7f; /* imm8<6:0> */
|
|
|
|
|
imm8_6 = imm8_6_0 >> 6; /* imm8<6> */
|
|
|
|
|
imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2)
|
|
|
|
|
| (imm8_6 << 1) | imm8_6; /* Replicate(imm8<6>,4) */
|
2015-11-28 00:25:52 +08:00
|
|
|
|
if (size == 8)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
imm = (imm8_7 << (63-32)) /* imm8<7> */
|
|
|
|
|
| ((imm8_6 ^ 1) << (62-32)) /* NOT(imm8<6) */
|
|
|
|
|
| (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32))
|
|
|
|
|
| (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */
|
|
|
|
|
| (imm8_6_0 << (48-32)); /* imm8<6>:imm8<5:0> */
|
|
|
|
|
imm <<= 32;
|
|
|
|
|
}
|
2015-11-28 00:25:52 +08:00
|
|
|
|
else if (size == 4 || size == 2)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
|
|
|
|
imm = (imm8_7 << 31) /* imm8<7> */
|
|
|
|
|
| ((imm8_6 ^ 1) << 30) /* NOT(imm8<6>) */
|
|
|
|
|
| (imm8_6_repl4 << 26) /* Replicate(imm8<6>,4) */
|
|
|
|
|
| (imm8_6_0 << 19); /* imm8<6>:imm8<5:0> */
|
|
|
|
|
}
|
2015-11-28 00:25:52 +08:00
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* An unsupported size. */
|
|
|
|
|
assert (0);
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
return imm;
|
|
|
|
|
}
|
|
|
|
|
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
/* Return a string based on FMT with the register style applied. */
|
|
|
|
|
|
|
|
|
|
static const char *
|
|
|
|
|
style_reg (struct aarch64_styler *styler, const char *fmt, ...)
|
|
|
|
|
{
|
|
|
|
|
const char *txt;
|
|
|
|
|
va_list ap;
|
|
|
|
|
|
|
|
|
|
va_start (ap, fmt);
|
|
|
|
|
txt = styler->apply_style (styler, dis_style_register, fmt, ap);
|
|
|
|
|
va_end (ap);
|
|
|
|
|
|
|
|
|
|
return txt;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a string based on FMT with the immediate style applied. */
|
|
|
|
|
|
|
|
|
|
static const char *
|
|
|
|
|
style_imm (struct aarch64_styler *styler, const char *fmt, ...)
|
|
|
|
|
{
|
|
|
|
|
const char *txt;
|
|
|
|
|
va_list ap;
|
|
|
|
|
|
|
|
|
|
va_start (ap, fmt);
|
|
|
|
|
txt = styler->apply_style (styler, dis_style_immediate, fmt, ap);
|
|
|
|
|
va_end (ap);
|
|
|
|
|
|
|
|
|
|
return txt;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a string based on FMT with the sub-mnemonic style applied. */
|
|
|
|
|
|
|
|
|
|
static const char *
|
|
|
|
|
style_sub_mnem (struct aarch64_styler *styler, const char *fmt, ...)
|
|
|
|
|
{
|
|
|
|
|
const char *txt;
|
|
|
|
|
va_list ap;
|
|
|
|
|
|
|
|
|
|
va_start (ap, fmt);
|
|
|
|
|
txt = styler->apply_style (styler, dis_style_sub_mnemonic, fmt, ap);
|
|
|
|
|
va_end (ap);
|
|
|
|
|
|
|
|
|
|
return txt;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a string based on FMT with the address style applied. */
|
|
|
|
|
|
|
|
|
|
static const char *
|
|
|
|
|
style_addr (struct aarch64_styler *styler, const char *fmt, ...)
|
|
|
|
|
{
|
|
|
|
|
const char *txt;
|
|
|
|
|
va_list ap;
|
|
|
|
|
|
|
|
|
|
va_start (ap, fmt);
|
|
|
|
|
txt = styler->apply_style (styler, dis_style_address, fmt, ap);
|
|
|
|
|
va_end (ap);
|
|
|
|
|
|
|
|
|
|
return txt;
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Produce the string representation of the register list operand *OPND
|
2016-09-21 23:51:30 +08:00
|
|
|
|
in the buffer pointed by BUF of size SIZE. PREFIX is the part of
|
|
|
|
|
the register name that comes before the register number, such as "v". */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
static void
|
2016-09-21 23:51:30 +08:00
|
|
|
|
print_register_list (char *buf, size_t size, const aarch64_opnd_info *opnd,
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
const char *prefix, struct aarch64_styler *styler)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2023-03-30 18:09:12 +08:00
|
|
|
|
const int mask = (prefix[0] == 'p' ? 15 : 31);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const int num_regs = opnd->reglist.num_regs;
|
2023-03-30 18:09:10 +08:00
|
|
|
|
const int stride = opnd->reglist.stride;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const int first_reg = opnd->reglist.first_regno;
|
2023-03-30 18:09:12 +08:00
|
|
|
|
const int last_reg = (first_reg + (num_regs - 1) * stride) & mask;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const char *qlf_name = aarch64_get_qualifier_name (opnd->qualifier);
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
char tb[16]; /* Temporary buffer. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
assert (opnd->type != AARCH64_OPND_LEt || opnd->reglist.has_index);
|
|
|
|
|
assert (num_regs >= 1 && num_regs <= 4);
|
|
|
|
|
|
|
|
|
|
/* Prepare the index if any. */
|
|
|
|
|
if (opnd->reglist.has_index)
|
2017-02-03 17:04:21 +08:00
|
|
|
|
/* PR 21096: The %100 is to silence a warning about possible truncation. */
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (tb, sizeof (tb), "[%s]",
|
|
|
|
|
style_imm (styler, "%" PRIi64, (opnd->reglist.index % 100)));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
|
|
|
|
tb[0] = '\0';
|
|
|
|
|
|
2024-05-21 21:59:03 +08:00
|
|
|
|
/* The hyphenated form is preferred for disassembly if there is
|
|
|
|
|
more than one register in the list, and the register numbers
|
2012-08-13 22:52:54 +08:00
|
|
|
|
are monotonically increasing in increments of one. */
|
2024-01-15 17:40:11 +08:00
|
|
|
|
if (stride == 1 && num_regs > 1
|
|
|
|
|
&& ((opnd->type != AARCH64_OPND_SME_Zt2)
|
|
|
|
|
&& (opnd->type != AARCH64_OPND_SME_Zt3)
|
|
|
|
|
&& (opnd->type != AARCH64_OPND_SME_Zt4)))
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "{%s-%s}%s",
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, first_reg, qlf_name),
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, last_reg, qlf_name), tb);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
const int reg0 = first_reg;
|
2023-03-30 18:09:12 +08:00
|
|
|
|
const int reg1 = (first_reg + stride) & mask;
|
|
|
|
|
const int reg2 = (first_reg + stride * 2) & mask;
|
|
|
|
|
const int reg3 = (first_reg + stride * 3) & mask;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
|
|
|
|
switch (num_regs)
|
|
|
|
|
{
|
|
|
|
|
case 1:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "{%s}%s",
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg0, qlf_name),
|
|
|
|
|
tb);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
case 2:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "{%s, %s}%s",
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg0, qlf_name),
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg1, qlf_name),
|
|
|
|
|
tb);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
case 3:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "{%s, %s, %s}%s",
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg0, qlf_name),
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg1, qlf_name),
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg2, qlf_name),
|
|
|
|
|
tb);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
case 4:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "{%s, %s, %s, %s}%s",
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg0, qlf_name),
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg1, qlf_name),
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg2, qlf_name),
|
|
|
|
|
style_reg (styler, "%s%d.%s", prefix, reg3, qlf_name),
|
|
|
|
|
tb);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2016-09-21 23:51:43 +08:00
|
|
|
|
/* Print the register+immediate address in OPND to BUF, which has SIZE
|
|
|
|
|
characters. BASE is the name of the base register. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
print_immediate_offset_address (char *buf, size_t size,
|
|
|
|
|
const aarch64_opnd_info *opnd,
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
const char *base,
|
|
|
|
|
struct aarch64_styler *styler)
|
2016-09-21 23:51:43 +08:00
|
|
|
|
{
|
|
|
|
|
if (opnd->addr.writeback)
|
|
|
|
|
{
|
|
|
|
|
if (opnd->addr.preind)
|
Modify the ARNM assembler to accept the omission of the immediate argument for the writeback form of the LDRAA and LDRAB mnemonics
This is a shorthand for the immediate argument being 0, as described here:
https://developer.arm.com/docs/ddi0596/latest/base-instructions-alphabetic-order/ldraa-ldrab-load-register-with-pointer-authentication
This is because the instructions still have a use with an immediate
argument of 0, unlike loads without the PAC functionality. Currently,
the mnemonics are
LDRAA Xt, [Xn, #<simm10>]!
LDRAB Xt, [Xn, #<simm10>]!
After this patch they become
LDRAA Xt, [Xn {, #<simm10>}]!
LDRAB Xt, [Xn {, #<simm10>}]!
gas * config/tc-aarch64.c (parse_address_main): Accept the omission of
the immediate argument for ldraa and ldrab as a shorthand for the
immediate being 0.
* testsuite/gas/aarch64/ldraa-ldrab-no-offset.d: New test.
* testsuite/gas/aarch64/ldraa-ldrab-no-offset.s: New test.
* testsuite/gas/aarch64/illegal-ldraa.s: Modified to accept the
writeback form with no offset.
* testsuite/gas/aarch64/illegal-ldraa.s: Removed missing offset
error.
opcodes * aarch64-opc.c (print_immediate_offset_address): Don't print the
immediate for the writeback form of ldraa/ldrab if it is 0.
* aarch64-tbl.h: Updated the documentation for ADDR_SIMM10.
* aarch64-opc-2.c: Regenerated.
2019-10-30 21:23:35 +08:00
|
|
|
|
{
|
|
|
|
|
if (opnd->type == AARCH64_OPND_ADDR_SIMM10 && !opnd->addr.offset.imm)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s]!", style_reg (styler, base));
|
Modify the ARNM assembler to accept the omission of the immediate argument for the writeback form of the LDRAA and LDRAB mnemonics
This is a shorthand for the immediate argument being 0, as described here:
https://developer.arm.com/docs/ddi0596/latest/base-instructions-alphabetic-order/ldraa-ldrab-load-register-with-pointer-authentication
This is because the instructions still have a use with an immediate
argument of 0, unlike loads without the PAC functionality. Currently,
the mnemonics are
LDRAA Xt, [Xn, #<simm10>]!
LDRAB Xt, [Xn, #<simm10>]!
After this patch they become
LDRAA Xt, [Xn {, #<simm10>}]!
LDRAB Xt, [Xn {, #<simm10>}]!
gas * config/tc-aarch64.c (parse_address_main): Accept the omission of
the immediate argument for ldraa and ldrab as a shorthand for the
immediate being 0.
* testsuite/gas/aarch64/ldraa-ldrab-no-offset.d: New test.
* testsuite/gas/aarch64/ldraa-ldrab-no-offset.s: New test.
* testsuite/gas/aarch64/illegal-ldraa.s: Modified to accept the
writeback form with no offset.
* testsuite/gas/aarch64/illegal-ldraa.s: Removed missing offset
error.
opcodes * aarch64-opc.c (print_immediate_offset_address): Don't print the
immediate for the writeback form of ldraa/ldrab if it is 0.
* aarch64-tbl.h: Updated the documentation for ADDR_SIMM10.
* aarch64-opc-2.c: Regenerated.
2019-10-30 21:23:35 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s, %s]!",
|
|
|
|
|
style_reg (styler, base),
|
|
|
|
|
style_imm (styler, "#%d", opnd->addr.offset.imm));
|
Modify the ARNM assembler to accept the omission of the immediate argument for the writeback form of the LDRAA and LDRAB mnemonics
This is a shorthand for the immediate argument being 0, as described here:
https://developer.arm.com/docs/ddi0596/latest/base-instructions-alphabetic-order/ldraa-ldrab-load-register-with-pointer-authentication
This is because the instructions still have a use with an immediate
argument of 0, unlike loads without the PAC functionality. Currently,
the mnemonics are
LDRAA Xt, [Xn, #<simm10>]!
LDRAB Xt, [Xn, #<simm10>]!
After this patch they become
LDRAA Xt, [Xn {, #<simm10>}]!
LDRAB Xt, [Xn {, #<simm10>}]!
gas * config/tc-aarch64.c (parse_address_main): Accept the omission of
the immediate argument for ldraa and ldrab as a shorthand for the
immediate being 0.
* testsuite/gas/aarch64/ldraa-ldrab-no-offset.d: New test.
* testsuite/gas/aarch64/ldraa-ldrab-no-offset.s: New test.
* testsuite/gas/aarch64/illegal-ldraa.s: Modified to accept the
writeback form with no offset.
* testsuite/gas/aarch64/illegal-ldraa.s: Removed missing offset
error.
opcodes * aarch64-opc.c (print_immediate_offset_address): Don't print the
immediate for the writeback form of ldraa/ldrab if it is 0.
* aarch64-tbl.h: Updated the documentation for ADDR_SIMM10.
* aarch64-opc-2.c: Regenerated.
2019-10-30 21:23:35 +08:00
|
|
|
|
}
|
2016-09-21 23:51:43 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s], %s",
|
|
|
|
|
style_reg (styler, base),
|
|
|
|
|
style_imm (styler, "#%d", opnd->addr.offset.imm));
|
2016-09-21 23:51:43 +08:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
[AArch64][SVE 26/32] Add SVE MUL VL addressing modes
This patch adds support for addresses of the form:
[<base>, #<offset>, MUL VL]
This involves adding a new AARCH64_MOD_MUL_VL modifier, which is
why I split it out from the other addressing modes.
For LD2, LD3 and LD4, the offset must be a multiple of the structure
size, so for LD3 the possible values are 0, 3, 6, .... The patch
therefore extends value_aligned_p to handle non-power-of-2 alignments.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4xVL): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_S4x2xVL, AARCH64_OPND_SVE_ADDR_RI_S4x3xVL)
(AARCH64_OPND_SVE_ADDR_RI_S4x4xVL, AARCH64_OPND_SVE_ADDR_RI_S6xVL)
(AARCH64_OPND_SVE_ADDR_RI_S9xVL): Likewise.
(AARCH64_MOD_MUL_VL): New aarch64_modifier_kind.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new MUL VL
operands.
* aarch64-opc.c (aarch64_operand_modifiers): Initialize
the AARCH64_MOD_MUL_VL entry.
(value_aligned_p): Cope with non-power-of-two alignments.
(operand_general_constraint_met_p): Handle the new MUL VL addresses.
(print_immediate_offset_address): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_s4xvl, ins_sve_addr_ri_s6xvl)
(ins_sve_addr_ri_s9xvl): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_s4xvl): New function.
(aarch64_ins_sve_addr_ri_s6xvl): Likewise.
(aarch64_ins_sve_addr_ri_s9xvl): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4xvl, ext_sve_addr_ri_s6xvl)
(ext_sve_addr_ri_s9xvl): New extractors.
* aarch64-dis.c (aarch64_ext_sve_addr_reg_mul_vl): New function.
(aarch64_ext_sve_addr_ri_s4xvl): Likewise.
(aarch64_ext_sve_addr_ri_s6xvl): Likewise.
(aarch64_ext_sve_addr_ri_s9xvl): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_NONE, SHIFTED_MUL_VL): New
parse_shift_modes.
(parse_shift): Handle SHIFTED_MUL_VL.
(parse_address_main): Add an imm_shift_mode parameter.
(parse_address, parse_sve_address): Update accordingly.
(parse_operands): Handle MUL VL addressing modes.
2016-09-21 23:56:15 +08:00
|
|
|
|
if (opnd->shifter.operator_present)
|
|
|
|
|
{
|
|
|
|
|
assert (opnd->shifter.kind == AARCH64_MOD_MUL_VL);
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s, %s, %s]",
|
|
|
|
|
style_reg (styler, base),
|
|
|
|
|
style_imm (styler, "#%d", opnd->addr.offset.imm),
|
|
|
|
|
style_sub_mnem (styler, "mul vl"));
|
[AArch64][SVE 26/32] Add SVE MUL VL addressing modes
This patch adds support for addresses of the form:
[<base>, #<offset>, MUL VL]
This involves adding a new AARCH64_MOD_MUL_VL modifier, which is
why I split it out from the other addressing modes.
For LD2, LD3 and LD4, the offset must be a multiple of the structure
size, so for LD3 the possible values are 0, 3, 6, .... The patch
therefore extends value_aligned_p to handle non-power-of-2 alignments.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4xVL): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_S4x2xVL, AARCH64_OPND_SVE_ADDR_RI_S4x3xVL)
(AARCH64_OPND_SVE_ADDR_RI_S4x4xVL, AARCH64_OPND_SVE_ADDR_RI_S6xVL)
(AARCH64_OPND_SVE_ADDR_RI_S9xVL): Likewise.
(AARCH64_MOD_MUL_VL): New aarch64_modifier_kind.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new MUL VL
operands.
* aarch64-opc.c (aarch64_operand_modifiers): Initialize
the AARCH64_MOD_MUL_VL entry.
(value_aligned_p): Cope with non-power-of-two alignments.
(operand_general_constraint_met_p): Handle the new MUL VL addresses.
(print_immediate_offset_address): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_s4xvl, ins_sve_addr_ri_s6xvl)
(ins_sve_addr_ri_s9xvl): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_s4xvl): New function.
(aarch64_ins_sve_addr_ri_s6xvl): Likewise.
(aarch64_ins_sve_addr_ri_s9xvl): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4xvl, ext_sve_addr_ri_s6xvl)
(ext_sve_addr_ri_s9xvl): New extractors.
* aarch64-dis.c (aarch64_ext_sve_addr_reg_mul_vl): New function.
(aarch64_ext_sve_addr_ri_s4xvl): Likewise.
(aarch64_ext_sve_addr_ri_s6xvl): Likewise.
(aarch64_ext_sve_addr_ri_s9xvl): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_NONE, SHIFTED_MUL_VL): New
parse_shift_modes.
(parse_shift): Handle SHIFTED_MUL_VL.
(parse_address_main): Add an imm_shift_mode parameter.
(parse_address, parse_sve_address): Update accordingly.
(parse_operands): Handle MUL VL addressing modes.
2016-09-21 23:56:15 +08:00
|
|
|
|
}
|
|
|
|
|
else if (opnd->addr.offset.imm)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s, %s]",
|
|
|
|
|
style_reg (styler, base),
|
|
|
|
|
style_imm (styler, "#%d", opnd->addr.offset.imm));
|
2016-09-21 23:51:43 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s]", style_reg (styler, base));
|
2016-09-21 23:51:43 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Produce the string representation of the register offset address operand
|
2016-09-21 23:51:43 +08:00
|
|
|
|
*OPND in the buffer pointed by BUF of size SIZE. BASE and OFFSET are
|
|
|
|
|
the names of the base and offset registers. */
|
2012-08-13 22:52:54 +08:00
|
|
|
|
static void
|
|
|
|
|
print_register_offset_address (char *buf, size_t size,
|
2016-09-21 23:51:43 +08:00
|
|
|
|
const aarch64_opnd_info *opnd,
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
const char *base, const char *offset,
|
|
|
|
|
struct aarch64_styler *styler)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
char tb[32]; /* Temporary buffer. */
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool print_extend_p = true;
|
|
|
|
|
bool print_amount_p = true;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const char *shift_name = aarch64_operand_modifiers[opnd->shifter.kind].name;
|
|
|
|
|
|
|
|
|
|
if (!opnd->shifter.amount && (opnd->qualifier != AARCH64_OPND_QLF_S_B
|
|
|
|
|
|| !opnd->shifter.amount_present))
|
|
|
|
|
{
|
|
|
|
|
/* Not print the shift/extend amount when the amount is zero and
|
|
|
|
|
when it is not the special case of 8-bit load/store instruction. */
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
print_amount_p = false;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Likewise, no need to print the shift operator LSL in such a
|
|
|
|
|
situation. */
|
2016-09-21 23:51:43 +08:00
|
|
|
|
if (opnd->shifter.kind == AARCH64_MOD_LSL)
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
print_extend_p = false;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Prepare for the extend/shift. */
|
|
|
|
|
if (print_extend_p)
|
|
|
|
|
{
|
|
|
|
|
if (print_amount_p)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (tb, sizeof (tb), ", %s %s",
|
|
|
|
|
style_sub_mnem (styler, shift_name),
|
|
|
|
|
style_imm (styler, "#%" PRIi64,
|
2017-02-03 17:04:21 +08:00
|
|
|
|
/* PR 21096: The %100 is to silence a warning about possible truncation. */
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
(opnd->shifter.amount % 100)));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (tb, sizeof (tb), ", %s",
|
|
|
|
|
style_sub_mnem (styler, shift_name));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
tb[0] = '\0';
|
|
|
|
|
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s, %s%s]", style_reg (styler, base),
|
|
|
|
|
style_reg (styler, offset), tb);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
|
2021-11-18 03:56:09 +08:00
|
|
|
|
/* Print ZA tiles from imm8 in ZERO instruction.
|
|
|
|
|
|
|
|
|
|
The preferred disassembly of this instruction uses the shortest list of tile
|
|
|
|
|
names that represent the encoded immediate mask.
|
|
|
|
|
|
|
|
|
|
For example:
|
|
|
|
|
* An all-ones immediate is disassembled as {ZA}.
|
|
|
|
|
* An all-zeros immediate is disassembled as an empty list { }.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
print_sme_za_list (char *buf, size_t size, int mask,
|
|
|
|
|
struct aarch64_styler *styler)
|
2021-11-18 03:56:09 +08:00
|
|
|
|
{
|
|
|
|
|
const char* zan[] = { "za", "za0.h", "za1.h", "za0.s",
|
|
|
|
|
"za1.s", "za2.s", "za3.s", "za0.d",
|
|
|
|
|
"za1.d", "za2.d", "za3.d", "za4.d",
|
|
|
|
|
"za5.d", "za6.d", "za7.d", " " };
|
|
|
|
|
const int zan_v[] = { 0xff, 0x55, 0xaa, 0x11,
|
|
|
|
|
0x22, 0x44, 0x88, 0x01,
|
|
|
|
|
0x02, 0x04, 0x08, 0x10,
|
|
|
|
|
0x20, 0x40, 0x80, 0x00 };
|
|
|
|
|
int i, k;
|
|
|
|
|
const int ZAN_SIZE = sizeof(zan) / sizeof(zan[0]);
|
|
|
|
|
|
|
|
|
|
k = snprintf (buf, size, "{");
|
|
|
|
|
for (i = 0; i < ZAN_SIZE; i++)
|
|
|
|
|
{
|
|
|
|
|
if ((mask & zan_v[i]) == zan_v[i])
|
|
|
|
|
{
|
|
|
|
|
mask &= ~zan_v[i];
|
|
|
|
|
if (k > 1)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
k += snprintf (buf + k, size - k, ", ");
|
|
|
|
|
|
|
|
|
|
k += snprintf (buf + k, size - k, "%s", style_reg (styler, zan[i]));
|
2021-11-18 03:56:09 +08:00
|
|
|
|
}
|
|
|
|
|
if (mask == 0)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
snprintf (buf + k, size - k, "}");
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Generate the string representation of the operand OPNDS[IDX] for OPCODE
|
|
|
|
|
in *BUF. The caller should pass in the maximum size of *BUF in SIZE.
|
|
|
|
|
PC, PCREL_P and ADDRESS are used to pass in and return information about
|
|
|
|
|
the PC-relative address calculation, where the PC value is passed in
|
|
|
|
|
PC. If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
|
|
|
|
|
will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
|
|
|
|
|
calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.
|
|
|
|
|
|
|
|
|
|
The function serves both the disassembler and the assembler diagnostics
|
|
|
|
|
issuer, which is the reason why it lives in this file. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
aarch64_print_operand (char *buf, size_t size, bfd_vma pc,
|
|
|
|
|
const aarch64_opcode *opcode,
|
|
|
|
|
const aarch64_opnd_info *opnds, int idx, int *pcrel_p,
|
2020-09-08 21:21:44 +08:00
|
|
|
|
bfd_vma *address, char** notes,
|
opcodes/aarch64: split off creation of comment text in disassembler
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
2022-06-16 20:46:41 +08:00
|
|
|
|
char *comment, size_t comment_size,
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
aarch64_feature_set features,
|
|
|
|
|
struct aarch64_styler *styler)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
[AArch64] Add SVE condition codes
SVE defines new names for existing NZCV conditions, to reflect the
result of instructions like PTEST. This patch adds support for these
names.
The patch also adds comments to the disassembly output to show the
alternative names of a condition code. For example:
cinv x0, x1, cc
becomes:
cinv x0, x1, cc // cc = lo, ul, last
and:
b.cc f0 <...>
becomes:
b.cc f0 <...> // b.lo, b.ul, b.last
Doing this for the SVE names follows the practice recommended by the
SVE specification and is definitely useful when reading SVE code.
If the feeling is that it's too distracting elsewhere, we could add
an option to turn it off.
include/
* opcode/aarch64.h (aarch64_cond): Bump array size to 4.
opcodes/
* aarch64-dis.c (remove_dot_suffix): New function, split out from...
(print_mnemonic_name): ...here.
(print_comment): New function.
(print_aarch64_insn): Call it.
* aarch64-opc.c (aarch64_conds): Add SVE names.
(aarch64_print_operand): Print alternative condition names in
a comment.
gas/
* config/tc-aarch64.c (opcode_lookup): Search for the end of
a condition name, rather than assuming that it will have exactly
2 characters.
(parse_operands): Likewise.
* testsuite/gas/aarch64/alias.d: Add new condition-code comments
to the expected output.
* testsuite/gas/aarch64/beq_1.d: Likewise.
* testsuite/gas/aarch64/float-fp16.d: Likewise.
* testsuite/gas/aarch64/int-insns.d: Likewise.
* testsuite/gas/aarch64/no-aliases.d: Likewise.
* testsuite/gas/aarch64/programmer-friendly.d: Likewise.
* testsuite/gas/aarch64/reloc-insn.d: Likewise.
* testsuite/gas/aarch64/b_c_1.d, testsuite/gas/aarch64/b_c_1.s:
New test.
ld/
* testsuite/ld-aarch64/emit-relocs-280.d: Match branch comments.
* testsuite/ld-aarch64/weak-undefined.d: Likewise.
2016-09-22 00:09:59 +08:00
|
|
|
|
unsigned int i, num_conds;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const char *name = NULL;
|
|
|
|
|
const aarch64_opnd_info *opnd = opnds + idx;
|
|
|
|
|
enum aarch64_modifier_kind kind;
|
2016-09-21 23:54:53 +08:00
|
|
|
|
uint64_t addr, enum_value;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
|
opcodes/aarch64: split off creation of comment text in disassembler
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
2022-06-16 20:46:41 +08:00
|
|
|
|
if (comment != NULL)
|
|
|
|
|
{
|
|
|
|
|
assert (comment_size > 0);
|
|
|
|
|
comment[0] = '\0';
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
assert (comment_size == 0);
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
buf[0] = '\0';
|
|
|
|
|
if (pcrel_p)
|
|
|
|
|
*pcrel_p = 0;
|
|
|
|
|
|
|
|
|
|
switch (opnd->type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_Rd:
|
|
|
|
|
case AARCH64_OPND_Rn:
|
|
|
|
|
case AARCH64_OPND_Rm:
|
|
|
|
|
case AARCH64_OPND_Rt:
|
|
|
|
|
case AARCH64_OPND_Rt2:
|
|
|
|
|
case AARCH64_OPND_Rs:
|
|
|
|
|
case AARCH64_OPND_Ra:
|
2020-11-09 19:09:12 +08:00
|
|
|
|
case AARCH64_OPND_Rt_LS64:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_Rt_SYS:
|
2014-09-03 21:40:41 +08:00
|
|
|
|
case AARCH64_OPND_PAIRREG:
|
2023-12-13 22:09:08 +08:00
|
|
|
|
case AARCH64_OPND_PAIRREG_OR_XZR:
|
2016-09-21 23:57:43 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Rm:
|
2023-10-30 19:47:23 +08:00
|
|
|
|
case AARCH64_OPND_LSE128_Rt:
|
|
|
|
|
case AARCH64_OPND_LSE128_Rt2:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
|
2017-07-18 23:58:14 +08:00
|
|
|
|
the <ic_op>, therefore we use opnd->present to override the
|
2012-08-13 22:52:54 +08:00
|
|
|
|
generic optional-ness information. */
|
2016-10-07 17:55:56 +08:00
|
|
|
|
if (opnd->type == AARCH64_OPND_Rt_SYS)
|
|
|
|
|
{
|
|
|
|
|
if (!opnd->present)
|
|
|
|
|
break;
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Omit the operand, e.g. RET. */
|
2016-10-07 17:55:56 +08:00
|
|
|
|
else if (optional_operand_p (opcode, idx)
|
|
|
|
|
&& (opnd->reg.regno
|
|
|
|
|
== get_optional_operand_default_value (opcode)))
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
assert (opnd->qualifier == AARCH64_OPND_QLF_W
|
|
|
|
|
|| opnd->qualifier == AARCH64_OPND_QLF_X);
|
|
|
|
|
snprintf (buf, size, "%s",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno,
|
|
|
|
|
opnd->qualifier, 0)));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_Rd_SP:
|
|
|
|
|
case AARCH64_OPND_Rn_SP:
|
[BINUTILS, AArch64, 2/2] Update Store Allocation Tag instructions
This patch updates the Store allocation tags instructions in
Armv8.5-A Memory Tagging Extension. This is part of the changes
that have been introduced recently in the 00bet10 release
All of these instructions have an updated register operand (Xt -> <Xt|SP>)
- STG <Xt|SP>, [<Xn|SP>, #<simm>]
- STG <Xt|SP>, [<Xn|SP>, #<simm>]!
- STG <Xt|SP>, [<Xn|SP>], #<simm>
- STZG <Xt|SP>, [<Xn|SP>, #<simm>]
- STZG <Xt|SP>, [<Xn|SP>, #<simm>]!
- STZG <Xt|SP>, [<Xn|SP>], #<simm>
- ST2G <Xt|SP>, [<Xn|SP>, #<simm>]
- ST2G <Xt|SP>, [<Xn|SP>, #<simm>]!
- ST2G <Xt|SP>, [<Xn|SP>], #<simm>
- STZ2G <Xt|SP>, [<Xn|SP>, #<simm>]
- STZ2G <Xt|SP>, [<Xn|SP>, #<simm>]!
- STZ2G <Xt|SP>, [<Xn|SP>], #<simm>
In order to accept <Rt|SP> a new operand type Rt_SP is introduced which has
the same field as FLD_Rt but follows other semantics of Rn_SP.
*** gas/ChangeLog ***
2019-04-11 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (process_omitted_operand): Add case for
AARCH64_OPND_Rt_SP.
(parse_operands): Likewise.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Update tests.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
*** include/ChangeLog ***
2019-04-11 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_Rt_SP.
*** opcodes/ChangeLog ***
2019-04-11 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.c (aarch64_print_operand): Add case for
AARCH64_OPND_Rt_SP.
(verify_constraints): Likewise.
* aarch64-tbl.h (QL_LDST_AT): Update to add SP qualifier.
(struct aarch64_opcode): Update stg, stzg, st2g, stz2g instructions
to accept Rt|SP as first operand.
(AARCH64_OPERANDS): Add new Rt_SP.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
2019-04-11 17:19:37 +08:00
|
|
|
|
case AARCH64_OPND_Rt_SP:
|
2016-09-21 23:57:43 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Rn_SP:
|
2016-11-11 18:39:46 +08:00
|
|
|
|
case AARCH64_OPND_Rm_SP:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
assert (opnd->qualifier == AARCH64_OPND_QLF_W
|
|
|
|
|
|| opnd->qualifier == AARCH64_OPND_QLF_WSP
|
|
|
|
|
|| opnd->qualifier == AARCH64_OPND_QLF_X
|
|
|
|
|
|| opnd->qualifier == AARCH64_OPND_QLF_SP);
|
|
|
|
|
snprintf (buf, size, "%s",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno,
|
|
|
|
|
opnd->qualifier, 1)));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_Rm_EXT:
|
|
|
|
|
kind = opnd->shifter.kind;
|
|
|
|
|
assert (idx == 1 || idx == 2);
|
|
|
|
|
if ((aarch64_stack_pointer_p (opnds)
|
|
|
|
|
|| (idx == 2 && aarch64_stack_pointer_p (opnds + 1)))
|
|
|
|
|
&& ((opnd->qualifier == AARCH64_OPND_QLF_W
|
|
|
|
|
&& opnds[0].qualifier == AARCH64_OPND_QLF_W
|
|
|
|
|
&& kind == AARCH64_MOD_UXTW)
|
|
|
|
|
|| (opnd->qualifier == AARCH64_OPND_QLF_X
|
|
|
|
|
&& kind == AARCH64_MOD_UXTX)))
|
|
|
|
|
{
|
|
|
|
|
/* 'LSL' is the preferred form in this case. */
|
|
|
|
|
kind = AARCH64_MOD_LSL;
|
|
|
|
|
if (opnd->shifter.amount == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Shifter omitted. */
|
|
|
|
|
snprintf (buf, size, "%s",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_reg (styler,
|
|
|
|
|
get_int_reg_name (opnd->reg.regno,
|
|
|
|
|
opnd->qualifier, 0)));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (opnd->shifter.amount)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s, %s %s",
|
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0)),
|
|
|
|
|
style_sub_mnem (styler, aarch64_operand_modifiers[kind].name),
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->shifter.amount));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
|
|
|
|
snprintf (buf, size, "%s, %s",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0)),
|
|
|
|
|
style_sub_mnem (styler, aarch64_operand_modifiers[kind].name));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_Rm_SFT:
|
|
|
|
|
assert (opnd->qualifier == AARCH64_OPND_QLF_W
|
|
|
|
|
|| opnd->qualifier == AARCH64_OPND_QLF_X);
|
|
|
|
|
if (opnd->shifter.amount == 0 && opnd->shifter.kind == AARCH64_MOD_LSL)
|
2024-02-21 20:52:23 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno,
|
|
|
|
|
opnd->qualifier, 0)));
|
|
|
|
|
else
|
|
|
|
|
snprintf (buf, size, "%s, %s %s",
|
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0)),
|
|
|
|
|
style_sub_mnem (styler, aarch64_operand_modifiers[opnd->shifter.kind].name),
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->shifter.amount));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_Rm_LSL:
|
|
|
|
|
assert (opnd->qualifier == AARCH64_OPND_QLF_X);
|
|
|
|
|
assert (opnd->shifter.kind == AARCH64_MOD_LSL);
|
|
|
|
|
if (opnd->shifter.amount == 0)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno,
|
|
|
|
|
opnd->qualifier, 0)));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s, %s %s",
|
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0)),
|
|
|
|
|
style_sub_mnem (styler, aarch64_operand_modifiers[opnd->shifter.kind].name),
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->shifter.amount));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_Fd:
|
|
|
|
|
case AARCH64_OPND_Fn:
|
|
|
|
|
case AARCH64_OPND_Fm:
|
|
|
|
|
case AARCH64_OPND_Fa:
|
|
|
|
|
case AARCH64_OPND_Ft:
|
|
|
|
|
case AARCH64_OPND_Ft2:
|
|
|
|
|
case AARCH64_OPND_Sd:
|
|
|
|
|
case AARCH64_OPND_Sn:
|
|
|
|
|
case AARCH64_OPND_Sm:
|
2016-09-21 23:57:43 +08:00
|
|
|
|
case AARCH64_OPND_SVE_VZn:
|
|
|
|
|
case AARCH64_OPND_SVE_Vd:
|
|
|
|
|
case AARCH64_OPND_SVE_Vm:
|
|
|
|
|
case AARCH64_OPND_SVE_Vn:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "%s%d",
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier),
|
|
|
|
|
opnd->reg.regno));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
Adds the new Fields and Operand types for the new instructions in Armv8.4-a.
gas/
* config/tc-aarch64.c (process_omitted_operand):
Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2
and AARCH64_OPND_IMM_2.
(parse_operands): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_IMM_2, AARCH64_OPND_MASK
and AARCH64_OPND_ADDR_OFFSET.
include/
* opcode/aarch64.h:
(aarch64_opnd): Add AARCH64_OPND_Va, AARCH64_OPND_MASK,
AARCH64_OPND_IMM_2, AARCH64_OPND_ADDR_OFFSET
and AARCH64_OPND_SM3_IMM2.
(aarch64_insn_class): Add cryptosm3 and cryptosm4.
(arch64_feature_set): Make uint64_t.
opcodes/
* aarch64-asm.h (ins_addr_offset): New.
* aarch64-asm.c (aarch64_ins_reglane): Add cryptosm3.
(aarch64_ins_addr_offset): New.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_addr_offset): New.
* aarch64-dis.c (aarch64_ext_reglane): Add cryptosm3.
(aarch64_ext_addr_offset): New.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (aarch64_field_kind): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
* aarch64-opc.c (fields): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
(operand_general_constraint_met_p): Add AARCH64_OPND_ADDR_OFFSET.
(aarch64_print_operand): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_MASK, AARCH64_OPND_IMM_2 and AARCH64_OPND_ADDR_OFFSET.
* aarch64-opc-2.c (Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2): New.
* aarch64-tbl.h
(aarch64_opcode_table): Add Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2.
2017-11-09 23:22:30 +08:00
|
|
|
|
case AARCH64_OPND_Va:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_Vd:
|
|
|
|
|
case AARCH64_OPND_Vn:
|
|
|
|
|
case AARCH64_OPND_Vm:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "v%d.%s", opnd->reg.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_Ed:
|
|
|
|
|
case AARCH64_OPND_En:
|
|
|
|
|
case AARCH64_OPND_Em:
|
Fix AArch64 encodings for by element instructions.
Some instructions in Armv8-a place a limitation on FP16 registers that can be
used as the register from which to select an element from.
e.g. fmla restricts Rm to 4 bits when using an FP16 register. This restriction
does not apply for all instructions, e.g. fcmla does not have this restriction
as it gets an extra bit from the M field.
Unfortunately, this restriction to S_H was added for all _Em operands before,
meaning for a large number of instructions you couldn't use the full register
file.
This fixes the issue by introducing a new operand _Em16 which applies this
restriction only when paired with S_H and leaves the _Em and the other
qualifiers for _Em16 unbounded (i.e. using the full 5 bit range).
Also the patch updates all instructions that should be affected by this.
opcodes/
PR binutils/23192
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
* aarch64-dis.c (aarch64_ext_reglane): Add AARCH64_OPND_Em16 constraint.
* aarch64-opc.c (operand_general_constraint_met_p,
aarch64_print_operand): Likewise.
* aarch64-tbl.h (aarch64_opcode_table): Change Em to Em16 for smlal,
smlal2, fmla, fmls, fmul, fmulx, sqrdmlah, sqrdlsh, fmlal, fmlsl,
fmlal2, fmlsl2.
(AARCH64_OPERANDS): Add Em2.
gas/
PR binutils/23192
* config/tc-aarch64.c (process_omitted_operand, parse_operands): Add
AARCH64_OPND_Em16
* testsuite/gas/aarch64/advsimd-armv8_3.s: Expand tests to cover upper
16 registers.
* testsuite/gas/aarch64/advsimd-armv8_3.d: Likewise.
* testsuite/gas/aarch64/advsimd-compnum.s: Likewise.
* testsuite/gas/aarch64/advsimd-compnum.d: Likewise.
* testsuite/gas/aarch64/sve.d: Likewise.
include/
PR binutils/23192
*opcode/aarch64.h (aarch64_opnd): Add AARCH64_OPND_Em16.
2018-06-29 19:12:27 +08:00
|
|
|
|
case AARCH64_OPND_Em16:
|
Adds the new Fields and Operand types for the new instructions in Armv8.4-a.
gas/
* config/tc-aarch64.c (process_omitted_operand):
Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2
and AARCH64_OPND_IMM_2.
(parse_operands): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_IMM_2, AARCH64_OPND_MASK
and AARCH64_OPND_ADDR_OFFSET.
include/
* opcode/aarch64.h:
(aarch64_opnd): Add AARCH64_OPND_Va, AARCH64_OPND_MASK,
AARCH64_OPND_IMM_2, AARCH64_OPND_ADDR_OFFSET
and AARCH64_OPND_SM3_IMM2.
(aarch64_insn_class): Add cryptosm3 and cryptosm4.
(arch64_feature_set): Make uint64_t.
opcodes/
* aarch64-asm.h (ins_addr_offset): New.
* aarch64-asm.c (aarch64_ins_reglane): Add cryptosm3.
(aarch64_ins_addr_offset): New.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_addr_offset): New.
* aarch64-dis.c (aarch64_ext_reglane): Add cryptosm3.
(aarch64_ext_addr_offset): New.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (aarch64_field_kind): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
* aarch64-opc.c (fields): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
(operand_general_constraint_met_p): Add AARCH64_OPND_ADDR_OFFSET.
(aarch64_print_operand): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_MASK, AARCH64_OPND_IMM_2 and AARCH64_OPND_ADDR_OFFSET.
* aarch64-opc-2.c (Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2): New.
* aarch64-tbl.h
(aarch64_opcode_table): Add Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2.
2017-11-09 23:22:30 +08:00
|
|
|
|
case AARCH64_OPND_SM3_IMM2:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s[%s]",
|
|
|
|
|
style_reg (styler, "v%d.%s", opnd->reglane.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)),
|
|
|
|
|
style_imm (styler, "%" PRIi64, opnd->reglane.index));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_VdD1:
|
|
|
|
|
case AARCH64_OPND_VnD1:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s[%s]",
|
|
|
|
|
style_reg (styler, "v%d.d", opnd->reg.regno),
|
|
|
|
|
style_imm (styler, "1"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_LVn:
|
|
|
|
|
case AARCH64_OPND_LVt:
|
|
|
|
|
case AARCH64_OPND_LVt_AL:
|
|
|
|
|
case AARCH64_OPND_LEt:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
print_register_list (buf, size, opnd, "v", styler);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Pd:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg3:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg4_5:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg4_10:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg4_16:
|
|
|
|
|
case AARCH64_OPND_SVE_Pm:
|
|
|
|
|
case AARCH64_OPND_SVE_Pn:
|
|
|
|
|
case AARCH64_OPND_SVE_Pt:
|
2021-11-18 03:21:33 +08:00
|
|
|
|
case AARCH64_OPND_SME_Pm:
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "p%d", opnd->reg.regno));
|
2016-09-21 23:54:30 +08:00
|
|
|
|
else if (opnd->qualifier == AARCH64_OPND_QLF_P_Z
|
|
|
|
|
|| opnd->qualifier == AARCH64_OPND_QLF_P_M)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "p%d/%s", opnd->reg.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)));
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "p%d.%s", opnd->reg.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)));
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:11 +08:00
|
|
|
|
case AARCH64_OPND_SVE_PNd:
|
|
|
|
|
case AARCH64_OPND_SVE_PNg4_10:
|
|
|
|
|
case AARCH64_OPND_SVE_PNn:
|
|
|
|
|
case AARCH64_OPND_SVE_PNt:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_PNd3:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_PNg3:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_PNn:
|
2023-03-30 18:09:11 +08:00
|
|
|
|
if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
|
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "pn%d", opnd->reg.regno));
|
2023-03-30 18:09:12 +08:00
|
|
|
|
else if (opnd->qualifier == AARCH64_OPND_QLF_P_Z
|
|
|
|
|
|| opnd->qualifier == AARCH64_OPND_QLF_P_M)
|
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "pn%d/%s", opnd->reg.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)));
|
2023-03-30 18:09:11 +08:00
|
|
|
|
else
|
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "pn%d.%s", opnd->reg.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)));
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Pdx2:
|
|
|
|
|
case AARCH64_OPND_SME_PdxN:
|
|
|
|
|
print_register_list (buf, size, opnd, "p", styler);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_PNn3_INDEX1:
|
|
|
|
|
case AARCH64_OPND_SME_PNn3_INDEX2:
|
|
|
|
|
snprintf (buf, size, "%s[%s]",
|
|
|
|
|
style_reg (styler, "pn%d", opnd->reglane.regno),
|
|
|
|
|
style_imm (styler, "%" PRIi64, opnd->reglane.index));
|
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Za_5:
|
|
|
|
|
case AARCH64_OPND_SVE_Za_16:
|
|
|
|
|
case AARCH64_OPND_SVE_Zd:
|
|
|
|
|
case AARCH64_OPND_SVE_Zm_5:
|
|
|
|
|
case AARCH64_OPND_SVE_Zm_16:
|
|
|
|
|
case AARCH64_OPND_SVE_Zn:
|
|
|
|
|
case AARCH64_OPND_SVE_Zt:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm:
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_reg (styler, "z%d", opnd->reg.regno));
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "z%d.%s", opnd->reg.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)));
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ZnxN:
|
|
|
|
|
case AARCH64_OPND_SVE_ZtxN:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zdnx2:
|
|
|
|
|
case AARCH64_OPND_SME_Zdnx4:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zmx2:
|
|
|
|
|
case AARCH64_OPND_SME_Zmx4:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Znx2:
|
|
|
|
|
case AARCH64_OPND_SME_Znx4:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Ztx2_STRIDED:
|
|
|
|
|
case AARCH64_OPND_SME_Ztx4_STRIDED:
|
2024-01-15 17:40:11 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zt2:
|
|
|
|
|
case AARCH64_OPND_SME_Zt3:
|
|
|
|
|
case AARCH64_OPND_SME_Zt4:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
print_register_list (buf, size, opnd, "z", styler);
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm3_INDEX:
|
|
|
|
|
case AARCH64_OPND_SVE_Zm3_22_INDEX:
|
2023-03-30 18:09:17 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm3_19_INDEX:
|
2019-05-09 17:29:17 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm3_11_INDEX:
|
2019-05-09 17:29:24 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm4_11_INDEX:
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm4_INDEX:
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zn_INDEX:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX1:
|
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX2:
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX3_1:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX3_2:
|
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX3_10:
|
2024-01-15 17:37:32 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zn_5_INDEX:
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX4_1:
|
|
|
|
|
case AARCH64_OPND_SME_Zm_INDEX4_10:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX1_16:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX2_15:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX2_16:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX3_14:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX3_15:
|
|
|
|
|
case AARCH64_OPND_SME_Zn_INDEX4_14:
|
2024-01-15 17:37:32 +08:00
|
|
|
|
case AARCH64_OPND_SVE_Zm_imm4:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s[%s]",
|
2023-03-30 18:09:12 +08:00
|
|
|
|
(opnd->qualifier == AARCH64_OPND_QLF_NIL
|
|
|
|
|
? style_reg (styler, "z%d", opnd->reglane.regno)
|
|
|
|
|
: style_reg (styler, "z%d.%s", opnd->reglane.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier))),
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_imm (styler, "%" PRIi64, opnd->reglane.index));
|
[AArch64][SVE 21/32] Add Zn and Pn registers
This patch adds the Zn and Pn registers, and associated fields and
operands.
include/
* opcode/aarch64.h (AARCH64_OPND_CLASS_SVE_REG): New
aarch64_operand_class.
(AARCH64_OPND_CLASS_PRED_REG): Likewise.
(AARCH64_OPND_SVE_Pd, AARCH64_OPND_SVE_Pg3, AARCH64_OPND_SVE_Pg4_5)
(AARCH64_OPND_SVE_Pg4_10, AARCH64_OPND_SVE_Pg4_16)
(AARCH64_OPND_SVE_Pm, AARCH64_OPND_SVE_Pn, AARCH64_OPND_SVE_Pt)
(AARCH64_OPND_SVE_Za_5, AARCH64_OPND_SVE_Za_16, AARCH64_OPND_SVE_Zd)
(AARCH64_OPND_SVE_Zm_5, AARCH64_OPND_SVE_Zm_16, AARCH64_OPND_SVE_Zn)
(AARCH64_OPND_SVE_Zn_INDEX, AARCH64_OPND_SVE_ZnxN)
(AARCH64_OPND_SVE_Zt, AARCH64_OPND_SVE_ZtxN): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new SVE operands.
* aarch64-opc.h (FLD_SVE_Pd, FLD_SVE_Pg3, FLD_SVE_Pg4_5)
(FLD_SVE_Pg4_10, FLD_SVE_Pg4_16, FLD_SVE_Pm, FLD_SVE_Pn, FLD_SVE_Pt)
(FLD_SVE_Za_5, FLD_SVE_Za_16, FLD_SVE_Zd, FLD_SVE_Zm_5, FLD_SVE_Zm_16)
(FLD_SVE_Zn, FLD_SVE_Zt, FLD_SVE_tzsh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries here.
(operand_general_constraint_met_p): Check that SVE register lists
have the correct length. Check the ranges of SVE index registers.
Check for cases where p8-p15 are used in 3-bit predicate fields.
(aarch64_print_operand): Handle the new SVE operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_index, ins_sve_reglist): New inserters.
* aarch64-asm.c (aarch64_ins_sve_index): New function.
(aarch64_ins_sve_reglist): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_index, ext_sve_reglist): New extractors.
* aarch64-dis.c (aarch64_ext_sve_index): New function.
(aarch64_ext_sve_reglist): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (NTA_HASVARWIDTH): New macro.
(AARCH64_REG_TYPES): Add ZN and PN.
(get_reg_expected_msg): Handle them.
(parse_vector_type_for_operand): Add a reg_type parameter.
Skip the width for Zn and Pn registers.
(parse_typed_reg): Extend vector handling to Zn and Pn. Update the
call to parse_vector_type_for_operand. Set HASVARTYPE for Zn and Pn,
expecting the width to be 0.
(parse_vector_reg_list): Restrict error about [BHSD]nn operands to
REG_TYPE_VN.
(vectype_to_qualifier): Use S_[BHSD] qualifiers for NTA_HASVARWIDTH.
(parse_operands): Handle the new Zn and Pn operands.
(REGSET16): New macro, split out from...
(REGSET31): ...here.
(reg_names): Add Zn and Pn entries.
2016-09-21 23:53:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2021-11-18 03:21:33 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZAda_2b:
|
|
|
|
|
case AARCH64_OPND_SME_ZAda_3b:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "za%d.%s", opnd->reg.regno,
|
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)));
|
2021-11-18 03:21:33 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2021-11-18 03:31:25 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_src:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_srcxN:
|
2021-11-18 03:31:25 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_dest:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_destxN:
|
2021-11-18 04:02:06 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_HV_idx_ldstr:
|
2023-03-30 18:09:11 +08:00
|
|
|
|
snprintf (buf, size, "%s%s[%s, %s%s%s%s%s]%s",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
opnd->type == AARCH64_OPND_SME_ZA_HV_idx_ldstr ? "{" : "",
|
|
|
|
|
style_reg (styler, "za%d%c.%s",
|
2023-03-30 18:09:04 +08:00
|
|
|
|
opnd->indexed_za.regno,
|
|
|
|
|
opnd->indexed_za.v == 1 ? 'v' : 'h',
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)),
|
2023-03-30 18:09:04 +08:00
|
|
|
|
style_reg (styler, "w%d", opnd->indexed_za.index.regno),
|
2023-03-30 18:09:04 +08:00
|
|
|
|
style_imm (styler, "%" PRIi64, opnd->indexed_za.index.imm),
|
2023-03-30 18:09:11 +08:00
|
|
|
|
opnd->indexed_za.index.countm1 ? ":" : "",
|
|
|
|
|
(opnd->indexed_za.index.countm1
|
|
|
|
|
? style_imm (styler, "%d",
|
|
|
|
|
opnd->indexed_za.index.imm
|
|
|
|
|
+ opnd->indexed_za.index.countm1)
|
|
|
|
|
: ""),
|
2023-03-30 18:09:11 +08:00
|
|
|
|
opnd->indexed_za.group_size ? ", " : "",
|
|
|
|
|
opnd->indexed_za.group_size == 2
|
|
|
|
|
? style_sub_mnem (styler, "vgx2")
|
|
|
|
|
: opnd->indexed_za.group_size == 4
|
|
|
|
|
? style_sub_mnem (styler, "vgx4") : "",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
opnd->type == AARCH64_OPND_SME_ZA_HV_idx_ldstr ? "}" : "");
|
2021-11-18 03:31:25 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2021-11-18 03:56:09 +08:00
|
|
|
|
case AARCH64_OPND_SME_list_of_64bit_tiles:
|
2024-04-09 23:21:53 +08:00
|
|
|
|
print_sme_za_list (buf, size, opnd->imm.value, styler);
|
2021-11-18 03:56:09 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off1x4:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off2x2:
|
2023-03-30 18:09:14 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off2x4:
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off3_0:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off3_5:
|
2023-03-30 18:09:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off3x2:
|
2023-03-30 18:09:11 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_off4:
|
2023-03-30 18:09:11 +08:00
|
|
|
|
snprintf (buf, size, "%s[%s, %s%s%s%s%s]",
|
2023-03-30 18:09:12 +08:00
|
|
|
|
style_reg (styler, "za%s%s",
|
|
|
|
|
opnd->qualifier == AARCH64_OPND_QLF_NIL ? "" : ".",
|
|
|
|
|
(opnd->qualifier == AARCH64_OPND_QLF_NIL
|
|
|
|
|
? ""
|
|
|
|
|
: aarch64_get_qualifier_name (opnd->qualifier))),
|
2023-03-30 18:09:04 +08:00
|
|
|
|
style_reg (styler, "w%d", opnd->indexed_za.index.regno),
|
2023-03-30 18:09:11 +08:00
|
|
|
|
style_imm (styler, "%" PRIi64, opnd->indexed_za.index.imm),
|
2023-03-30 18:09:11 +08:00
|
|
|
|
opnd->indexed_za.index.countm1 ? ":" : "",
|
|
|
|
|
(opnd->indexed_za.index.countm1
|
|
|
|
|
? style_imm (styler, "%d",
|
|
|
|
|
opnd->indexed_za.index.imm
|
|
|
|
|
+ opnd->indexed_za.index.countm1)
|
|
|
|
|
: ""),
|
2023-03-30 18:09:11 +08:00
|
|
|
|
opnd->indexed_za.group_size ? ", " : "",
|
|
|
|
|
opnd->indexed_za.group_size == 2
|
|
|
|
|
? style_sub_mnem (styler, "vgx2")
|
|
|
|
|
: opnd->indexed_za.group_size == 4
|
|
|
|
|
? style_sub_mnem (styler, "vgx4") : "");
|
2021-11-18 04:02:06 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2024-01-15 17:34:41 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsb_1:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsh_1:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrss_1:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsd_1:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsb_2:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsh_2:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrss_2:
|
|
|
|
|
case AARCH64_OPND_SME_ZA_array_vrsd_2:
|
|
|
|
|
snprintf (buf, size, "%s [%s, %s%s%s]",
|
|
|
|
|
style_reg (styler, "za%d%c%s%s",
|
|
|
|
|
opnd->indexed_za.regno,
|
|
|
|
|
opnd->indexed_za.v ? 'v': 'h',
|
|
|
|
|
opnd->qualifier == AARCH64_OPND_QLF_NIL ? "" : ".",
|
|
|
|
|
(opnd->qualifier == AARCH64_OPND_QLF_NIL
|
|
|
|
|
? ""
|
|
|
|
|
: aarch64_get_qualifier_name (opnd->qualifier))),
|
|
|
|
|
style_reg (styler, "w%d", opnd->indexed_za.index.regno),
|
|
|
|
|
style_imm (styler, "%" PRIi64, opnd->indexed_za.index.imm),
|
|
|
|
|
opnd->indexed_za.index.countm1 ? ":" : "",
|
|
|
|
|
opnd->indexed_za.index.countm1 ? style_imm (styler, "%d",
|
|
|
|
|
opnd->indexed_za.index.imm
|
|
|
|
|
+ opnd->indexed_za.index.countm1):"");
|
|
|
|
|
break;
|
|
|
|
|
|
2021-11-18 04:15:13 +08:00
|
|
|
|
case AARCH64_OPND_SME_SM_ZA:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, opnd->reg.regno == 's' ? "sm" : "za"));
|
2021-11-18 04:15:13 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2021-11-18 04:26:53 +08:00
|
|
|
|
case AARCH64_OPND_SME_PnT_Wm_imm:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s[%s, %s]",
|
2023-03-30 18:09:04 +08:00
|
|
|
|
style_reg (styler, "p%d.%s", opnd->indexed_za.regno,
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
aarch64_get_qualifier_name (opnd->qualifier)),
|
2023-03-30 18:09:04 +08:00
|
|
|
|
style_reg (styler, "w%d", opnd->indexed_za.index.regno),
|
2023-03-30 18:09:04 +08:00
|
|
|
|
style_imm (styler, "%" PRIi64, opnd->indexed_za.index.imm));
|
2021-11-18 04:26:53 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_VLxN_10:
|
|
|
|
|
case AARCH64_OPND_SME_VLxN_13:
|
|
|
|
|
enum_value = opnd->imm.value;
|
|
|
|
|
assert (enum_value < ARRAY_SIZE (aarch64_sme_vlxn_array));
|
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_sub_mnem (styler, aarch64_sme_vlxn_array[enum_value]));
|
|
|
|
|
break;
|
|
|
|
|
|
2016-12-13 20:37:18 +08:00
|
|
|
|
case AARCH64_OPND_CRn:
|
|
|
|
|
case AARCH64_OPND_CRm:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "C%" PRIi64, opnd->imm.value));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_IDX:
|
Adds the new Fields and Operand types for the new instructions in Armv8.4-a.
gas/
* config/tc-aarch64.c (process_omitted_operand):
Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2
and AARCH64_OPND_IMM_2.
(parse_operands): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_IMM_2, AARCH64_OPND_MASK
and AARCH64_OPND_ADDR_OFFSET.
include/
* opcode/aarch64.h:
(aarch64_opnd): Add AARCH64_OPND_Va, AARCH64_OPND_MASK,
AARCH64_OPND_IMM_2, AARCH64_OPND_ADDR_OFFSET
and AARCH64_OPND_SM3_IMM2.
(aarch64_insn_class): Add cryptosm3 and cryptosm4.
(arch64_feature_set): Make uint64_t.
opcodes/
* aarch64-asm.h (ins_addr_offset): New.
* aarch64-asm.c (aarch64_ins_reglane): Add cryptosm3.
(aarch64_ins_addr_offset): New.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_addr_offset): New.
* aarch64-dis.c (aarch64_ext_reglane): Add cryptosm3.
(aarch64_ext_addr_offset): New.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (aarch64_field_kind): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
* aarch64-opc.c (fields): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
(operand_general_constraint_met_p): Add AARCH64_OPND_ADDR_OFFSET.
(aarch64_print_operand): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_MASK, AARCH64_OPND_IMM_2 and AARCH64_OPND_ADDR_OFFSET.
* aarch64-opc-2.c (Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2): New.
* aarch64-tbl.h
(aarch64_opcode_table): Add Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2.
2017-11-09 23:22:30 +08:00
|
|
|
|
case AARCH64_OPND_MASK:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_IMM:
|
Adds the new Fields and Operand types for the new instructions in Armv8.4-a.
gas/
* config/tc-aarch64.c (process_omitted_operand):
Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2
and AARCH64_OPND_IMM_2.
(parse_operands): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_IMM_2, AARCH64_OPND_MASK
and AARCH64_OPND_ADDR_OFFSET.
include/
* opcode/aarch64.h:
(aarch64_opnd): Add AARCH64_OPND_Va, AARCH64_OPND_MASK,
AARCH64_OPND_IMM_2, AARCH64_OPND_ADDR_OFFSET
and AARCH64_OPND_SM3_IMM2.
(aarch64_insn_class): Add cryptosm3 and cryptosm4.
(arch64_feature_set): Make uint64_t.
opcodes/
* aarch64-asm.h (ins_addr_offset): New.
* aarch64-asm.c (aarch64_ins_reglane): Add cryptosm3.
(aarch64_ins_addr_offset): New.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_addr_offset): New.
* aarch64-dis.c (aarch64_ext_reglane): Add cryptosm3.
(aarch64_ext_addr_offset): New.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (aarch64_field_kind): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
* aarch64-opc.c (fields): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
(operand_general_constraint_met_p): Add AARCH64_OPND_ADDR_OFFSET.
(aarch64_print_operand): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_MASK, AARCH64_OPND_IMM_2 and AARCH64_OPND_ADDR_OFFSET.
* aarch64-opc-2.c (Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2): New.
* aarch64-tbl.h
(aarch64_opcode_table): Add Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2.
2017-11-09 23:22:30 +08:00
|
|
|
|
case AARCH64_OPND_IMM_2:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_WIDTH:
|
|
|
|
|
case AARCH64_OPND_UIMM3_OP1:
|
|
|
|
|
case AARCH64_OPND_UIMM3_OP2:
|
|
|
|
|
case AARCH64_OPND_BIT_NUM:
|
|
|
|
|
case AARCH64_OPND_IMM_VLSL:
|
|
|
|
|
case AARCH64_OPND_IMM_VLSR:
|
|
|
|
|
case AARCH64_OPND_SHLL_IMM:
|
|
|
|
|
case AARCH64_OPND_IMM0:
|
|
|
|
|
case AARCH64_OPND_IMMR:
|
|
|
|
|
case AARCH64_OPND_IMMS:
|
2020-04-30 22:47:30 +08:00
|
|
|
|
case AARCH64_OPND_UNDEFINED:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_FBITS:
|
2019-05-02 00:14:01 +08:00
|
|
|
|
case AARCH64_OPND_TME_UIMM16:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SIMM5:
|
2023-03-30 18:09:16 +08:00
|
|
|
|
case AARCH64_OPND_SME_SHRIMM4:
|
|
|
|
|
case AARCH64_OPND_SME_SHRIMM5:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHLIMM_PRED:
|
|
|
|
|
case AARCH64_OPND_SVE_SHLIMM_UNPRED:
|
2019-05-09 17:29:27 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHRIMM_PRED:
|
|
|
|
|
case AARCH64_OPND_SVE_SHRIMM_UNPRED:
|
2019-05-09 17:29:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_SIMM5:
|
|
|
|
|
case AARCH64_OPND_SVE_SIMM5B:
|
|
|
|
|
case AARCH64_OPND_SVE_SIMM6:
|
|
|
|
|
case AARCH64_OPND_SVE_SIMM8:
|
|
|
|
|
case AARCH64_OPND_SVE_UIMM3:
|
|
|
|
|
case AARCH64_OPND_SVE_UIMM7:
|
|
|
|
|
case AARCH64_OPND_SVE_UIMM8:
|
|
|
|
|
case AARCH64_OPND_SVE_UIMM8_53:
|
[AArch64] Add ARMv8.3 FCMLA and FCADD instructions
Add support for FCMLA and FCADD complex arithmetic SIMD instructions.
FCMLA has an indexed element variant where the index range has to be
treated specially because a complex number takes two elements and the
indexed vector size depends on the other operands.
These complex number SIMD instructions are part of ARMv8.3
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
include/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* opcode/aarch64.h (enum aarch64_opnd): Add AARCH64_OPND_IMM_ROT1,
AARCH64_OPND_IMM_ROT2, AARCH64_OPND_IMM_ROT3.
(enum aarch64_op): Add OP_FCMLA_ELEM.
opcodes/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* aarch64-tbl.h (QL_V3SAMEHSD_ROT, QL_ELEMENT_ROT): Define.
(aarch64_feature_simd_v8_3, SIMD_V8_3): Define.
(aarch64_opcode_table): Add fcmla and fcadd.
(AARCH64_OPERANDS): Add IMM_ROT{1,2,3}.
* aarch64-asm.h (aarch64_ins_imm_rotate): Declare.
* aarch64-asm.c (aarch64_ins_imm_rotate): Define.
* aarch64-dis.h (aarch64_ext_imm_rotate): Declare.
* aarch64-dis.c (aarch64_ext_imm_rotate): Define.
* aarch64-opc.h (enum aarch64_field_kind): Add FLD_rotate{1,2,3}.
* aarch64-opc.c (fields): Add FLD_rotate{1,2,3}.
(operand_general_constraint_met_p): Rotate and index range check.
(aarch64_print_operand): Handle rotate operand.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
2016-11-18 Szabolcs Nagy <szabolcs.nagy@arm.com>
* config/tc-aarch64.c (parse_operands): Handle AARCH64_OPND_IMM_ROT*.
* testsuite/gas/aarch64/advsimd-armv8_3.d: New.
* testsuite/gas/aarch64/advsimd-armv8_3.s: New.
* testsuite/gas/aarch64/illegal-fcmla.s: New.
* testsuite/gas/aarch64/illegal-fcmla.l: New.
* testsuite/gas/aarch64/illegal-fcmla.d: New.
2016-11-18 18:02:16 +08:00
|
|
|
|
case AARCH64_OPND_IMM_ROT1:
|
|
|
|
|
case AARCH64_OPND_IMM_ROT2:
|
|
|
|
|
case AARCH64_OPND_IMM_ROT3:
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_IMM_ROT1:
|
|
|
|
|
case AARCH64_OPND_SVE_IMM_ROT2:
|
2019-05-09 17:29:15 +08:00
|
|
|
|
case AARCH64_OPND_SVE_IMM_ROT3:
|
2022-11-15 00:47:22 +08:00
|
|
|
|
case AARCH64_OPND_CSSC_SIMM8:
|
|
|
|
|
case AARCH64_OPND_CSSC_UIMM8:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->imm.value));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2016-09-21 23:57:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_I1_HALF_ONE:
|
|
|
|
|
case AARCH64_OPND_SVE_I1_HALF_TWO:
|
|
|
|
|
case AARCH64_OPND_SVE_I1_ZERO_ONE:
|
|
|
|
|
{
|
|
|
|
|
single_conv_t c;
|
|
|
|
|
c.i = opnd->imm.value;
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, "#%.1f", c.f));
|
2016-09-21 23:57:22 +08:00
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
2016-09-21 23:54:53 +08:00
|
|
|
|
case AARCH64_OPND_SVE_PATTERN:
|
|
|
|
|
if (optional_operand_p (opcode, idx)
|
|
|
|
|
&& opnd->imm.value == get_optional_operand_default_value (opcode))
|
|
|
|
|
break;
|
|
|
|
|
enum_value = opnd->imm.value;
|
|
|
|
|
assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
|
|
|
|
|
if (aarch64_sve_pattern_array[enum_value])
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, aarch64_sve_pattern_array[enum_value]));
|
2016-09-21 23:54:53 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->imm.value));
|
2016-09-21 23:54:53 +08:00
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_PATTERN_SCALED:
|
|
|
|
|
if (optional_operand_p (opcode, idx)
|
|
|
|
|
&& !opnd->shifter.operator_present
|
|
|
|
|
&& opnd->imm.value == get_optional_operand_default_value (opcode))
|
|
|
|
|
break;
|
|
|
|
|
enum_value = opnd->imm.value;
|
|
|
|
|
assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
|
|
|
|
|
if (aarch64_sve_pattern_array[opnd->imm.value])
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler,
|
|
|
|
|
aarch64_sve_pattern_array[opnd->imm.value]));
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->imm.value));
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
if (opnd->shifter.operator_present)
|
|
|
|
|
{
|
|
|
|
|
size_t len = strlen (buf);
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
const char *shift_name
|
|
|
|
|
= aarch64_operand_modifiers[opnd->shifter.kind].name;
|
|
|
|
|
snprintf (buf + len, size - len, ", %s %s",
|
|
|
|
|
style_sub_mnem (styler, shift_name),
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->shifter.amount));
|
[AArch64][SVE 24/32] Add AARCH64_OPND_SVE_PATTERN_SCALED
Some SVE instructions count the number of elements in a given vector
pattern and allow a scale factor of [1, 16] to be applied to the result.
This scale factor is written ", MUL #n", where "MUL" is a new operator.
E.g.:
UQINCD X0, POW2, MUL #2
This patch adds support for this kind of operand.
All existing operators were shifts of some kind, so there was a natural
range of [0, 63] regardless of context. This was then narrowered further
by later checks (e.g. to [0, 31] when used for 32-bit values).
In contrast, MUL doesn't really have a natural context-independent range.
Rather than pick one arbitrarily, it seemed better to make the "shift"
amount a full 64-bit value and leave the range test to the usual
operand-checking code. I've rearranged the fields of aarch64_opnd_info
so that this doesn't increase the size of the structure (although I don't
think its size is critical anyway).
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_PATTERN_SCALED): New
aarch64_opnd.
(AARCH64_MOD_MUL): New aarch64_modifier_kind.
(aarch64_opnd_info): Make shifter.amount an int64_t and
rearrange the fields.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add an entry for
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc.h (FLD_SVE_imm4): New aarch64_field_kind.
* aarch64-opc.c (fields): Add a corresponding entry.
(set_multiplier_out_of_range_error): New function.
(aarch64_operand_modifiers): Add entry for AARCH64_MOD_MUL.
(operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
(print_register_offset_address): Use PRIi64 to print the
shift amount.
(aarch64_print_operand): Likewise. Handle
AARCH64_OPND_SVE_PATTERN_SCALED.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_scale): New inserter.
* aarch64-asm.c (aarch64_ins_sve_scale): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_scale): New inserter.
* aarch64-dis.c (aarch64_ext_sve_scale): New function.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_MUL): New parse_shift_mode.
(parse_shift): Handle it. Reject AARCH64_MOD_MUL for all other
shift modes. Skip range tests for AARCH64_MOD_MUL.
(process_omitted_operand): Handle AARCH64_OPND_SVE_PATTERN_SCALED.
(parse_operands): Likewise.
2016-09-21 23:55:22 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2016-09-21 23:54:53 +08:00
|
|
|
|
case AARCH64_OPND_SVE_PRFOP:
|
|
|
|
|
enum_value = opnd->imm.value;
|
|
|
|
|
assert (enum_value < ARRAY_SIZE (aarch64_sve_prfop_array));
|
|
|
|
|
if (aarch64_sve_prfop_array[enum_value])
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, aarch64_sve_prfop_array[enum_value]));
|
2016-09-21 23:54:53 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->imm.value));
|
2016-09-21 23:54:53 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2013-01-04 22:59:33 +08:00
|
|
|
|
case AARCH64_OPND_IMM_MOV:
|
|
|
|
|
switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
|
|
|
|
|
{
|
|
|
|
|
case 4: /* e.g. MOV Wd, #<imm32>. */
|
|
|
|
|
{
|
|
|
|
|
int imm32 = opnd->imm.value;
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#0x%-20x", imm32));
|
opcodes/aarch64: split off creation of comment text in disassembler
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
2022-06-16 20:46:41 +08:00
|
|
|
|
snprintf (comment, comment_size, "#%d", imm32);
|
2013-01-04 22:59:33 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case 8: /* e.g. MOV Xd, #<imm64>. */
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, "#0x%-20" PRIx64,
|
|
|
|
|
opnd->imm.value));
|
opcodes/aarch64: split off creation of comment text in disassembler
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
2022-06-16 20:46:41 +08:00
|
|
|
|
snprintf (comment, comment_size, "#%" PRIi64, opnd->imm.value);
|
2013-01-04 22:59:33 +08:00
|
|
|
|
break;
|
2021-11-25 21:11:25 +08:00
|
|
|
|
default:
|
|
|
|
|
snprintf (buf, size, "<invalid>");
|
|
|
|
|
break;
|
2013-01-04 22:59:33 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_FPIMM0:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, "#0.0"));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_LIMM:
|
|
|
|
|
case AARCH64_OPND_AIMM:
|
|
|
|
|
case AARCH64_OPND_HALF:
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_INV_LIMM:
|
|
|
|
|
case AARCH64_OPND_SVE_LIMM:
|
|
|
|
|
case AARCH64_OPND_SVE_LIMM_MOV:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
if (opnd->shifter.amount)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s, %s %s",
|
|
|
|
|
style_imm (styler, "#0x%" PRIx64, opnd->imm.value),
|
|
|
|
|
style_sub_mnem (styler, "lsl"),
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->shifter.amount));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#0x%" PRIx64, opnd->imm.value));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SIMD_IMM:
|
|
|
|
|
case AARCH64_OPND_SIMD_IMM_SFT:
|
|
|
|
|
if ((! opnd->shifter.amount && opnd->shifter.kind == AARCH64_MOD_LSL)
|
|
|
|
|
|| opnd->shifter.kind == AARCH64_MOD_NONE)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#0x%" PRIx64, opnd->imm.value));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s, %s %s",
|
|
|
|
|
style_imm (styler, "#0x%" PRIx64, opnd->imm.value),
|
|
|
|
|
style_sub_mnem (styler, aarch64_operand_modifiers[opnd->shifter.kind].name),
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->shifter.amount));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
case AARCH64_OPND_SVE_AIMM:
|
|
|
|
|
case AARCH64_OPND_SVE_ASIMM:
|
|
|
|
|
if (opnd->shifter.amount)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s, %s %s",
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->imm.value),
|
|
|
|
|
style_sub_mnem (styler, "lsl"),
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->shifter.amount));
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->imm.value));
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_FPIMM:
|
|
|
|
|
case AARCH64_OPND_SIMD_FPIMM:
|
2016-09-21 23:57:22 +08:00
|
|
|
|
case AARCH64_OPND_SVE_FPIMM8:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
|
|
|
|
|
{
|
2015-11-28 00:25:52 +08:00
|
|
|
|
case 2: /* e.g. FMOV <Hd>, #<imm>. */
|
|
|
|
|
{
|
|
|
|
|
half_conv_t c;
|
|
|
|
|
c.i = expand_fp_imm (2, opnd->imm.value);
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, "#%.18e", c.f));
|
2015-11-28 00:25:52 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case 4: /* e.g. FMOV <Vd>.4S, #<imm>. */
|
|
|
|
|
{
|
|
|
|
|
single_conv_t c;
|
2015-11-28 00:25:52 +08:00
|
|
|
|
c.i = expand_fp_imm (4, opnd->imm.value);
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, "#%.18e", c.f));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case 8: /* e.g. FMOV <Sd>, #<imm>. */
|
|
|
|
|
{
|
|
|
|
|
double_conv_t c;
|
2015-11-28 00:25:52 +08:00
|
|
|
|
c.i = expand_fp_imm (8, opnd->imm.value);
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, "#%.18e", c.d));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
2021-11-25 21:11:25 +08:00
|
|
|
|
default:
|
|
|
|
|
snprintf (buf, size, "<invalid>");
|
|
|
|
|
break;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_CCMP_IMM:
|
|
|
|
|
case AARCH64_OPND_NZCV:
|
|
|
|
|
case AARCH64_OPND_EXCEPTION:
|
|
|
|
|
case AARCH64_OPND_UIMM4:
|
[BINUTILS, AARCH64, 2/8] Add Tag generation instructions in Memory Tagging Extension
This patch is part of the patch series to add support for ARMv8.5-A
Memory Tagging Extensions which is an optional extension to
ARMv8.5-A and is enabled using the +memtag command line option.
This patch add support to the Tag generation instructions from
MTE. These are the following instructions added in this patch:
- IRG <Xd|SP>, <Xn|SP>{, Xm}
- ADDG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- SUBG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- GMI <Xd>, <Xn|SP>, <Xm>
where
<Xd|SP> : Is the 64-bit destination GPR or Stack pointer.
<Xn|SP> : Is the 64-bit source GPR or Stack pointer.
<uimm6> : Is the unsigned immediate, a multiple of 16
in the range 0 to 1008.
<uimm4> : Is the unsigned immediate, in the range 0 to 15.
*** include/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (aarch64_opnd): Add
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10 as new enums.
*** opcodes/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.h (aarch64_field_kind): New FLD_imm4_3.
(OPD_F_SHIFT_BY_4, operand_need_shift_by_four): New.
* aarch64-opc.c (fields): Add entry for imm4_3.
(operand_general_constraint_met_p): Add cases for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
(aarch64_print_operand): Likewise.
* aarch64-tbl.h (QL_ADDG): New.
(aarch64_opcode_table): Add addg, subg, irg and gmi.
(AARCH64_OPERANDS): Define UIMM4_ADDG and UIMM10.
* aarch64-asm.c (aarch64_ins_imm): Add case for
operand_need_shift_by_four.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
*** gas/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_operands): Add switch case for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: New.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
* testsuite/gas/aarch64/illegal-memtag.d: Likewise.
2018-11-12 20:52:55 +08:00
|
|
|
|
case AARCH64_OPND_UIMM4_ADDG:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_UIMM7:
|
[BINUTILS, AARCH64, 2/8] Add Tag generation instructions in Memory Tagging Extension
This patch is part of the patch series to add support for ARMv8.5-A
Memory Tagging Extensions which is an optional extension to
ARMv8.5-A and is enabled using the +memtag command line option.
This patch add support to the Tag generation instructions from
MTE. These are the following instructions added in this patch:
- IRG <Xd|SP>, <Xn|SP>{, Xm}
- ADDG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- SUBG <Xd|SP>, <Xn|SP>, #<uimm1>. #<uimm2>
- GMI <Xd>, <Xn|SP>, <Xm>
where
<Xd|SP> : Is the 64-bit destination GPR or Stack pointer.
<Xn|SP> : Is the 64-bit source GPR or Stack pointer.
<uimm6> : Is the unsigned immediate, a multiple of 16
in the range 0 to 1008.
<uimm4> : Is the unsigned immediate, in the range 0 to 15.
*** include/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (aarch64_opnd): Add
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10 as new enums.
*** opcodes/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.h (aarch64_field_kind): New FLD_imm4_3.
(OPD_F_SHIFT_BY_4, operand_need_shift_by_four): New.
* aarch64-opc.c (fields): Add entry for imm4_3.
(operand_general_constraint_met_p): Add cases for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
(aarch64_print_operand): Likewise.
* aarch64-tbl.h (QL_ADDG): New.
(aarch64_opcode_table): Add addg, subg, irg and gmi.
(AARCH64_OPERANDS): Define UIMM4_ADDG and UIMM10.
* aarch64-asm.c (aarch64_ins_imm): Add case for
operand_need_shift_by_four.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
*** gas/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_operands): Add switch case for
AARCH64_OPND_UIMM4_ADDG and AARCH64_OPND_UIMM10.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: New.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
* testsuite/gas/aarch64/illegal-memtag.d: Likewise.
2018-11-12 20:52:55 +08:00
|
|
|
|
case AARCH64_OPND_UIMM10:
|
TRUE/FALSE simplification
There is really no need to write code like "foo != 0 ? TRUE : FALSE"
unless we had stupidly defined FALSE as something other than 0 or TRUE
as something other than 1. The simpler "foo != 0" does just as well.
Similarly "(condition == TRUE)" or "(condition == FALSE) can be
simplified to "(condition)" and "(!condition)" respectively.
I'll note that there is reason to use "integer_expression != 0" when
assigning a bfd_boolean rather than the simpler "integer_expression",
if you expect the variable to have 0 or 1 value. It's probably even a
good idea to not rely on implicit conversion if bfd_boolean were _Bool.
bfd/
* aoutx.h (aout_link_write_symbols): Don't cast boolean expression
to bfd_boolean.
* elf32-or1k.c (or1k_set_got_and_rela_sizes): Dont compare booleans
against FALSE.
* elf32-arc.c (name_for_global_symbol): Don't compare boolean to TRUE.
(is_reloc_PC_relative): Don't use "boolean_condition ? TRUE : FALSE".
(is_reloc_SDA_relative, is_reloc_for_GOT): Likewise.
(is_reloc_for_PLT, is_reloc_for_TLS): Likewise.
* elf32-arm.c (stm32l4xx_need_create_replacing_stub): Likewise.
* elf32-nds32.c (insert_nds32_elf_blank): Likewise.
* elf32-rx.c (rx_set_section_contents): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Likewise.
* elfxx-mips.c (_bfd_mips_elf_ignore_undef_symbol): Likewise.
* mach-o.c (bfd_mach_o_read_command): Likewise.
* targets.c (bfd_get_target_info): Likewise.
binutils/
* dlltool.c (main): Don't use "boolean_condition ? TRUE : FALSE".
* dwarf.c (read_and_display_attr_value): Likewise.
(display_debug_str_offsets): Likewise.
* objdump.c (dump_bfd): Likewise.
* readelf.c (dump_section_as_strings): Likewise.
(dump_section_as_bytes): Likewise.
gas/
* atof-generic.c (FALSE, TRUE): Don't define.
* config/obj-elf.h (FALSE, TRUE): Don't define.
* config/obj-som.h (FALSE, TRUE): Don't define.
* config/tc-hppa.h (FALSE, TRUE): Don't define.
* config/tc-pdp11.c (FALSE, TRUE): Don't define.
* config/tc-iq2000.h (obj_fix_adjustable): Delete.
* config/tc-m32r.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-mt.h (obj_fix_adjustable): Delete.
* config/tc-nds32.h (TC_FIX_ADJUSTABLE): Delete.
* config/tc-arc.c (parse_opcode_flags): Simplify boolean expression.
(relaxable_flag, relaxable_operand, assemble_insn): Likewise.
(tokenize_extregister): Likewise.
* config/tc-csky.c (parse_opcode, get_operand_value): Likewise.
(parse_operands_op, parse_operands, md_assemble): Likewise.
* config/tc-d10v.c (build_insn): Likewise.
* config/tc-score.c (s3_gen_insn_frag): Likewise.
* config/tc-score7.c (s7_gen_insn_frag, s7_relax_frag): Likewise.
* config/tc-tic6x.c (tic6x_update_features, md_assemble): Likewise.
* config/tc-z80.c (emit_byte): Likewise.
include/
* opcode/aarch64.h (alias_opcode_p): Simplify boolean expression.
(opcode_has_alias, pseudo_opcode_p, optional_operand_p): Likewise.
(opcode_has_special_coder): Likewise.
ld/
* emultempl/aix.em (gld${EMULATION_NAME}_before_allocation): Simplify
boolean expression.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (pe_dll_id_target): Likewise.
opcodes/
* aarch64-opc.c (vector_qualifier_p): Simplify boolean expression.
(fp_qualifier_p, get_data_pattern): Likewise.
(aarch64_get_operand_modifier_from_value): Likewise.
(aarch64_extend_operator_p, aarch64_shift_operator_p): Likewise.
(operand_variant_qualifier_p): Likewise.
(qualifier_value_in_range_constraint_p): Likewise.
(aarch64_get_qualifier_esize): Likewise.
(aarch64_get_qualifier_nelem): Likewise.
(aarch64_get_qualifier_standard_value): Likewise.
(get_lower_bound, get_upper_bound): Likewise.
(aarch64_find_best_match, match_operands_qualifier): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc.h (operand_has_inserter, operand_has_extractor): Likewise.
(operand_need_sign_extension, operand_need_shift_by_two): Likewise.
(operand_need_shift_by_four, operand_maybe_stack_pointer): Likewise.
* arm-dis.c (print_insn_mve, print_insn_thumb32): Likewise.
* tic6x-dis.c (tic6x_check_fetch_packet_header): Likewise.
(print_insn_tic6x): Likewise.
2021-03-29 07:22:56 +08:00
|
|
|
|
if (optional_operand_p (opcode, idx)
|
2012-08-13 22:52:54 +08:00
|
|
|
|
&& (opnd->imm.value ==
|
|
|
|
|
(int64_t) get_optional_operand_default_value (opcode)))
|
|
|
|
|
/* Omit the operand, e.g. DCPS1. */
|
|
|
|
|
break;
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#0x%x", (unsigned int) opnd->imm.value));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_COND:
|
2013-11-06 04:50:18 +08:00
|
|
|
|
case AARCH64_OPND_COND1:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_sub_mnem (styler, opnd->cond->names[0]));
|
[AArch64] Add SVE condition codes
SVE defines new names for existing NZCV conditions, to reflect the
result of instructions like PTEST. This patch adds support for these
names.
The patch also adds comments to the disassembly output to show the
alternative names of a condition code. For example:
cinv x0, x1, cc
becomes:
cinv x0, x1, cc // cc = lo, ul, last
and:
b.cc f0 <...>
becomes:
b.cc f0 <...> // b.lo, b.ul, b.last
Doing this for the SVE names follows the practice recommended by the
SVE specification and is definitely useful when reading SVE code.
If the feeling is that it's too distracting elsewhere, we could add
an option to turn it off.
include/
* opcode/aarch64.h (aarch64_cond): Bump array size to 4.
opcodes/
* aarch64-dis.c (remove_dot_suffix): New function, split out from...
(print_mnemonic_name): ...here.
(print_comment): New function.
(print_aarch64_insn): Call it.
* aarch64-opc.c (aarch64_conds): Add SVE names.
(aarch64_print_operand): Print alternative condition names in
a comment.
gas/
* config/tc-aarch64.c (opcode_lookup): Search for the end of
a condition name, rather than assuming that it will have exactly
2 characters.
(parse_operands): Likewise.
* testsuite/gas/aarch64/alias.d: Add new condition-code comments
to the expected output.
* testsuite/gas/aarch64/beq_1.d: Likewise.
* testsuite/gas/aarch64/float-fp16.d: Likewise.
* testsuite/gas/aarch64/int-insns.d: Likewise.
* testsuite/gas/aarch64/no-aliases.d: Likewise.
* testsuite/gas/aarch64/programmer-friendly.d: Likewise.
* testsuite/gas/aarch64/reloc-insn.d: Likewise.
* testsuite/gas/aarch64/b_c_1.d, testsuite/gas/aarch64/b_c_1.s:
New test.
ld/
* testsuite/ld-aarch64/emit-relocs-280.d: Match branch comments.
* testsuite/ld-aarch64/weak-undefined.d: Likewise.
2016-09-22 00:09:59 +08:00
|
|
|
|
num_conds = ARRAY_SIZE (opnd->cond->names);
|
|
|
|
|
for (i = 1; i < num_conds && opnd->cond->names[i]; ++i)
|
|
|
|
|
{
|
opcodes/aarch64: split off creation of comment text in disassembler
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
2022-06-16 20:46:41 +08:00
|
|
|
|
size_t len = comment != NULL ? strlen (comment) : 0;
|
[AArch64] Add SVE condition codes
SVE defines new names for existing NZCV conditions, to reflect the
result of instructions like PTEST. This patch adds support for these
names.
The patch also adds comments to the disassembly output to show the
alternative names of a condition code. For example:
cinv x0, x1, cc
becomes:
cinv x0, x1, cc // cc = lo, ul, last
and:
b.cc f0 <...>
becomes:
b.cc f0 <...> // b.lo, b.ul, b.last
Doing this for the SVE names follows the practice recommended by the
SVE specification and is definitely useful when reading SVE code.
If the feeling is that it's too distracting elsewhere, we could add
an option to turn it off.
include/
* opcode/aarch64.h (aarch64_cond): Bump array size to 4.
opcodes/
* aarch64-dis.c (remove_dot_suffix): New function, split out from...
(print_mnemonic_name): ...here.
(print_comment): New function.
(print_aarch64_insn): Call it.
* aarch64-opc.c (aarch64_conds): Add SVE names.
(aarch64_print_operand): Print alternative condition names in
a comment.
gas/
* config/tc-aarch64.c (opcode_lookup): Search for the end of
a condition name, rather than assuming that it will have exactly
2 characters.
(parse_operands): Likewise.
* testsuite/gas/aarch64/alias.d: Add new condition-code comments
to the expected output.
* testsuite/gas/aarch64/beq_1.d: Likewise.
* testsuite/gas/aarch64/float-fp16.d: Likewise.
* testsuite/gas/aarch64/int-insns.d: Likewise.
* testsuite/gas/aarch64/no-aliases.d: Likewise.
* testsuite/gas/aarch64/programmer-friendly.d: Likewise.
* testsuite/gas/aarch64/reloc-insn.d: Likewise.
* testsuite/gas/aarch64/b_c_1.d, testsuite/gas/aarch64/b_c_1.s:
New test.
ld/
* testsuite/ld-aarch64/emit-relocs-280.d: Match branch comments.
* testsuite/ld-aarch64/weak-undefined.d: Likewise.
2016-09-22 00:09:59 +08:00
|
|
|
|
if (i == 1)
|
opcodes/aarch64: split off creation of comment text in disassembler
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
2022-06-16 20:46:41 +08:00
|
|
|
|
snprintf (comment + len, comment_size - len, "%s = %s",
|
[AArch64] Add SVE condition codes
SVE defines new names for existing NZCV conditions, to reflect the
result of instructions like PTEST. This patch adds support for these
names.
The patch also adds comments to the disassembly output to show the
alternative names of a condition code. For example:
cinv x0, x1, cc
becomes:
cinv x0, x1, cc // cc = lo, ul, last
and:
b.cc f0 <...>
becomes:
b.cc f0 <...> // b.lo, b.ul, b.last
Doing this for the SVE names follows the practice recommended by the
SVE specification and is definitely useful when reading SVE code.
If the feeling is that it's too distracting elsewhere, we could add
an option to turn it off.
include/
* opcode/aarch64.h (aarch64_cond): Bump array size to 4.
opcodes/
* aarch64-dis.c (remove_dot_suffix): New function, split out from...
(print_mnemonic_name): ...here.
(print_comment): New function.
(print_aarch64_insn): Call it.
* aarch64-opc.c (aarch64_conds): Add SVE names.
(aarch64_print_operand): Print alternative condition names in
a comment.
gas/
* config/tc-aarch64.c (opcode_lookup): Search for the end of
a condition name, rather than assuming that it will have exactly
2 characters.
(parse_operands): Likewise.
* testsuite/gas/aarch64/alias.d: Add new condition-code comments
to the expected output.
* testsuite/gas/aarch64/beq_1.d: Likewise.
* testsuite/gas/aarch64/float-fp16.d: Likewise.
* testsuite/gas/aarch64/int-insns.d: Likewise.
* testsuite/gas/aarch64/no-aliases.d: Likewise.
* testsuite/gas/aarch64/programmer-friendly.d: Likewise.
* testsuite/gas/aarch64/reloc-insn.d: Likewise.
* testsuite/gas/aarch64/b_c_1.d, testsuite/gas/aarch64/b_c_1.s:
New test.
ld/
* testsuite/ld-aarch64/emit-relocs-280.d: Match branch comments.
* testsuite/ld-aarch64/weak-undefined.d: Likewise.
2016-09-22 00:09:59 +08:00
|
|
|
|
opnd->cond->names[0], opnd->cond->names[i]);
|
|
|
|
|
else
|
opcodes/aarch64: split off creation of comment text in disassembler
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
2022-06-16 20:46:41 +08:00
|
|
|
|
snprintf (comment + len, comment_size - len, ", %s",
|
[AArch64] Add SVE condition codes
SVE defines new names for existing NZCV conditions, to reflect the
result of instructions like PTEST. This patch adds support for these
names.
The patch also adds comments to the disassembly output to show the
alternative names of a condition code. For example:
cinv x0, x1, cc
becomes:
cinv x0, x1, cc // cc = lo, ul, last
and:
b.cc f0 <...>
becomes:
b.cc f0 <...> // b.lo, b.ul, b.last
Doing this for the SVE names follows the practice recommended by the
SVE specification and is definitely useful when reading SVE code.
If the feeling is that it's too distracting elsewhere, we could add
an option to turn it off.
include/
* opcode/aarch64.h (aarch64_cond): Bump array size to 4.
opcodes/
* aarch64-dis.c (remove_dot_suffix): New function, split out from...
(print_mnemonic_name): ...here.
(print_comment): New function.
(print_aarch64_insn): Call it.
* aarch64-opc.c (aarch64_conds): Add SVE names.
(aarch64_print_operand): Print alternative condition names in
a comment.
gas/
* config/tc-aarch64.c (opcode_lookup): Search for the end of
a condition name, rather than assuming that it will have exactly
2 characters.
(parse_operands): Likewise.
* testsuite/gas/aarch64/alias.d: Add new condition-code comments
to the expected output.
* testsuite/gas/aarch64/beq_1.d: Likewise.
* testsuite/gas/aarch64/float-fp16.d: Likewise.
* testsuite/gas/aarch64/int-insns.d: Likewise.
* testsuite/gas/aarch64/no-aliases.d: Likewise.
* testsuite/gas/aarch64/programmer-friendly.d: Likewise.
* testsuite/gas/aarch64/reloc-insn.d: Likewise.
* testsuite/gas/aarch64/b_c_1.d, testsuite/gas/aarch64/b_c_1.s:
New test.
ld/
* testsuite/ld-aarch64/emit-relocs-280.d: Match branch comments.
* testsuite/ld-aarch64/weak-undefined.d: Likewise.
2016-09-22 00:09:59 +08:00
|
|
|
|
opnd->cond->names[i]);
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_ADRP:
|
|
|
|
|
addr = ((pc + AARCH64_PCREL_OFFSET) & ~(uint64_t)0xfff)
|
|
|
|
|
+ opnd->imm.value;
|
|
|
|
|
if (pcrel_p)
|
|
|
|
|
*pcrel_p = 1;
|
|
|
|
|
if (address)
|
|
|
|
|
*address = addr;
|
|
|
|
|
/* This is not necessary during the disassembling, as print_address_func
|
|
|
|
|
in the disassemble_info will take care of the printing. But some
|
|
|
|
|
other callers may be still interested in getting the string in *STR,
|
|
|
|
|
so here we do snprintf regardless. */
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_addr (styler, "#0x%" PRIx64 , addr));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL14:
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL19:
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL21:
|
|
|
|
|
case AARCH64_OPND_ADDR_PCREL26:
|
|
|
|
|
addr = pc + AARCH64_PCREL_OFFSET + opnd->imm.value;
|
|
|
|
|
if (pcrel_p)
|
|
|
|
|
*pcrel_p = 1;
|
|
|
|
|
if (address)
|
|
|
|
|
*address = addr;
|
|
|
|
|
/* This is not necessary during the disassembling, as print_address_func
|
|
|
|
|
in the disassemble_info will take care of the printing. But some
|
|
|
|
|
other callers may be still interested in getting the string in *STR,
|
|
|
|
|
so here we do snprintf regardless. */
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_addr (styler, "#0x%" PRIx64, addr));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_SIMPLE:
|
|
|
|
|
case AARCH64_OPND_SIMD_ADDR_SIMPLE:
|
|
|
|
|
case AARCH64_OPND_SIMD_ADDR_POST:
|
|
|
|
|
name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
|
|
|
|
|
if (opnd->type == AARCH64_OPND_SIMD_ADDR_POST)
|
|
|
|
|
{
|
|
|
|
|
if (opnd->addr.offset.is_reg)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s], %s",
|
|
|
|
|
style_reg (styler, name),
|
|
|
|
|
style_reg (styler, "x%d", opnd->addr.offset.regno));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s], %s",
|
|
|
|
|
style_reg (styler, name),
|
|
|
|
|
style_imm (styler, "#%d", opnd->addr.offset.imm));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s]", style_reg (styler, name));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_ADDR_REGOFF:
|
2018-03-28 16:44:45 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_R:
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL1:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL3:
|
2021-11-18 04:02:06 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RR_LSL4:
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX_LSL1:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX_LSL2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RX_LSL3:
|
2016-09-21 23:51:43 +08:00
|
|
|
|
print_register_offset_address
|
|
|
|
|
(buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
get_offset_int_reg_name (opnd), styler);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2019-05-09 17:29:18 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZX:
|
|
|
|
|
print_register_offset_address
|
|
|
|
|
(buf, size, opnd,
|
|
|
|
|
get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
get_64bit_int_reg_name (opnd->addr.offset.regno, 0), styler);
|
2019-05-09 17:29:18 +08:00
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
|
|
|
|
|
print_register_offset_address
|
|
|
|
|
(buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier),
|
|
|
|
|
styler);
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_SIMM7:
|
|
|
|
|
case AARCH64_OPND_ADDR_SIMM9:
|
|
|
|
|
case AARCH64_OPND_ADDR_SIMM9_2:
|
2016-11-18 17:49:06 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_SIMM10:
|
[BINUTILS, AARCH64, 4/8] Add Tag setting instructions in Memory Tagging Extension
This patch is part of the patch series to add support for ARMv8.5-A
Memory Tagging Extensions which is an optional extension to
ARMv8.5-A and is enabled using the +memtag command line option.
This patch add support to the Tag setting instructions from
MTE which consists of the following instructions:
- STG [<Xn|SP>, #<simm>]
- STG [<Xn|SP>, #<simm>]!
- STG [<Xn|SP>], #<simm>
- STZG [<Xn|SP>, #<simm>]
- STZG [<Xn|SP>, #<simm>]!
- STZG [<Xn|SP>], #<simm>
- ST2G [<Xn|SP>, #<simm>]
- ST2G [<Xn|SP>, #<simm>]!
- ST2G [<Xn|SP>], #<simm>
- STZ2G [<Xn|SP>, #<simm>]
- STZ2G [<Xn|SP>, #<simm>]!
- STZ2G [<Xn|SP>], #<simm>
- STGP <Xt>, <Xt2>, [<Xn|SP>, #<imm>]
- STGP <Xt>, <Xt2>, [<Xn|SP>, #<imm>]!
- STGP <Xt>, <Xt2>, [<Xn|SP>], #<imm>
where
<Xn|SP> : Is the 64-bit GPR or Stack pointer.
<simm> : Is the optional signed immediate offset, a multiple of 16
in the range -4096 to 4080, defaulting to 0.
*** include/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (aarch64_opnd): Add AARCH64_OPND_ADDR_SIMM11
and AARCH64_OPND_ADDR_SIMM13.
(aarch64_opnd_qualifier): Add new AARCH64_OPND_QLF_imm_tag.
*** opcodes/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.c (aarch64_opnd_qualifiers): Add new data
for AARCH64_OPND_QLF_imm_tag.
(operand_general_constraint_met_p): Add case for
AARCH64_OPND_ADDR_SIMM11 and AARCH64_OPND_ADDR_SIMM13.
(aarch64_print_operand): Likewise.
* aarch64-tbl.h (QL_LDST_AT, QL_STGP): New.
(aarch64_opcode_table): Add stg, stzg, st2g, stz2g and stgp
for both offset and pre/post indexed versions.
(AARCH64_OPERANDS): Define ADDR_SIMM11 and ADDR_SIMM13.
* aarch64-asm-2.c: Regenerated.
* aarch64-dis-2.c: Regenerated.
* aarch64-opc-2.c: Regenerated.
*** gas/ChangeLog ***
2018-11-12 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_operands): Add switch case for
AARCH64_OPND_ADDR_SIMM11 and AARCH64_OPND_ADDR_SIMM13.
(fix_insn): Likewise.
(warn_unpredictable_ldst): Exempt STGP.
* testsuite/gas/aarch64/armv8_5-a-memtag.s: Add tests for stg, st2g,
stzg, stz2g and stgp.
* testsuite/gas/aarch64/armv8_5-a-memtag.d: Likewise.
* testsuite/gas/aarch64/illegal-memtag.s: Likewise.
* testsuite/gas/aarch64/illegal-memtag.l: Likewise.
2018-11-12 21:09:55 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_SIMM11:
|
|
|
|
|
case AARCH64_OPND_ADDR_SIMM13:
|
aarch64: rcpc3: New RCPC3_ADDR operand types
The particular choices of address indexing, along with their encoding
for RCPC3 instructions lead to the requirement of a new set of operand
descriptions, along with the relevant inserter/extractor set.
That is, for the integer load/stores, there is only a single valid
indexing offset quantity and offset mode is allowed - The value is
always equivalent to the amount of data read/stored by the
operation and the offset is post-indexed for Load-Acquire RCpc, and
pre-indexed with writeback for Store-Release insns.
This indexing quantity/mode pair is selected by the setting of a
single bit in the instruction. To represent these insns, we add the
following operand types:
- AARCH64_OPND_RCPC3_ADDR_OPT_POSTIND
- AARCH64_OPND_RCPC3_ADDR_OPT_PREIND_WB
In the case of loads and stores involving SIMD/FP registers, the
optional offset is encoded as an 8-bit signed immediate, but neither
post-indexing or pre-indexing with writeback is available. This
created the need for an operand type similar to
AARCH64_OPND_ADDR_OFFSET, with the difference that FLD_index should
not be checked.
We thus introduce the AARCH64_OPND_RCPC3_ADDR_OFFSET operand, a
variant of AARCH64_OPND_ADDR_OFFSET, w/o the FLD_index bitfield.
2024-01-06 01:26:09 +08:00
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_OFFSET:
|
Adds the new Fields and Operand types for the new instructions in Armv8.4-a.
gas/
* config/tc-aarch64.c (process_omitted_operand):
Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2
and AARCH64_OPND_IMM_2.
(parse_operands): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_IMM_2, AARCH64_OPND_MASK
and AARCH64_OPND_ADDR_OFFSET.
include/
* opcode/aarch64.h:
(aarch64_opnd): Add AARCH64_OPND_Va, AARCH64_OPND_MASK,
AARCH64_OPND_IMM_2, AARCH64_OPND_ADDR_OFFSET
and AARCH64_OPND_SM3_IMM2.
(aarch64_insn_class): Add cryptosm3 and cryptosm4.
(arch64_feature_set): Make uint64_t.
opcodes/
* aarch64-asm.h (ins_addr_offset): New.
* aarch64-asm.c (aarch64_ins_reglane): Add cryptosm3.
(aarch64_ins_addr_offset): New.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_addr_offset): New.
* aarch64-dis.c (aarch64_ext_reglane): Add cryptosm3.
(aarch64_ext_addr_offset): New.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (aarch64_field_kind): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
* aarch64-opc.c (fields): Add FLD_imm6_2,
FLD_imm4_2 and FLD_SM3_imm2.
(operand_general_constraint_met_p): Add AARCH64_OPND_ADDR_OFFSET.
(aarch64_print_operand): Add AARCH64_OPND_Va, AARCH64_OPND_SM3_IMM2,
AARCH64_OPND_MASK, AARCH64_OPND_IMM_2 and AARCH64_OPND_ADDR_OFFSET.
* aarch64-opc-2.c (Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2): New.
* aarch64-tbl.h
(aarch64_opcode_table): Add Va, MASK, IMM_2, ADDR_OFFSET, SM3_IMM2.
2017-11-09 23:22:30 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_OFFSET:
|
aarch64: rcpc3: New RCPC3_ADDR operand types
The particular choices of address indexing, along with their encoding
for RCPC3 instructions lead to the requirement of a new set of operand
descriptions, along with the relevant inserter/extractor set.
That is, for the integer load/stores, there is only a single valid
indexing offset quantity and offset mode is allowed - The value is
always equivalent to the amount of data read/stored by the
operation and the offset is post-indexed for Load-Acquire RCpc, and
pre-indexed with writeback for Store-Release insns.
This indexing quantity/mode pair is selected by the setting of a
single bit in the instruction. To represent these insns, we add the
following operand types:
- AARCH64_OPND_RCPC3_ADDR_OPT_POSTIND
- AARCH64_OPND_RCPC3_ADDR_OPT_PREIND_WB
In the case of loads and stores involving SIMD/FP registers, the
optional offset is encoded as an 8-bit signed immediate, but neither
post-indexing or pre-indexing with writeback is available. This
created the need for an operand type similar to
AARCH64_OPND_ADDR_OFFSET, with the difference that FLD_index should
not be checked.
We thus introduce the AARCH64_OPND_RCPC3_ADDR_OFFSET operand, a
variant of AARCH64_OPND_ADDR_OFFSET, w/o the FLD_index bitfield.
2024-01-06 01:26:09 +08:00
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_OPT_POSTIND:
|
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_OPT_PREIND_WB:
|
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_POSTIND:
|
|
|
|
|
case AARCH64_OPND_RCPC3_ADDR_PREIND_WB:
|
2021-11-18 04:02:06 +08:00
|
|
|
|
case AARCH64_OPND_SME_ADDR_RI_U4xVL:
|
[AArch64] Additional SVE instructions
This patch supports some additions to the SVE architecture prior to
its public release.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4x16)
(AARCH64_OPND_SVE_IMM_ROT1, AARCH64_OPND_SVE_IMM_ROT2)
(AARCH64_OPND_SVE_Zm3_INDEX, AARCH64_OPND_SVE_Zm3_22_INDEX)
(AARCH64_OPND_SVE_Zm4_INDEX): New aarch64_opnds.
opcodes/
* aarch64-tbl.h (OP_SVE_HMH, OP_SVE_VMU_HSD, OP_SVE_VMVU_HSD)
(OP_SVE_VMVV_HSD, OP_SVE_VMVVU_HSD, OP_SVE_VM_HSD, OP_SVE_VUVV_HSD)
(OP_SVE_VUV_HSD, OP_SVE_VU_HSD, OP_SVE_VVVU_H, OP_SVE_VVVU_S)
(OP_SVE_VVVU_HSD, OP_SVE_VVV_D, OP_SVE_VVV_D_H, OP_SVE_VVV_H)
(OP_SVE_VVV_HSD, OP_SVE_VVV_S, OP_SVE_VVV_S_B, OP_SVE_VVV_SD_BH)
(OP_SVE_VV_BHSDQ, OP_SVE_VV_HSD, OP_SVE_VZVV_HSD, OP_SVE_VZV_HSD)
(OP_SVE_V_HSD): New macros.
(OP_SVE_VMU_SD, OP_SVE_VMVU_SD, OP_SVE_VM_SD, OP_SVE_VUVV_SD)
(OP_SVE_VU_SD, OP_SVE_VVVU_SD, OP_SVE_VVV_SD, OP_SVE_VZVV_SD)
(OP_SVE_VZV_SD, OP_SVE_V_SD): Delete.
(aarch64_opcode_table): Add new SVE instructions.
(aarch64_opcode_table): Use imm_rotate{1,2} instead of imm_rotate
for rotation operands. Add new SVE operands.
* aarch64-asm.h (ins_sve_addr_ri_s4): New inserter.
(ins_sve_quad_index): Likewise.
(ins_imm_rotate): Split into...
(ins_imm_rotate1, ins_imm_rotate2): ...these two inserters.
* aarch64-asm.c (aarch64_ins_imm_rotate): Split into...
(aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2): ...these two
functions.
(aarch64_ins_sve_addr_ri_s4): New function.
(aarch64_ins_sve_quad_index): Likewise.
(do_misc_encoding): Handle "MOV Zn.Q, Qm".
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4): New extractor.
(ext_sve_quad_index): Likewise.
(ext_imm_rotate): Split into...
(ext_imm_rotate1, ext_imm_rotate2): ...these two extractors.
* aarch64-dis.c (aarch64_ext_imm_rotate): Split into...
(aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2): ...these two
functions.
(aarch64_ext_sve_addr_ri_s4): New function.
(aarch64_ext_sve_quad_index): Likewise.
(aarch64_ext_sve_index): Allow quad indices.
(do_misc_decoding): Likewise.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc.h (FLD_SVE_i3h, FLD_SVE_rot1, FLD_SVE_rot2): New
aarch64_field_kinds.
(OPD_F_OD_MASK): Widen by one bit.
(OPD_F_NO_ZR): Bump accordingly.
(get_operand_field_width): New function.
* aarch64-opc.c (fields): Add new SVE fields.
(operand_general_constraint_met_p): Handle new SVE operands.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
gas/
* doc/c-aarch64.texi: Document that sve implies fp16, simd and compnum.
* config/tc-aarch64.c (parse_vector_type_for_operand): Allow .q
to be used with SVE registers.
(parse_operands): Handle new SVE operands.
(aarch64_features): Make "sve" require F16 rather than FP. Also
require COMPNUM.
* testsuite/gas/aarch64/sve.s: Add tests for new instructions.
Include compnum tests.
* testsuite/gas/aarch64/sve.d: Update accordingly.
* testsuite/gas/aarch64/sve-invalid.s: Add tests for new instructions.
* testsuite/gas/aarch64/sve-invalid.l: Update accordingly. Also
update expected output for new FMOV and MOV alternatives.
2017-02-25 02:29:00 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x16:
|
[binutils][aarch64] Matrix Multiply extension enablement [8/X]
Hi,
This patch is part of a series that adds support for Armv8.6-A
(Matrix Multiply and BFloat16 extensions) to binutils.
This patch introduces the Matrix Multiply (Int8, F32, F64) extensions
to the aarch64 backend.
The following instructions are added: {s/u}mmla, usmmla, {us/su}dot,
fmmla, ld1rob, ld1roh, d1row, ld1rod, uzip{1/2}, trn{1/2}.
Committed on behalf of Mihail Ionescu.
gas/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
* config/tc-aarch64.c: Add new arch fetures to suppport the mm extension.
(parse_operands): Add new operand.
* testsuite/gas/aarch64/i8mm.s: New test.
* testsuite/gas/aarch64/i8mm.d: New test.
* testsuite/gas/aarch64/f32mm.s: New test.
* testsuite/gas/aarch64/f32mm.d: New test.
* testsuite/gas/aarch64/f64mm.s: New test.
* testsuite/gas/aarch64/f64mm.d: New test.
* testsuite/gas/aarch64/sve-movprfx-mm.s: New test.
* testsuite/gas/aarch64/sve-movprfx-mm.d: New test.
include/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
* opcode/aarch64.h (AARCH64_FEATURE_I8MM): New.
(AARCH64_FEATURE_F32MM): New.
(AARCH64_FEATURE_F64MM): New.
(AARCH64_OPND_SVE_ADDR_RI_S4x32): New.
(enum aarch64_insn_class): Add new instruction class "aarch64_misc" for
instructions that do not require special handling.
opcodes/ChangeLog:
2019-11-07 Mihail Ionescu <mihail.ionescu@arm.com>
* aarch64-tbl.h (aarch64_feature_i8mm_sve, aarch64_feature_f32mm_sve,
aarch64_feature_f64mm_sve, aarch64_feature_i8mm, aarch64_feature_f32mm,
aarch64_feature_f64mm): New feature sets.
(INT8MATMUL_INSN, F64MATMUL_SVE_INSN, F64MATMUL_INSN,
F32MATMUL_SVE_INSN, F32MATMUL_INSN): New macros to define matrix multiply
instructions.
(I8MM_SVE, F32MM_SVE, F64MM_SVE, I8MM, F32MM, F64MM): New feature set
macros.
(QL_MMLA64, OP_SVE_SBB): New qualifiers.
(OP_SVE_QQQ): New qualifier.
(INT8MATMUL_SVE_INSNC, F64MATMUL_SVE_INSNC,
F32MATMUL_SVE_INSNC): New feature set for bfloat16 instructions to support
the movprfx constraint.
(aarch64_opcode_table): Support for SVE_ADDR_RI_S4x32.
(aarch64_opcode_table): Define new instructions smmla,
ummla, usmmla, usdot, sudot, fmmla, ld1rob, ld1roh, ld1row, ld1rod
uzip{1/2}, trn{1/2}.
* aarch64-opc.c (operand_general_constraint_met_p): Handle
AARCH64_OPND_SVE_ADDR_RI_S4x32.
(aarch64_print_operand): Handle AARCH64_OPND_SVE_ADDR_RI_S4x32.
* aarch64-dis-2.c (aarch64_opcode_lookup_1, aarch64_find_next_opcode):
Account for new instructions.
* opcodes/aarch64-asm-2.c (aarch64_insert_operand): Support the new
S4x32 operand.
* aarch64-opc-2.c (aarch64_operands): Support the new S4x32 operand.
Regression tested on arm-none-eabi.
Is it ok for trunk?
Regards,
Mihail
2019-11-08 01:10:01 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x32:
|
[AArch64][SVE 26/32] Add SVE MUL VL addressing modes
This patch adds support for addresses of the form:
[<base>, #<offset>, MUL VL]
This involves adding a new AARCH64_MOD_MUL_VL modifier, which is
why I split it out from the other addressing modes.
For LD2, LD3 and LD4, the offset must be a multiple of the structure
size, so for LD3 the possible values are 0, 3, 6, .... The patch
therefore extends value_aligned_p to handle non-power-of-2 alignments.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_S4xVL): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_S4x2xVL, AARCH64_OPND_SVE_ADDR_RI_S4x3xVL)
(AARCH64_OPND_SVE_ADDR_RI_S4x4xVL, AARCH64_OPND_SVE_ADDR_RI_S6xVL)
(AARCH64_OPND_SVE_ADDR_RI_S9xVL): Likewise.
(AARCH64_MOD_MUL_VL): New aarch64_modifier_kind.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for new MUL VL
operands.
* aarch64-opc.c (aarch64_operand_modifiers): Initialize
the AARCH64_MOD_MUL_VL entry.
(value_aligned_p): Cope with non-power-of-two alignments.
(operand_general_constraint_met_p): Handle the new MUL VL addresses.
(print_immediate_offset_address): Likewise.
(aarch64_print_operand): Likewise.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_s4xvl, ins_sve_addr_ri_s6xvl)
(ins_sve_addr_ri_s9xvl): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_s4xvl): New function.
(aarch64_ins_sve_addr_ri_s6xvl): Likewise.
(aarch64_ins_sve_addr_ri_s9xvl): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_s4xvl, ext_sve_addr_ri_s6xvl)
(ext_sve_addr_ri_s9xvl): New extractors.
* aarch64-dis.c (aarch64_ext_sve_addr_reg_mul_vl): New function.
(aarch64_ext_sve_addr_ri_s4xvl): Likewise.
(aarch64_ext_sve_addr_ri_s6xvl): Likewise.
(aarch64_ext_sve_addr_ri_s9xvl): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (SHIFTED_NONE, SHIFTED_MUL_VL): New
parse_shift_modes.
(parse_shift): Handle SHIFTED_MUL_VL.
(parse_address_main): Add an imm_shift_mode parameter.
(parse_address, parse_sve_address): Update accordingly.
(parse_operands): Handle MUL VL addressing modes.
2016-09-21 23:56:15 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6x2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6x4:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_RI_U6x8:
|
2016-09-21 23:51:43 +08:00
|
|
|
|
print_immediate_offset_address
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
(buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
|
|
|
|
|
styler);
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
|
|
|
|
|
print_immediate_offset_address
|
|
|
|
|
(buf, size, opnd,
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
|
|
|
|
|
styler);
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
|
|
|
|
|
case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
|
|
|
|
|
print_register_offset_address
|
|
|
|
|
(buf, size, opnd,
|
|
|
|
|
get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier),
|
|
|
|
|
styler);
|
[AArch64][SVE 25/32] Add support for SVE addressing modes
This patch adds most of the new SVE addressing modes and associated
operands. A follow-on patch adds MUL VL, since handling it separately
makes the changes easier to read.
The patch also introduces a new "operand-dependent data" field to the
operand flags, based closely on the existing one for opcode flags.
For SVE this new field needs only 2 bits, but it could be widened
in future if necessary.
include/
* opcode/aarch64.h (AARCH64_OPND_SVE_ADDR_RI_U6): New aarch64_opnd.
(AARCH64_OPND_SVE_ADDR_RI_U6x2, AARCH64_OPND_SVE_ADDR_RI_U6x4)
(AARCH64_OPND_SVE_ADDR_RI_U6x8, AARCH64_OPND_SVE_ADDR_RR)
(AARCH64_OPND_SVE_ADDR_RR_LSL1, AARCH64_OPND_SVE_ADDR_RR_LSL2)
(AARCH64_OPND_SVE_ADDR_RR_LSL3, AARCH64_OPND_SVE_ADDR_RX)
(AARCH64_OPND_SVE_ADDR_RX_LSL1, AARCH64_OPND_SVE_ADDR_RX_LSL2)
(AARCH64_OPND_SVE_ADDR_RX_LSL3, AARCH64_OPND_SVE_ADDR_RZ)
(AARCH64_OPND_SVE_ADDR_RZ_LSL1, AARCH64_OPND_SVE_ADDR_RZ_LSL2)
(AARCH64_OPND_SVE_ADDR_RZ_LSL3, AARCH64_OPND_SVE_ADDR_RZ_XTW_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW_22, AARCH64_OPND_SVE_ADDR_RZ_XTW1_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW1_22, AARCH64_OPND_SVE_ADDR_RZ_XTW2_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW2_22, AARCH64_OPND_SVE_ADDR_RZ_XTW3_14)
(AARCH64_OPND_SVE_ADDR_RZ_XTW3_22, AARCH64_OPND_SVE_ADDR_ZI_U5)
(AARCH64_OPND_SVE_ADDR_ZI_U5x2, AARCH64_OPND_SVE_ADDR_ZI_U5x4)
(AARCH64_OPND_SVE_ADDR_ZI_U5x8, AARCH64_OPND_SVE_ADDR_ZZ_LSL)
(AARCH64_OPND_SVE_ADDR_ZZ_SXTW, AARCH64_OPND_SVE_ADDR_ZZ_UXTW):
Likewise.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
address operands.
* aarch64-opc.h (FLD_SVE_imm6, FLD_SVE_msz, FLD_SVE_xs_14)
(FLD_SVE_xs_22): New aarch64_field_kinds.
(OPD_F_OD_MASK, OPD_F_OD_LSB, OPD_F_NO_ZR): New flags.
(get_operand_specific_data): New function.
* aarch64-opc.c (fields): Add entries for FLD_SVE_imm6, FLD_SVE_msz,
FLD_SVE_xs_14 and FLD_SVE_xs_22.
(operand_general_constraint_met_p): Handle the new SVE address
operands.
(sve_reg): New array.
(get_addr_sve_reg_name): New function.
(aarch64_print_operand): Handle the new SVE address operands.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_sve_addr_ri_u6, ins_sve_addr_rr_lsl)
(ins_sve_addr_rz_xtw, ins_sve_addr_zi_u5, ins_sve_addr_zz_lsl)
(ins_sve_addr_zz_sxtw, ins_sve_addr_zz_uxtw): New inserters.
* aarch64-asm.c (aarch64_ins_sve_addr_ri_u6): New function.
(aarch64_ins_sve_addr_rr_lsl): Likewise.
(aarch64_ins_sve_addr_rz_xtw): Likewise.
(aarch64_ins_sve_addr_zi_u5): Likewise.
(aarch64_ins_sve_addr_zz): Likewise.
(aarch64_ins_sve_addr_zz_lsl): Likewise.
(aarch64_ins_sve_addr_zz_sxtw): Likewise.
(aarch64_ins_sve_addr_zz_uxtw): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_sve_addr_ri_u6, ext_sve_addr_rr_lsl)
(ext_sve_addr_rz_xtw, ext_sve_addr_zi_u5, ext_sve_addr_zz_lsl)
(ext_sve_addr_zz_sxtw, ext_sve_addr_zz_uxtw): New extractors.
* aarch64-dis.c (aarch64_ext_sve_add_reg_imm): New function.
(aarch64_ext_sve_addr_ri_u6): Likewise.
(aarch64_ext_sve_addr_rr_lsl): Likewise.
(aarch64_ext_sve_addr_rz_xtw): Likewise.
(aarch64_ext_sve_addr_zi_u5): Likewise.
(aarch64_ext_sve_addr_zz): Likewise.
(aarch64_ext_sve_addr_zz_lsl): Likewise.
(aarch64_ext_sve_addr_zz_sxtw): Likewise.
(aarch64_ext_sve_addr_zz_uxtw): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET): New
register types.
(get_reg_expected_msg): Handle them.
(aarch64_addr_reg_parse): New function, split out from
aarch64_reg_parse_32_64. Handle Z registers too.
(aarch64_reg_parse_32_64): Call it.
(parse_address_main): Add base_qualifier, offset_qualifier,
base_type and offset_type parameters. Handle SVE base and offset
registers.
(parse_address): Update call to parse_address_main.
(parse_sve_address): New function.
(parse_operands): Parse the new SVE address operands.
2016-09-21 23:55:49 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
case AARCH64_OPND_ADDR_UIMM12:
|
|
|
|
|
name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
|
|
|
|
|
if (opnd->addr.offset.imm)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s, %s]",
|
|
|
|
|
style_reg (styler, name),
|
|
|
|
|
style_imm (styler, "#%d", opnd->addr.offset.imm));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "[%s]", style_reg (styler, name));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SYSREG:
|
2023-11-21 04:40:10 +08:00
|
|
|
|
case AARCH64_OPND_SYSREG128:
|
2012-08-13 22:52:54 +08:00
|
|
|
|
for (i = 0; aarch64_sys_regs[i].name; ++i)
|
Implement Read/Write constraints on system registers on AArch64
This patch adds constraints for read and write only system registers with the
msr and mrs instructions. The code will treat having both flags set and none
set as the same. These flags add constraints that must be matched up. e.g. a
system register with a READ only flag set, can only be used with mrs. If The
constraint fails a warning is emitted.
Examples of the warnings generated:
test.s: Assembler messages:
test.s:5: Warning: specified register cannot be written to at operand 1 -- `msr dbgdtrrx_el0,x3'
test.s:7: Warning: specified register cannot be read from at operand 2 -- `mrs x3,dbgdtrtx_el0'
test.s:8: Warning: specified register cannot be written to at operand 1 -- `msr midr_el1,x3'
and disassembly notes:
0000000000000000 <main>:
0: d5130503 msr dbgdtrtx_el0, x3
4: d5130503 msr dbgdtrtx_el0, x3
8: d5330503 mrs x3, dbgdtrrx_el0
c: d5330503 mrs x3, dbgdtrrx_el0
10: d5180003 msr midr_el1, x3 ; note: writing to a read-only register.
Note that because dbgdtrrx_el0 and dbgdtrtx_el0 have the same encoding, during
disassembly the constraints are use to disambiguate between the two. An exact
constraint match is always prefered over partial ones if available.
As always the warnings can be suppressed with -w and also be made errors using
warnings as errors.
binutils/
PR binutils/21446
* doc/binutils.texi (-M): Document AArch64 options.
gas/
PR binutils/21446
* testsuite/gas/aarch64/illegal-sysreg-2.s: Fix pmbidr_el1 test.
* testsuite/gas/aarch64/illegal-sysreg-2.l: Likewise.
* testsuite/gas/aarch64/illegal-sysreg-2.d: Likewise.
* testsuite/gas/aarch64/sysreg-diagnostic.s: New.
* testsuite/gas/aarch64/sysreg-diagnostic.l: New.
* testsuite/gas/aarch64/sysreg-diagnostic.d: New.
include/
PR binutils/21446
* opcode/aarch64.h (F_SYS_READ, F_SYS_WRITE): New.
opcodes/
PR binutils/21446
* aarch64-asm.c (opintl.h): Include.
(aarch64_ins_sysreg): Enforce read/write constraints.
* aarch64-dis.c (aarch64_ext_sysreg): Likewise.
* aarch64-opc.h (F_DEPRECATED, F_ARCHEXT, F_HASXT): Moved here.
(F_REG_READ, F_REG_WRITE): New.
* aarch64-opc.c (aarch64_print_operand): Generate notes for
AARCH64_OPND_SYSREG.
(F_DEPRECATED, F_ARCHEXT, F_HASXT): Move to aarch64-opc.h.
(aarch64_sys_regs): Add constraints to currentel, midr_el1, ctr_el0,
mpidr_el1, revidr_el1, aidr_el1, dczid_el0, id_dfr0_el1, id_pfr0_el1,
id_pfr1_el1, id_afr0_el1, id_mmfr0_el1, id_mmfr1_el1, id_mmfr2_el1,
id_mmfr3_el1, id_mmfr4_el1, id_isar0_el1, id_isar1_el1, id_isar2_el1,
id_isar3_el1, id_isar4_el1, id_isar5_el1, mvfr0_el1, mvfr1_el1,
mvfr2_el1, ccsidr_el1, id_aa64pfr0_el1, id_aa64pfr1_el1,
id_aa64dfr0_el1, id_aa64dfr1_el1, id_aa64isar0_el1, id_aa64isar1_el1,
id_aa64mmfr0_el1, id_aa64mmfr1_el1, id_aa64mmfr2_el1, id_aa64afr0_el1,
id_aa64afr0_el1, id_aa64afr1_el1, id_aa64zfr0_el1, clidr_el1,
csselr_el1, vsesr_el2, erridr_el1, erxfr_el1, rvbar_el1, rvbar_el2,
rvbar_el3, isr_el1, tpidrro_el0, cntfrq_el0, cntpct_el0, cntvct_el0,
mdccsr_el0, dbgdtrrx_el0, dbgdtrtx_el0, osdtrrx_el1, osdtrtx_el1,
mdrar_el1, oslar_el1, oslsr_el1, dbgauthstatus_el1, pmbidr_el1,
pmsidr_el1, pmswinc_el0, pmceid0_el0, pmceid1_el0.
* aarch64-tbl.h (aarch64_opcode_table): Add constraints to
msr (F_SYS_WRITE), mrs (F_SYS_READ).
2018-05-15 23:37:20 +08:00
|
|
|
|
{
|
2020-09-08 21:21:44 +08:00
|
|
|
|
const aarch64_sys_reg *sr = aarch64_sys_regs + i;
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool exact_match
|
2020-09-08 21:21:44 +08:00
|
|
|
|
= (!(sr->flags & (F_REG_READ | F_REG_WRITE))
|
|
|
|
|
|| (sr->flags & opnd->sysreg.flags) == opnd->sysreg.flags)
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
&& AARCH64_CPU_HAS_ALL_FEATURES (features, sr->features);
|
Implement Read/Write constraints on system registers on AArch64
This patch adds constraints for read and write only system registers with the
msr and mrs instructions. The code will treat having both flags set and none
set as the same. These flags add constraints that must be matched up. e.g. a
system register with a READ only flag set, can only be used with mrs. If The
constraint fails a warning is emitted.
Examples of the warnings generated:
test.s: Assembler messages:
test.s:5: Warning: specified register cannot be written to at operand 1 -- `msr dbgdtrrx_el0,x3'
test.s:7: Warning: specified register cannot be read from at operand 2 -- `mrs x3,dbgdtrtx_el0'
test.s:8: Warning: specified register cannot be written to at operand 1 -- `msr midr_el1,x3'
and disassembly notes:
0000000000000000 <main>:
0: d5130503 msr dbgdtrtx_el0, x3
4: d5130503 msr dbgdtrtx_el0, x3
8: d5330503 mrs x3, dbgdtrrx_el0
c: d5330503 mrs x3, dbgdtrrx_el0
10: d5180003 msr midr_el1, x3 ; note: writing to a read-only register.
Note that because dbgdtrrx_el0 and dbgdtrtx_el0 have the same encoding, during
disassembly the constraints are use to disambiguate between the two. An exact
constraint match is always prefered over partial ones if available.
As always the warnings can be suppressed with -w and also be made errors using
warnings as errors.
binutils/
PR binutils/21446
* doc/binutils.texi (-M): Document AArch64 options.
gas/
PR binutils/21446
* testsuite/gas/aarch64/illegal-sysreg-2.s: Fix pmbidr_el1 test.
* testsuite/gas/aarch64/illegal-sysreg-2.l: Likewise.
* testsuite/gas/aarch64/illegal-sysreg-2.d: Likewise.
* testsuite/gas/aarch64/sysreg-diagnostic.s: New.
* testsuite/gas/aarch64/sysreg-diagnostic.l: New.
* testsuite/gas/aarch64/sysreg-diagnostic.d: New.
include/
PR binutils/21446
* opcode/aarch64.h (F_SYS_READ, F_SYS_WRITE): New.
opcodes/
PR binutils/21446
* aarch64-asm.c (opintl.h): Include.
(aarch64_ins_sysreg): Enforce read/write constraints.
* aarch64-dis.c (aarch64_ext_sysreg): Likewise.
* aarch64-opc.h (F_DEPRECATED, F_ARCHEXT, F_HASXT): Moved here.
(F_REG_READ, F_REG_WRITE): New.
* aarch64-opc.c (aarch64_print_operand): Generate notes for
AARCH64_OPND_SYSREG.
(F_DEPRECATED, F_ARCHEXT, F_HASXT): Move to aarch64-opc.h.
(aarch64_sys_regs): Add constraints to currentel, midr_el1, ctr_el0,
mpidr_el1, revidr_el1, aidr_el1, dczid_el0, id_dfr0_el1, id_pfr0_el1,
id_pfr1_el1, id_afr0_el1, id_mmfr0_el1, id_mmfr1_el1, id_mmfr2_el1,
id_mmfr3_el1, id_mmfr4_el1, id_isar0_el1, id_isar1_el1, id_isar2_el1,
id_isar3_el1, id_isar4_el1, id_isar5_el1, mvfr0_el1, mvfr1_el1,
mvfr2_el1, ccsidr_el1, id_aa64pfr0_el1, id_aa64pfr1_el1,
id_aa64dfr0_el1, id_aa64dfr1_el1, id_aa64isar0_el1, id_aa64isar1_el1,
id_aa64mmfr0_el1, id_aa64mmfr1_el1, id_aa64mmfr2_el1, id_aa64afr0_el1,
id_aa64afr0_el1, id_aa64afr1_el1, id_aa64zfr0_el1, clidr_el1,
csselr_el1, vsesr_el2, erridr_el1, erxfr_el1, rvbar_el1, rvbar_el2,
rvbar_el3, isr_el1, tpidrro_el0, cntfrq_el0, cntpct_el0, cntvct_el0,
mdccsr_el0, dbgdtrrx_el0, dbgdtrtx_el0, osdtrrx_el1, osdtrtx_el1,
mdrar_el1, oslar_el1, oslsr_el1, dbgauthstatus_el1, pmbidr_el1,
pmsidr_el1, pmswinc_el0, pmceid0_el0, pmceid1_el0.
* aarch64-tbl.h (aarch64_opcode_table): Add constraints to
msr (F_SYS_WRITE), mrs (F_SYS_READ).
2018-05-15 23:37:20 +08:00
|
|
|
|
|
|
|
|
|
/* Try and find an exact match, But if that fails, return the first
|
|
|
|
|
partial match that was found. */
|
|
|
|
|
if (aarch64_sys_regs[i].value == opnd->sysreg.value
|
2020-08-10 23:20:17 +08:00
|
|
|
|
&& ! aarch64_sys_reg_deprecated_p (aarch64_sys_regs[i].flags)
|
2023-10-02 16:51:27 +08:00
|
|
|
|
&& ! aarch64_sys_reg_alias_p (aarch64_sys_regs[i].flags)
|
Implement Read/Write constraints on system registers on AArch64
This patch adds constraints for read and write only system registers with the
msr and mrs instructions. The code will treat having both flags set and none
set as the same. These flags add constraints that must be matched up. e.g. a
system register with a READ only flag set, can only be used with mrs. If The
constraint fails a warning is emitted.
Examples of the warnings generated:
test.s: Assembler messages:
test.s:5: Warning: specified register cannot be written to at operand 1 -- `msr dbgdtrrx_el0,x3'
test.s:7: Warning: specified register cannot be read from at operand 2 -- `mrs x3,dbgdtrtx_el0'
test.s:8: Warning: specified register cannot be written to at operand 1 -- `msr midr_el1,x3'
and disassembly notes:
0000000000000000 <main>:
0: d5130503 msr dbgdtrtx_el0, x3
4: d5130503 msr dbgdtrtx_el0, x3
8: d5330503 mrs x3, dbgdtrrx_el0
c: d5330503 mrs x3, dbgdtrrx_el0
10: d5180003 msr midr_el1, x3 ; note: writing to a read-only register.
Note that because dbgdtrrx_el0 and dbgdtrtx_el0 have the same encoding, during
disassembly the constraints are use to disambiguate between the two. An exact
constraint match is always prefered over partial ones if available.
As always the warnings can be suppressed with -w and also be made errors using
warnings as errors.
binutils/
PR binutils/21446
* doc/binutils.texi (-M): Document AArch64 options.
gas/
PR binutils/21446
* testsuite/gas/aarch64/illegal-sysreg-2.s: Fix pmbidr_el1 test.
* testsuite/gas/aarch64/illegal-sysreg-2.l: Likewise.
* testsuite/gas/aarch64/illegal-sysreg-2.d: Likewise.
* testsuite/gas/aarch64/sysreg-diagnostic.s: New.
* testsuite/gas/aarch64/sysreg-diagnostic.l: New.
* testsuite/gas/aarch64/sysreg-diagnostic.d: New.
include/
PR binutils/21446
* opcode/aarch64.h (F_SYS_READ, F_SYS_WRITE): New.
opcodes/
PR binutils/21446
* aarch64-asm.c (opintl.h): Include.
(aarch64_ins_sysreg): Enforce read/write constraints.
* aarch64-dis.c (aarch64_ext_sysreg): Likewise.
* aarch64-opc.h (F_DEPRECATED, F_ARCHEXT, F_HASXT): Moved here.
(F_REG_READ, F_REG_WRITE): New.
* aarch64-opc.c (aarch64_print_operand): Generate notes for
AARCH64_OPND_SYSREG.
(F_DEPRECATED, F_ARCHEXT, F_HASXT): Move to aarch64-opc.h.
(aarch64_sys_regs): Add constraints to currentel, midr_el1, ctr_el0,
mpidr_el1, revidr_el1, aidr_el1, dczid_el0, id_dfr0_el1, id_pfr0_el1,
id_pfr1_el1, id_afr0_el1, id_mmfr0_el1, id_mmfr1_el1, id_mmfr2_el1,
id_mmfr3_el1, id_mmfr4_el1, id_isar0_el1, id_isar1_el1, id_isar2_el1,
id_isar3_el1, id_isar4_el1, id_isar5_el1, mvfr0_el1, mvfr1_el1,
mvfr2_el1, ccsidr_el1, id_aa64pfr0_el1, id_aa64pfr1_el1,
id_aa64dfr0_el1, id_aa64dfr1_el1, id_aa64isar0_el1, id_aa64isar1_el1,
id_aa64mmfr0_el1, id_aa64mmfr1_el1, id_aa64mmfr2_el1, id_aa64afr0_el1,
id_aa64afr0_el1, id_aa64afr1_el1, id_aa64zfr0_el1, clidr_el1,
csselr_el1, vsesr_el2, erridr_el1, erxfr_el1, rvbar_el1, rvbar_el2,
rvbar_el3, isr_el1, tpidrro_el0, cntfrq_el0, cntpct_el0, cntvct_el0,
mdccsr_el0, dbgdtrrx_el0, dbgdtrtx_el0, osdtrrx_el1, osdtrtx_el1,
mdrar_el1, oslar_el1, oslsr_el1, dbgauthstatus_el1, pmbidr_el1,
pmsidr_el1, pmswinc_el0, pmceid0_el0, pmceid1_el0.
* aarch64-tbl.h (aarch64_opcode_table): Add constraints to
msr (F_SYS_WRITE), mrs (F_SYS_READ).
2018-05-15 23:37:20 +08:00
|
|
|
|
&& (name == NULL || exact_match))
|
|
|
|
|
{
|
|
|
|
|
name = aarch64_sys_regs[i].name;
|
|
|
|
|
if (exact_match)
|
|
|
|
|
{
|
|
|
|
|
if (notes)
|
|
|
|
|
*notes = NULL;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we didn't match exactly, that means the presense of a flag
|
|
|
|
|
indicates what we didn't want for this instruction. e.g. If
|
|
|
|
|
F_REG_READ is there, that means we were looking for a write
|
|
|
|
|
register. See aarch64_ext_sysreg. */
|
|
|
|
|
if (aarch64_sys_regs[i].flags & F_REG_WRITE)
|
2018-10-04 01:51:11 +08:00
|
|
|
|
*notes = _("reading from a write-only register");
|
Implement Read/Write constraints on system registers on AArch64
This patch adds constraints for read and write only system registers with the
msr and mrs instructions. The code will treat having both flags set and none
set as the same. These flags add constraints that must be matched up. e.g. a
system register with a READ only flag set, can only be used with mrs. If The
constraint fails a warning is emitted.
Examples of the warnings generated:
test.s: Assembler messages:
test.s:5: Warning: specified register cannot be written to at operand 1 -- `msr dbgdtrrx_el0,x3'
test.s:7: Warning: specified register cannot be read from at operand 2 -- `mrs x3,dbgdtrtx_el0'
test.s:8: Warning: specified register cannot be written to at operand 1 -- `msr midr_el1,x3'
and disassembly notes:
0000000000000000 <main>:
0: d5130503 msr dbgdtrtx_el0, x3
4: d5130503 msr dbgdtrtx_el0, x3
8: d5330503 mrs x3, dbgdtrrx_el0
c: d5330503 mrs x3, dbgdtrrx_el0
10: d5180003 msr midr_el1, x3 ; note: writing to a read-only register.
Note that because dbgdtrrx_el0 and dbgdtrtx_el0 have the same encoding, during
disassembly the constraints are use to disambiguate between the two. An exact
constraint match is always prefered over partial ones if available.
As always the warnings can be suppressed with -w and also be made errors using
warnings as errors.
binutils/
PR binutils/21446
* doc/binutils.texi (-M): Document AArch64 options.
gas/
PR binutils/21446
* testsuite/gas/aarch64/illegal-sysreg-2.s: Fix pmbidr_el1 test.
* testsuite/gas/aarch64/illegal-sysreg-2.l: Likewise.
* testsuite/gas/aarch64/illegal-sysreg-2.d: Likewise.
* testsuite/gas/aarch64/sysreg-diagnostic.s: New.
* testsuite/gas/aarch64/sysreg-diagnostic.l: New.
* testsuite/gas/aarch64/sysreg-diagnostic.d: New.
include/
PR binutils/21446
* opcode/aarch64.h (F_SYS_READ, F_SYS_WRITE): New.
opcodes/
PR binutils/21446
* aarch64-asm.c (opintl.h): Include.
(aarch64_ins_sysreg): Enforce read/write constraints.
* aarch64-dis.c (aarch64_ext_sysreg): Likewise.
* aarch64-opc.h (F_DEPRECATED, F_ARCHEXT, F_HASXT): Moved here.
(F_REG_READ, F_REG_WRITE): New.
* aarch64-opc.c (aarch64_print_operand): Generate notes for
AARCH64_OPND_SYSREG.
(F_DEPRECATED, F_ARCHEXT, F_HASXT): Move to aarch64-opc.h.
(aarch64_sys_regs): Add constraints to currentel, midr_el1, ctr_el0,
mpidr_el1, revidr_el1, aidr_el1, dczid_el0, id_dfr0_el1, id_pfr0_el1,
id_pfr1_el1, id_afr0_el1, id_mmfr0_el1, id_mmfr1_el1, id_mmfr2_el1,
id_mmfr3_el1, id_mmfr4_el1, id_isar0_el1, id_isar1_el1, id_isar2_el1,
id_isar3_el1, id_isar4_el1, id_isar5_el1, mvfr0_el1, mvfr1_el1,
mvfr2_el1, ccsidr_el1, id_aa64pfr0_el1, id_aa64pfr1_el1,
id_aa64dfr0_el1, id_aa64dfr1_el1, id_aa64isar0_el1, id_aa64isar1_el1,
id_aa64mmfr0_el1, id_aa64mmfr1_el1, id_aa64mmfr2_el1, id_aa64afr0_el1,
id_aa64afr0_el1, id_aa64afr1_el1, id_aa64zfr0_el1, clidr_el1,
csselr_el1, vsesr_el2, erridr_el1, erxfr_el1, rvbar_el1, rvbar_el2,
rvbar_el3, isr_el1, tpidrro_el0, cntfrq_el0, cntpct_el0, cntvct_el0,
mdccsr_el0, dbgdtrrx_el0, dbgdtrtx_el0, osdtrrx_el1, osdtrtx_el1,
mdrar_el1, oslar_el1, oslsr_el1, dbgauthstatus_el1, pmbidr_el1,
pmsidr_el1, pmswinc_el0, pmceid0_el0, pmceid1_el0.
* aarch64-tbl.h (aarch64_opcode_table): Add constraints to
msr (F_SYS_WRITE), mrs (F_SYS_READ).
2018-05-15 23:37:20 +08:00
|
|
|
|
else if (aarch64_sys_regs[i].flags & F_REG_READ)
|
2018-10-04 01:51:11 +08:00
|
|
|
|
*notes = _("writing to a read-only register");
|
Implement Read/Write constraints on system registers on AArch64
This patch adds constraints for read and write only system registers with the
msr and mrs instructions. The code will treat having both flags set and none
set as the same. These flags add constraints that must be matched up. e.g. a
system register with a READ only flag set, can only be used with mrs. If The
constraint fails a warning is emitted.
Examples of the warnings generated:
test.s: Assembler messages:
test.s:5: Warning: specified register cannot be written to at operand 1 -- `msr dbgdtrrx_el0,x3'
test.s:7: Warning: specified register cannot be read from at operand 2 -- `mrs x3,dbgdtrtx_el0'
test.s:8: Warning: specified register cannot be written to at operand 1 -- `msr midr_el1,x3'
and disassembly notes:
0000000000000000 <main>:
0: d5130503 msr dbgdtrtx_el0, x3
4: d5130503 msr dbgdtrtx_el0, x3
8: d5330503 mrs x3, dbgdtrrx_el0
c: d5330503 mrs x3, dbgdtrrx_el0
10: d5180003 msr midr_el1, x3 ; note: writing to a read-only register.
Note that because dbgdtrrx_el0 and dbgdtrtx_el0 have the same encoding, during
disassembly the constraints are use to disambiguate between the two. An exact
constraint match is always prefered over partial ones if available.
As always the warnings can be suppressed with -w and also be made errors using
warnings as errors.
binutils/
PR binutils/21446
* doc/binutils.texi (-M): Document AArch64 options.
gas/
PR binutils/21446
* testsuite/gas/aarch64/illegal-sysreg-2.s: Fix pmbidr_el1 test.
* testsuite/gas/aarch64/illegal-sysreg-2.l: Likewise.
* testsuite/gas/aarch64/illegal-sysreg-2.d: Likewise.
* testsuite/gas/aarch64/sysreg-diagnostic.s: New.
* testsuite/gas/aarch64/sysreg-diagnostic.l: New.
* testsuite/gas/aarch64/sysreg-diagnostic.d: New.
include/
PR binutils/21446
* opcode/aarch64.h (F_SYS_READ, F_SYS_WRITE): New.
opcodes/
PR binutils/21446
* aarch64-asm.c (opintl.h): Include.
(aarch64_ins_sysreg): Enforce read/write constraints.
* aarch64-dis.c (aarch64_ext_sysreg): Likewise.
* aarch64-opc.h (F_DEPRECATED, F_ARCHEXT, F_HASXT): Moved here.
(F_REG_READ, F_REG_WRITE): New.
* aarch64-opc.c (aarch64_print_operand): Generate notes for
AARCH64_OPND_SYSREG.
(F_DEPRECATED, F_ARCHEXT, F_HASXT): Move to aarch64-opc.h.
(aarch64_sys_regs): Add constraints to currentel, midr_el1, ctr_el0,
mpidr_el1, revidr_el1, aidr_el1, dczid_el0, id_dfr0_el1, id_pfr0_el1,
id_pfr1_el1, id_afr0_el1, id_mmfr0_el1, id_mmfr1_el1, id_mmfr2_el1,
id_mmfr3_el1, id_mmfr4_el1, id_isar0_el1, id_isar1_el1, id_isar2_el1,
id_isar3_el1, id_isar4_el1, id_isar5_el1, mvfr0_el1, mvfr1_el1,
mvfr2_el1, ccsidr_el1, id_aa64pfr0_el1, id_aa64pfr1_el1,
id_aa64dfr0_el1, id_aa64dfr1_el1, id_aa64isar0_el1, id_aa64isar1_el1,
id_aa64mmfr0_el1, id_aa64mmfr1_el1, id_aa64mmfr2_el1, id_aa64afr0_el1,
id_aa64afr0_el1, id_aa64afr1_el1, id_aa64zfr0_el1, clidr_el1,
csselr_el1, vsesr_el2, erridr_el1, erxfr_el1, rvbar_el1, rvbar_el2,
rvbar_el3, isr_el1, tpidrro_el0, cntfrq_el0, cntpct_el0, cntvct_el0,
mdccsr_el0, dbgdtrrx_el0, dbgdtrtx_el0, osdtrrx_el1, osdtrtx_el1,
mdrar_el1, oslar_el1, oslsr_el1, dbgauthstatus_el1, pmbidr_el1,
pmsidr_el1, pmswinc_el0, pmceid0_el0, pmceid1_el0.
* aarch64-tbl.h (aarch64_opcode_table): Add constraints to
msr (F_SYS_WRITE), mrs (F_SYS_READ).
2018-05-15 23:37:20 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (name)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_reg (styler, name));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Implementation defined system register. */
|
Modify AArch64 Assembly and disassembly functions to be able to fail and report why.
This patch if the first patch in a series to add the ability to add constraints
to system registers that an instruction must adhere to in order for the register
to be usable with that instruction.
These constraints can also be used to disambiguate between registers with the
same encoding during disassembly.
This patch adds a new flags entry in the sysreg structures and ensures it is
filled in and read out during assembly/disassembly. It also adds the ability for
the assemble and disassemble functions to be able to gracefully fail and re-use
the existing error reporting infrastructure.
The return type of these functions are changed to a boolean to denote success or
failure and the error structure is passed around to them. This requires
aarch64-gen changes so a lot of the changes here are just mechanical.
gas/
PR binutils/21446
* config/tc-aarch64.c (parse_sys_reg): Return register flags.
(parse_operands): Fill in register flags.
gdb/
PR binutils/21446
* aarch64-tdep.c (aarch64_analyze_prologue,
aarch64_software_single_step, aarch64_displaced_step_copy_insn):
Indicate not interested in errors.
include/
PR binutils/21446
* opcode/aarch64.h (aarch64_opnd_info): Change sysreg to struct.
(aarch64_decode_insn): Accept error struct.
opcodes/
PR binutils/21446
* aarch64-asm.h (aarch64_insert_operand, aarch64_##x): Return boolean
and take error struct.
* aarch64-asm.c (aarch64_ext_regno, aarch64_ins_reglane,
aarch64_ins_reglist, aarch64_ins_ldst_reglist,
aarch64_ins_ldst_reglist_r, aarch64_ins_ldst_elemlist,
aarch64_ins_advsimd_imm_shift, aarch64_ins_imm, aarch64_ins_imm_half,
aarch64_ins_advsimd_imm_modified, aarch64_ins_fpimm,
aarch64_ins_imm_rotate1, aarch64_ins_imm_rotate2, aarch64_ins_fbits,
aarch64_ins_aimm, aarch64_ins_limm_1, aarch64_ins_limm,
aarch64_ins_inv_limm, aarch64_ins_ft, aarch64_ins_addr_simple,
aarch64_ins_addr_regoff, aarch64_ins_addr_offset, aarch64_ins_addr_simm,
aarch64_ins_addr_simm10, aarch64_ins_addr_uimm12,
aarch64_ins_simd_addr_post, aarch64_ins_cond, aarch64_ins_sysreg,
aarch64_ins_pstatefield, aarch64_ins_sysins_op, aarch64_ins_barrier,
aarch64_ins_prfop, aarch64_ins_hint, aarch64_ins_reg_extended,
aarch64_ins_reg_shifted, aarch64_ins_sve_addr_ri_s4xvl,
aarch64_ins_sve_addr_ri_s6xvl, aarch64_ins_sve_addr_ri_s9xvl,
aarch64_ins_sve_addr_ri_s4, aarch64_ins_sve_addr_ri_u6,
aarch64_ins_sve_addr_rr_lsl, aarch64_ins_sve_addr_rz_xtw,
aarch64_ins_sve_addr_zi_u5, aarch64_ext_sve_addr_zz,
aarch64_ins_sve_addr_zz_lsl, aarch64_ins_sve_addr_zz_sxtw,
aarch64_ins_sve_addr_zz_uxtw, aarch64_ins_sve_aimm,
aarch64_ins_sve_asimm, aarch64_ins_sve_index, aarch64_ins_sve_limm_mov,
aarch64_ins_sve_quad_index, aarch64_ins_sve_reglist,
aarch64_ins_sve_scale, aarch64_ins_sve_shlimm, aarch64_ins_sve_shrimm,
aarch64_ins_sve_float_half_one, aarch64_ins_sve_float_half_two,
aarch64_ins_sve_float_zero_one, aarch64_opcode_encode): Likewise.
* aarch64-dis.h (aarch64_extract_operand, aarch64_##x): Likewise.
* aarch64-dis.c (aarch64_ext_regno, aarch64_ext_reglane,
aarch64_ext_reglist, aarch64_ext_ldst_reglist,
aarch64_ext_ldst_reglist_r, aarch64_ext_ldst_elemlist,
aarch64_ext_advsimd_imm_shift, aarch64_ext_imm, aarch64_ext_imm_half,
aarch64_ext_advsimd_imm_modified, aarch64_ext_fpimm,
aarch64_ext_imm_rotate1, aarch64_ext_imm_rotate2, aarch64_ext_fbits,
aarch64_ext_aimm, aarch64_ext_limm_1, aarch64_ext_limm, decode_limm,
aarch64_ext_inv_limm, aarch64_ext_ft, aarch64_ext_addr_simple,
aarch64_ext_addr_regoff, aarch64_ext_addr_offset, aarch64_ext_addr_simm,
aarch64_ext_addr_simm10, aarch64_ext_addr_uimm12,
aarch64_ext_simd_addr_post, aarch64_ext_cond, aarch64_ext_sysreg,
aarch64_ext_pstatefield, aarch64_ext_sysins_op, aarch64_ext_barrier,
aarch64_ext_prfop, aarch64_ext_hint, aarch64_ext_reg_extended,
aarch64_ext_reg_shifted, aarch64_ext_sve_addr_ri_s4xvl,
aarch64_ext_sve_addr_ri_s6xvl, aarch64_ext_sve_addr_ri_s9xvl,
aarch64_ext_sve_addr_ri_s4, aarch64_ext_sve_addr_ri_u6,
aarch64_ext_sve_addr_rr_lsl, aarch64_ext_sve_addr_rz_xtw,
aarch64_ext_sve_addr_zi_u5, aarch64_ext_sve_addr_zz,
aarch64_ext_sve_addr_zz_lsl, aarch64_ext_sve_addr_zz_sxtw,
aarch64_ext_sve_addr_zz_uxtw, aarch64_ext_sve_aimm,
aarch64_ext_sve_asimm, aarch64_ext_sve_index, aarch64_ext_sve_limm_mov,
aarch64_ext_sve_quad_index, aarch64_ext_sve_reglist,
aarch64_ext_sve_scale, aarch64_ext_sve_shlimm, aarch64_ext_sve_shrimm,
aarch64_ext_sve_float_half_one, aarch64_ext_sve_float_half_two,
aarch64_ext_sve_float_zero_one, aarch64_opcode_decode): Likewise.
(determine_disassembling_preference, aarch64_decode_insn,
print_insn_aarch64_word, print_insn_data): Take errors struct.
(print_insn_aarch64): Use errors.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Regenerate.
* aarch64-gen.c (print_operand_inserter): Use errors and change type to
boolean in aarch64_insert_operan.
(print_operand_extractor): Likewise.
* aarch64-opc.c (aarch64_print_operand): Use sysreg struct.
2018-05-15 23:11:42 +08:00
|
|
|
|
unsigned int value = opnd->sysreg.value;
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, "s%u_%u_c%u_c%u_%u",
|
|
|
|
|
(value >> 14) & 0x3, (value >> 11) & 0x7,
|
|
|
|
|
(value >> 7) & 0xf, (value >> 3) & 0xf,
|
|
|
|
|
value & 0x7));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_PSTATEFIELD:
|
|
|
|
|
for (i = 0; aarch64_pstatefields[i].name; ++i)
|
2021-11-18 04:15:13 +08:00
|
|
|
|
if (aarch64_pstatefields[i].value == opnd->pstatefield)
|
|
|
|
|
{
|
|
|
|
|
/* PSTATEFIELD name is encoded partially in CRm[3:1] for SVCRSM,
|
|
|
|
|
SVCRZA and SVCRSMZA. */
|
|
|
|
|
uint32_t flags = aarch64_pstatefields[i].flags;
|
|
|
|
|
if (flags & F_REG_IN_CRM
|
|
|
|
|
&& (PSTATE_DECODE_CRM (opnd->sysreg.flags)
|
|
|
|
|
!= PSTATE_DECODE_CRM (flags)))
|
|
|
|
|
continue;
|
|
|
|
|
break;
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
assert (aarch64_pstatefields[i].name);
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, aarch64_pstatefields[i].name));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SYSREG_AT:
|
|
|
|
|
case AARCH64_OPND_SYSREG_DC:
|
|
|
|
|
case AARCH64_OPND_SYSREG_IC:
|
|
|
|
|
case AARCH64_OPND_SYSREG_TLBI:
|
2024-01-15 19:20:20 +08:00
|
|
|
|
case AARCH64_OPND_SYSREG_TLBIP:
|
2018-09-26 17:52:51 +08:00
|
|
|
|
case AARCH64_OPND_SYSREG_SR:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_reg (styler, opnd->sysins_op->name));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_BARRIER:
|
2020-10-28 22:01:36 +08:00
|
|
|
|
case AARCH64_OPND_BARRIER_DSB_NXS:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
{
|
|
|
|
|
if (opnd->barrier->name[0] == '#')
|
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, opnd->barrier->name));
|
|
|
|
|
else
|
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_sub_mnem (styler, opnd->barrier->name));
|
|
|
|
|
}
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_BARRIER_ISB:
|
|
|
|
|
/* Operand can be omitted, e.g. in DCPS1. */
|
|
|
|
|
if (! optional_operand_p (opcode, idx)
|
|
|
|
|
|| (opnd->barrier->value
|
|
|
|
|
!= get_optional_operand_default_value (opcode)))
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#0x%x", opnd->barrier->value));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_PRFOP:
|
2013-02-15 02:12:51 +08:00
|
|
|
|
if (opnd->prfop->name != NULL)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_sub_mnem (styler, opnd->prfop->name));
|
2013-02-15 02:12:51 +08:00
|
|
|
|
else
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_imm (styler, "#0x%02x",
|
|
|
|
|
opnd->prfop->value));
|
2012-08-13 22:52:54 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:18 +08:00
|
|
|
|
case AARCH64_OPND_RPRFMOP:
|
|
|
|
|
enum_value = opnd->imm.value;
|
|
|
|
|
if (enum_value < ARRAY_SIZE (aarch64_rprfmop_array)
|
|
|
|
|
&& aarch64_rprfmop_array[enum_value])
|
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_reg (styler, aarch64_rprfmop_array[enum_value]));
|
|
|
|
|
else
|
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_imm (styler, "#%" PRIi64, opnd->imm.value));
|
|
|
|
|
break;
|
|
|
|
|
|
2015-12-11 18:22:40 +08:00
|
|
|
|
case AARCH64_OPND_BARRIER_PSB:
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s", style_sub_mnem (styler, "csync"));
|
2020-04-20 17:58:16 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2023-11-02 20:44:13 +08:00
|
|
|
|
case AARCH64_OPND_X16:
|
|
|
|
|
snprintf (buf, size, "%s", style_reg (styler, "x16"));
|
|
|
|
|
break;
|
|
|
|
|
|
2023-03-30 18:09:12 +08:00
|
|
|
|
case AARCH64_OPND_SME_ZT0:
|
|
|
|
|
snprintf (buf, size, "%s", style_reg (styler, "zt0"));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZT0_INDEX:
|
|
|
|
|
snprintf (buf, size, "%s[%s]", style_reg (styler, "zt0"),
|
|
|
|
|
style_imm (styler, "%d", (int) opnd->imm.value));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_SME_ZT0_LIST:
|
|
|
|
|
snprintf (buf, size, "{%s}", style_reg (styler, "zt0"));
|
|
|
|
|
break;
|
|
|
|
|
|
2023-11-02 21:07:29 +08:00
|
|
|
|
case AARCH64_OPND_BARRIER_GCSB:
|
|
|
|
|
snprintf (buf, size, "%s", style_sub_mnem (styler, "dsync"));
|
|
|
|
|
break;
|
|
|
|
|
|
[PATCH, BINUTILS, AARCH64, 7/9] Add BTI instruction
This patch is part of the patch series to add support for ARMv8.5-A
extensions.
(https://developer.arm.com/products/architecture/cpu-architecture/a-profile/docs/ddi0596/a/a64-base-instructions-alphabetic-order/bti-branch-target-identification)
The Branch Target Identification instructions (BTI) are allocated to
existing HINT space, using HINT numbers 32, 34, 36, 38, such that
bits[7:6] of the instruction identify the compatibility of the BTI
instruction to different branches.
BTI {<targets>}
where <targets> one of the following, specifying which type of
indirection is allowed:
j : Can be a target of any BR Xn isntruction.
c : Can be a target of any BLR Xn and BR {X16|X17}.
jc: Can be a target of any free branch.
A BTI instruction without any <targets> is the strictest of all and
can not be a target of nay free branch.
*** include/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* opcode/aarch64.h (AARCH64_FEATURE_BTI): New.
(AARCH64_ARCH_V8_5): Add AARCH64_FEATURE_BTI by default.
(aarch64_opnd): Add AARCH64_OPND_BTI_TARGET.
(HINT_OPD_CSYNC, HINT_OPD_C, HINT_OPD_J): New macros to
define HINT #imm values.
(HINT_OPD_JC, HINT_OPD_NULL): Likewise.
*** opcodes/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* aarch64-opc.h (HINT_OPD_NOPRINT, HINT_ENCODE): New.
(HINT_FLAG, HINT_VALUE): New macros to encode NO_PRINT flag
with the hint immediate.
* aarch64-opc.c (aarch64_hint_options): New entries for
c, j, jc and default (with HINT_OPD_F_NOPRINT flag) for BTI.
(aarch64_print_operand): Add case for AARCH64_OPND_BTI_TARGET
while checking for HINT_OPD_F_NOPRINT flag.
* aarch64-dis.c (aarch64_ext_hint): Use new HINT_VALUE to
extract value.
* aarch64-tbl.h (aarch64_feature_bti, BTI, BTI_INSN): New.
(aarch64_opcode_table): Add entry for BTI.
(AARCH64_OPERANDS): Add new description for BTI targets.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Regenerate.
* aarch64-opc-2.c: Regenerate.
*** gas/ChangeLog ***
2018-10-09 Sudakshina Das <sudi.das@arm.com>
* config/tc-aarch64.c (parse_bti_operand): New.
(process_omitted_operand): Add case for AARCH64_OPND_BTI_TARGET.
(parse_operands): Likewise.
* testsuite/gas/aarch64/system.d: Update for BTI.
* testsuite/gas/aarch64/bti.s: New.
* testsuite/gas/aarch64/bti.d: New.
* testsuite/gas/aarch64/illegal-bti.d: New.
* testsuite/gas/aarch64/illegal-bti.l: New.
2018-09-26 18:00:49 +08:00
|
|
|
|
case AARCH64_OPND_BTI_TARGET:
|
|
|
|
|
if ((HINT_FLAG (opnd->hint_option->value) & HINT_OPD_F_NOPRINT) == 0)
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
snprintf (buf, size, "%s",
|
|
|
|
|
style_sub_mnem (styler, opnd->hint_option->name));
|
2015-12-11 18:22:40 +08:00
|
|
|
|
break;
|
|
|
|
|
|
aarch64: Add support for +mops
This patch adds support for FEAT_MOPS, an Armv8.8-A extension
that provides memcpy and memset acceleration instructions.
I took the perhaps controversial decision to generate the individual
instruction forms using macros rather than list them out individually.
This becomes useful with a follow-on patch to check that code follows
the correct P/M/E sequence.
[https://developer.arm.com/documentation/ddi0596/2021-09/Base-Instructions?lang=en]
include/
* opcode/aarch64.h (AARCH64_FEATURE_MOPS): New macro.
(AARCH64_ARCH_V8_8): Make armv8.8-a imply AARCH64_FEATURE_MOPS.
(AARCH64_OPND_MOPS_ADDR_Rd): New aarch64_opnd.
(AARCH64_OPND_MOPS_ADDR_Rs): Likewise.
(AARCH64_OPND_MOPS_WB_Rn): Likewise.
opcodes/
* aarch64-asm.h (ins_x0_to_x30): New inserter.
* aarch64-asm.c (aarch64_ins_x0_to_x30): New function.
* aarch64-dis.h (ext_x0_to_x30): New extractor.
* aarch64-dis.c (aarch64_ext_x0_to_x30): New function.
* aarch64-tbl.h (aarch64_feature_mops): New feature set.
(aarch64_feature_mops_memtag): Likewise.
(MOPS, MOPS_MEMTAG, MOPS_INSN, MOPS_MEMTAG_INSN)
(MOPS_CPY_OP1_OP2_PME_INSN, MOPS_CPY_OP1_OP2_INSN, MOPS_CPY_OP1_INSN)
(MOPS_CPY_INSN, MOPS_SET_OP1_OP2_PME_INSN, MOPS_SET_OP1_OP2_INSN)
(MOPS_SET_INSN): New macros.
(aarch64_opcode_table): Add MOPS instructions.
(aarch64_opcode_table): Add entries for AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
* aarch64-opc.c (aarch64_print_operand): Handle
AARCH64_OPND_MOPS_ADDR_Rd, AARCH64_OPND_MOPS_ADDR_Rs and
AARCH64_OPND_MOPS_WB_Rn.
(verify_three_different_regs): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
* doc/c-aarch64.texi: Document +mops.
* config/tc-aarch64.c (parse_x0_to_x30): New function.
(parse_operands): Handle AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
(aarch64_features): Add "mops".
* testsuite/gas/aarch64/mops.s, testsuite/gas/aarch64/mops.d: New test.
* testsuite/gas/aarch64/mops_invalid.s,
* testsuite/gas/aarch64/mops_invalid.d,
* testsuite/gas/aarch64/mops_invalid.l: Likewise.
2021-12-02 23:00:57 +08:00
|
|
|
|
case AARCH64_OPND_MOPS_ADDR_Rd:
|
|
|
|
|
case AARCH64_OPND_MOPS_ADDR_Rs:
|
|
|
|
|
snprintf (buf, size, "[%s]!",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_reg (styler,
|
|
|
|
|
get_int_reg_name (opnd->reg.regno,
|
|
|
|
|
AARCH64_OPND_QLF_X, 0)));
|
aarch64: Add support for +mops
This patch adds support for FEAT_MOPS, an Armv8.8-A extension
that provides memcpy and memset acceleration instructions.
I took the perhaps controversial decision to generate the individual
instruction forms using macros rather than list them out individually.
This becomes useful with a follow-on patch to check that code follows
the correct P/M/E sequence.
[https://developer.arm.com/documentation/ddi0596/2021-09/Base-Instructions?lang=en]
include/
* opcode/aarch64.h (AARCH64_FEATURE_MOPS): New macro.
(AARCH64_ARCH_V8_8): Make armv8.8-a imply AARCH64_FEATURE_MOPS.
(AARCH64_OPND_MOPS_ADDR_Rd): New aarch64_opnd.
(AARCH64_OPND_MOPS_ADDR_Rs): Likewise.
(AARCH64_OPND_MOPS_WB_Rn): Likewise.
opcodes/
* aarch64-asm.h (ins_x0_to_x30): New inserter.
* aarch64-asm.c (aarch64_ins_x0_to_x30): New function.
* aarch64-dis.h (ext_x0_to_x30): New extractor.
* aarch64-dis.c (aarch64_ext_x0_to_x30): New function.
* aarch64-tbl.h (aarch64_feature_mops): New feature set.
(aarch64_feature_mops_memtag): Likewise.
(MOPS, MOPS_MEMTAG, MOPS_INSN, MOPS_MEMTAG_INSN)
(MOPS_CPY_OP1_OP2_PME_INSN, MOPS_CPY_OP1_OP2_INSN, MOPS_CPY_OP1_INSN)
(MOPS_CPY_INSN, MOPS_SET_OP1_OP2_PME_INSN, MOPS_SET_OP1_OP2_INSN)
(MOPS_SET_INSN): New macros.
(aarch64_opcode_table): Add MOPS instructions.
(aarch64_opcode_table): Add entries for AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
* aarch64-opc.c (aarch64_print_operand): Handle
AARCH64_OPND_MOPS_ADDR_Rd, AARCH64_OPND_MOPS_ADDR_Rs and
AARCH64_OPND_MOPS_WB_Rn.
(verify_three_different_regs): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
* doc/c-aarch64.texi: Document +mops.
* config/tc-aarch64.c (parse_x0_to_x30): New function.
(parse_operands): Handle AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
(aarch64_features): Add "mops".
* testsuite/gas/aarch64/mops.s, testsuite/gas/aarch64/mops.d: New test.
* testsuite/gas/aarch64/mops_invalid.s,
* testsuite/gas/aarch64/mops_invalid.d,
* testsuite/gas/aarch64/mops_invalid.l: Likewise.
2021-12-02 23:00:57 +08:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case AARCH64_OPND_MOPS_WB_Rn:
|
|
|
|
|
snprintf (buf, size, "%s!",
|
libopcodes/aarch64: add support for disassembler styling
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
2022-04-28 20:31:07 +08:00
|
|
|
|
style_reg (styler, get_int_reg_name (opnd->reg.regno,
|
|
|
|
|
AARCH64_OPND_QLF_X, 0)));
|
aarch64: Add support for +mops
This patch adds support for FEAT_MOPS, an Armv8.8-A extension
that provides memcpy and memset acceleration instructions.
I took the perhaps controversial decision to generate the individual
instruction forms using macros rather than list them out individually.
This becomes useful with a follow-on patch to check that code follows
the correct P/M/E sequence.
[https://developer.arm.com/documentation/ddi0596/2021-09/Base-Instructions?lang=en]
include/
* opcode/aarch64.h (AARCH64_FEATURE_MOPS): New macro.
(AARCH64_ARCH_V8_8): Make armv8.8-a imply AARCH64_FEATURE_MOPS.
(AARCH64_OPND_MOPS_ADDR_Rd): New aarch64_opnd.
(AARCH64_OPND_MOPS_ADDR_Rs): Likewise.
(AARCH64_OPND_MOPS_WB_Rn): Likewise.
opcodes/
* aarch64-asm.h (ins_x0_to_x30): New inserter.
* aarch64-asm.c (aarch64_ins_x0_to_x30): New function.
* aarch64-dis.h (ext_x0_to_x30): New extractor.
* aarch64-dis.c (aarch64_ext_x0_to_x30): New function.
* aarch64-tbl.h (aarch64_feature_mops): New feature set.
(aarch64_feature_mops_memtag): Likewise.
(MOPS, MOPS_MEMTAG, MOPS_INSN, MOPS_MEMTAG_INSN)
(MOPS_CPY_OP1_OP2_PME_INSN, MOPS_CPY_OP1_OP2_INSN, MOPS_CPY_OP1_INSN)
(MOPS_CPY_INSN, MOPS_SET_OP1_OP2_PME_INSN, MOPS_SET_OP1_OP2_INSN)
(MOPS_SET_INSN): New macros.
(aarch64_opcode_table): Add MOPS instructions.
(aarch64_opcode_table): Add entries for AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
* aarch64-opc.c (aarch64_print_operand): Handle
AARCH64_OPND_MOPS_ADDR_Rd, AARCH64_OPND_MOPS_ADDR_Rs and
AARCH64_OPND_MOPS_WB_Rn.
(verify_three_different_regs): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
* doc/c-aarch64.texi: Document +mops.
* config/tc-aarch64.c (parse_x0_to_x30): New function.
(parse_operands): Handle AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
(aarch64_features): Add "mops".
* testsuite/gas/aarch64/mops.s, testsuite/gas/aarch64/mops.d: New test.
* testsuite/gas/aarch64/mops_invalid.s,
* testsuite/gas/aarch64/mops_invalid.d,
* testsuite/gas/aarch64/mops_invalid.l: Likewise.
2021-12-02 23:00:57 +08:00
|
|
|
|
break;
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
default:
|
2021-11-25 21:11:25 +08:00
|
|
|
|
snprintf (buf, size, "<invalid>");
|
|
|
|
|
break;
|
2012-08-13 22:52:54 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#define CPENC(op0,op1,crn,crm,op2) \
|
|
|
|
|
((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
|
|
|
|
|
/* for 3.9.3 Instructions for Accessing Special Purpose Registers */
|
|
|
|
|
#define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
|
|
|
|
|
/* for 3.9.10 System Instructions */
|
|
|
|
|
#define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))
|
|
|
|
|
|
|
|
|
|
#define C0 0
|
|
|
|
|
#define C1 1
|
|
|
|
|
#define C2 2
|
|
|
|
|
#define C3 3
|
|
|
|
|
#define C4 4
|
|
|
|
|
#define C5 5
|
|
|
|
|
#define C6 6
|
|
|
|
|
#define C7 7
|
|
|
|
|
#define C8 8
|
|
|
|
|
#define C9 9
|
|
|
|
|
#define C10 10
|
|
|
|
|
#define C11 11
|
|
|
|
|
#define C12 12
|
|
|
|
|
#define C13 13
|
|
|
|
|
#define C14 14
|
|
|
|
|
#define C15 15
|
|
|
|
|
|
Implement Read/Write constraints on system registers on AArch64
This patch adds constraints for read and write only system registers with the
msr and mrs instructions. The code will treat having both flags set and none
set as the same. These flags add constraints that must be matched up. e.g. a
system register with a READ only flag set, can only be used with mrs. If The
constraint fails a warning is emitted.
Examples of the warnings generated:
test.s: Assembler messages:
test.s:5: Warning: specified register cannot be written to at operand 1 -- `msr dbgdtrrx_el0,x3'
test.s:7: Warning: specified register cannot be read from at operand 2 -- `mrs x3,dbgdtrtx_el0'
test.s:8: Warning: specified register cannot be written to at operand 1 -- `msr midr_el1,x3'
and disassembly notes:
0000000000000000 <main>:
0: d5130503 msr dbgdtrtx_el0, x3
4: d5130503 msr dbgdtrtx_el0, x3
8: d5330503 mrs x3, dbgdtrrx_el0
c: d5330503 mrs x3, dbgdtrrx_el0
10: d5180003 msr midr_el1, x3 ; note: writing to a read-only register.
Note that because dbgdtrrx_el0 and dbgdtrtx_el0 have the same encoding, during
disassembly the constraints are use to disambiguate between the two. An exact
constraint match is always prefered over partial ones if available.
As always the warnings can be suppressed with -w and also be made errors using
warnings as errors.
binutils/
PR binutils/21446
* doc/binutils.texi (-M): Document AArch64 options.
gas/
PR binutils/21446
* testsuite/gas/aarch64/illegal-sysreg-2.s: Fix pmbidr_el1 test.
* testsuite/gas/aarch64/illegal-sysreg-2.l: Likewise.
* testsuite/gas/aarch64/illegal-sysreg-2.d: Likewise.
* testsuite/gas/aarch64/sysreg-diagnostic.s: New.
* testsuite/gas/aarch64/sysreg-diagnostic.l: New.
* testsuite/gas/aarch64/sysreg-diagnostic.d: New.
include/
PR binutils/21446
* opcode/aarch64.h (F_SYS_READ, F_SYS_WRITE): New.
opcodes/
PR binutils/21446
* aarch64-asm.c (opintl.h): Include.
(aarch64_ins_sysreg): Enforce read/write constraints.
* aarch64-dis.c (aarch64_ext_sysreg): Likewise.
* aarch64-opc.h (F_DEPRECATED, F_ARCHEXT, F_HASXT): Moved here.
(F_REG_READ, F_REG_WRITE): New.
* aarch64-opc.c (aarch64_print_operand): Generate notes for
AARCH64_OPND_SYSREG.
(F_DEPRECATED, F_ARCHEXT, F_HASXT): Move to aarch64-opc.h.
(aarch64_sys_regs): Add constraints to currentel, midr_el1, ctr_el0,
mpidr_el1, revidr_el1, aidr_el1, dczid_el0, id_dfr0_el1, id_pfr0_el1,
id_pfr1_el1, id_afr0_el1, id_mmfr0_el1, id_mmfr1_el1, id_mmfr2_el1,
id_mmfr3_el1, id_mmfr4_el1, id_isar0_el1, id_isar1_el1, id_isar2_el1,
id_isar3_el1, id_isar4_el1, id_isar5_el1, mvfr0_el1, mvfr1_el1,
mvfr2_el1, ccsidr_el1, id_aa64pfr0_el1, id_aa64pfr1_el1,
id_aa64dfr0_el1, id_aa64dfr1_el1, id_aa64isar0_el1, id_aa64isar1_el1,
id_aa64mmfr0_el1, id_aa64mmfr1_el1, id_aa64mmfr2_el1, id_aa64afr0_el1,
id_aa64afr0_el1, id_aa64afr1_el1, id_aa64zfr0_el1, clidr_el1,
csselr_el1, vsesr_el2, erridr_el1, erxfr_el1, rvbar_el1, rvbar_el2,
rvbar_el3, isr_el1, tpidrro_el0, cntfrq_el0, cntpct_el0, cntvct_el0,
mdccsr_el0, dbgdtrrx_el0, dbgdtrtx_el0, osdtrrx_el1, osdtrtx_el1,
mdrar_el1, oslar_el1, oslsr_el1, dbgauthstatus_el1, pmbidr_el1,
pmsidr_el1, pmswinc_el0, pmceid0_el0, pmceid1_el0.
* aarch64-tbl.h (aarch64_opcode_table): Add constraints to
msr (F_SYS_WRITE), mrs (F_SYS_READ).
2018-05-15 23:37:20 +08:00
|
|
|
|
/* TODO there is one more issues need to be resolved
|
2020-06-11 19:34:37 +08:00
|
|
|
|
1. handle cpu-implementation-defined system registers.
|
|
|
|
|
|
|
|
|
|
Note that the F_REG_{READ,WRITE} flags mean read-only and write-only
|
|
|
|
|
respectively. If neither of these are set then the register is read-write. */
|
2013-11-06 04:54:22 +08:00
|
|
|
|
const aarch64_sys_reg aarch64_sys_regs [] =
|
|
|
|
|
{
|
2023-10-02 16:35:01 +08:00
|
|
|
|
#define SYSREG(name, encoding, flags, features) \
|
|
|
|
|
{ name, encoding, flags, features },
|
|
|
|
|
#include "aarch64-sys-regs.def"
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
{ 0, CPENC (0,0,0,0,0), 0, AARCH64_NO_FEATURES }
|
2023-10-02 16:35:01 +08:00
|
|
|
|
#undef SYSREG
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
2020-08-10 23:20:17 +08:00
|
|
|
|
aarch64_sys_reg_deprecated_p (const uint32_t reg_flags)
|
2013-11-06 04:54:22 +08:00
|
|
|
|
{
|
2020-08-10 23:20:17 +08:00
|
|
|
|
return (reg_flags & F_DEPRECATED) != 0;
|
2015-06-01 23:00:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
2023-11-21 04:40:10 +08:00
|
|
|
|
bool
|
|
|
|
|
aarch64_sys_reg_128bit_p (const uint32_t reg_flags)
|
|
|
|
|
{
|
|
|
|
|
return (reg_flags & F_REG_128) != 0;
|
|
|
|
|
}
|
|
|
|
|
|
2023-10-02 16:51:27 +08:00
|
|
|
|
bool
|
|
|
|
|
aarch64_sys_reg_alias_p (const uint32_t reg_flags)
|
|
|
|
|
{
|
|
|
|
|
return (reg_flags & F_REG_ALIAS) != 0;
|
|
|
|
|
}
|
|
|
|
|
|
Add assembler and disassembler support for the new Armv8.4-a registers for AArch64.
Some of these instructions have been back-ported as optional extensions to
Armv8.2-a and higher, but others are only available for Armv8.4-a.
opcodes/
* aarch64-opc.c (aarch64_sys_regs): Add ARMv8.4-a registers;
dit, vstcr_el2, vsttbr_el2, cnthvs_tval_el2, cnthvs_cval_el2,
cnthvs_ctl_el2, cnthps_tval_el2, cnthps_cval_el2, cnthps_ctl_el2,
sder32_el2, vncr_el2.
(aarch64_sys_reg_supported_p): Likewise.
(aarch64_pstatefields): Add dit register.
(aarch64_pstatefield_supported_p): Likewise.
(aarch64_sys_regs_tlbi): Add vmalle1os, vae1os, aside1os, vaae1os,
vale1os, vaale1os, ipas2e1os, ipas2le1os, vae2os, vale2os, vmalls12e1os,
vae3os, vale3os, alle2os, alle1os, alle3os, rvae1, rvaae1, rvale1,
rvaale1, rvae1is, rvaae1is, rvale1is, rvaale1is, rvae1os, rvaae1os,
rvale1os, rvaale1os, ripas2e1is, ripas2le1is, ripas2e1, ripas2le1,
ripas2e1os, ripas2le1os, rvae2, rvale2, rvae2is, rvale2is, rvae2os,
rvale2os, rvae3, rvale3, rvae3is, rvale3is, rvae3os, rvale3os.
gas/testsuite
* gas/aarch64/armv8_4-a-registers-illegal.d: New.
* gas/aarch64/armv8_4-a-registers-illegal.l: New.
* gas/aarch64/armv8_4-a-registers-illegal.s: New.
* gas/aarch64/armv8_4-a-registers.d: New.
* gas/aarch64/armv8_4-a-registers.s: New.
2017-11-09 23:48:43 +08:00
|
|
|
|
/* The CPENC below is fairly misleading, the fields
|
|
|
|
|
here are not in CPENC form. They are in op2op1 form. The fields are encoded
|
|
|
|
|
by ins_pstatefield, which just shifts the value by the width of the fields
|
|
|
|
|
in a loop. So if you CPENC them only the first value will be set, the rest
|
|
|
|
|
are masked out to 0. As an example. op2 = 3, op1=2. CPENC would produce a
|
|
|
|
|
value of 0b110000000001000000 (0x30040) while what you want is
|
|
|
|
|
0b011010 (0x1a). */
|
2013-11-20 19:22:40 +08:00
|
|
|
|
const aarch64_sys_reg aarch64_pstatefields [] =
|
2012-08-13 22:52:54 +08:00
|
|
|
|
{
|
2023-10-02 16:35:01 +08:00
|
|
|
|
{ "spsel", 0x05, F_REG_MAX_VALUE (1), AARCH64_NO_FEATURES },
|
|
|
|
|
{ "daifset", 0x1e, F_REG_MAX_VALUE (15), AARCH64_NO_FEATURES },
|
|
|
|
|
{ "daifclr", 0x1f, F_REG_MAX_VALUE (15), AARCH64_NO_FEATURES },
|
|
|
|
|
{ "pan", 0x04, F_REG_MAX_VALUE (1) | F_ARCHEXT, AARCH64_FEATURE (PAN) },
|
|
|
|
|
{ "uao", 0x03, F_REG_MAX_VALUE (1) | F_ARCHEXT, AARCH64_FEATURE (V8_2A) },
|
|
|
|
|
{ "ssbs", 0x19, F_REG_MAX_VALUE (1) | F_ARCHEXT, AARCH64_FEATURE (SSBS) },
|
|
|
|
|
{ "dit", 0x1a, F_REG_MAX_VALUE (1) | F_ARCHEXT, AARCH64_FEATURE (V8_4A) },
|
|
|
|
|
{ "tco", 0x1c, F_REG_MAX_VALUE (1) | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "svcrsm", 0x1b, PSTATE_ENCODE_CRM_AND_IMM (0x2,0x1) | F_REG_MAX_VALUE (1)
|
|
|
|
|
| F_ARCHEXT, AARCH64_FEATURE (SME) },
|
|
|
|
|
{ "svcrza", 0x1b, PSTATE_ENCODE_CRM_AND_IMM (0x4,0x1) | F_REG_MAX_VALUE (1)
|
|
|
|
|
| F_ARCHEXT, AARCH64_FEATURE (SME) },
|
|
|
|
|
{ "svcrsmza", 0x1b, PSTATE_ENCODE_CRM_AND_IMM (0x6,0x1) | F_REG_MAX_VALUE (1)
|
|
|
|
|
| F_ARCHEXT, AARCH64_FEATURE (SME) },
|
|
|
|
|
{ "allint", 0x08, F_REG_MAX_VALUE (1) | F_ARCHEXT, AARCH64_FEATURE (V8_8A) },
|
|
|
|
|
{ 0, CPENC (0,0,0,0,0), 0, AARCH64_NO_FEATURES },
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
2015-06-01 23:00:28 +08:00
|
|
|
|
aarch64_pstatefield_supported_p (const aarch64_feature_set features,
|
|
|
|
|
const aarch64_sys_reg *reg)
|
|
|
|
|
{
|
|
|
|
|
if (!(reg->flags & F_ARCHEXT))
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return true;
|
2015-06-01 23:00:28 +08:00
|
|
|
|
|
2020-06-11 19:34:37 +08:00
|
|
|
|
return AARCH64_CPU_HAS_ALL_FEATURES (features, reg->features);
|
2015-06-01 23:00:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
const aarch64_sys_ins_reg aarch64_sys_regs_ic[] =
|
|
|
|
|
{
|
2024-01-15 19:19:48 +08:00
|
|
|
|
{ "ialluis", CPENS(0,C7,C1,0), 0, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "iallu", CPENS(0,C7,C5,0), 0, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "ivau", CPENS (3, C7, C5, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ 0, CPENS(0,0,0,0), 0, AARCH64_NO_FEATURES }
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const aarch64_sys_ins_reg aarch64_sys_regs_dc[] =
|
|
|
|
|
{
|
2024-01-15 19:19:48 +08:00
|
|
|
|
{ "zva", CPENS (3, C7, C4, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "gva", CPENS (3, C7, C4, 3), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "gzva", CPENS (3, C7, C4, 4), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "ivac", CPENS (0, C7, C6, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "igvac", CPENS (0, C7, C6, 3), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "igsw", CPENS (0, C7, C6, 4), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "isw", CPENS (0, C7, C6, 2), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "igdvac", CPENS (0, C7, C6, 5), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "igdsw", CPENS (0, C7, C6, 6), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cvac", CPENS (3, C7, C10, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "cgvac", CPENS (3, C7, C10, 3), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cgdvac", CPENS (3, C7, C10, 5), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "csw", CPENS (0, C7, C10, 2), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "cgsw", CPENS (0, C7, C10, 4), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cgdsw", CPENS (0, C7, C10, 6), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cvau", CPENS (3, C7, C11, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "cvap", CPENS (3, C7, C12, 1), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (V8_2A) },
|
|
|
|
|
{ "cgvap", CPENS (3, C7, C12, 3), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cgdvap", CPENS (3, C7, C12, 5), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cvadp", CPENS (3, C7, C13, 1), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (CVADP) },
|
|
|
|
|
{ "cgvadp", CPENS (3, C7, C13, 3), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cgdvadp", CPENS (3, C7, C13, 5), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "civac", CPENS (3, C7, C14, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "cigvac", CPENS (3, C7, C14, 3), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cigdvac", CPENS (3, C7, C14, 5), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cisw", CPENS (0, C7, C14, 2), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "cigsw", CPENS (0, C7, C14, 4), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cigdsw", CPENS (0, C7, C14, 6), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (MEMTAG) },
|
|
|
|
|
{ "cipapa", CPENS (6, C7, C14, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "cigdpapa", CPENS (6, C7, C14, 5), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ 0, CPENS(0,0,0,0), 0, AARCH64_NO_FEATURES }
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const aarch64_sys_ins_reg aarch64_sys_regs_at[] =
|
|
|
|
|
{
|
2024-01-15 19:19:48 +08:00
|
|
|
|
{ "s1e1r", CPENS (0, C7, C8, 0), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e1w", CPENS (0, C7, C8, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e0r", CPENS (0, C7, C8, 2), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e0w", CPENS (0, C7, C8, 3), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s12e1r", CPENS (4, C7, C8, 4), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s12e1w", CPENS (4, C7, C8, 5), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s12e0r", CPENS (4, C7, C8, 6), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s12e0w", CPENS (4, C7, C8, 7), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e2r", CPENS (4, C7, C8, 0), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e2w", CPENS (4, C7, C8, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e3r", CPENS (6, C7, C8, 0), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e3w", CPENS (6, C7, C8, 1), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "s1e1rp", CPENS (0, C7, C9, 0), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (V8_2A) },
|
|
|
|
|
{ "s1e1wp", CPENS (0, C7, C9, 1), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (V8_2A) },
|
|
|
|
|
{ "s1e1a", CPENS (0, C7, C9, 2), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (ATS1A) },
|
|
|
|
|
{ "s1e2a", CPENS (4, C7, C9, 2), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (ATS1A) },
|
|
|
|
|
{ "s1e3a", CPENS (6, C7, C9, 2), F_HASXT | F_ARCHEXT, AARCH64_FEATURE (ATS1A) },
|
|
|
|
|
{ 0, CPENS(0,0,0,0), 0, AARCH64_NO_FEATURES }
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const aarch64_sys_ins_reg aarch64_sys_regs_tlbi[] =
|
|
|
|
|
{
|
2024-01-15 19:19:48 +08:00
|
|
|
|
{ "rpaos", CPENS (6, C8, C4, 3), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "rpalos", CPENS (6, C8, C4, 7), F_HASXT, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "paallos", CPENS (6, C8, C1, 4), 0, AARCH64_NO_FEATURES },
|
|
|
|
|
{ "paall", CPENS (6, C8, C7, 4), 0, AARCH64_NO_FEATURES },
|
|
|
|
|
|
2024-01-15 19:20:20 +08:00
|
|
|
|
#define TLBI_XS_OP(OP, CODE, FLAGS) \
|
|
|
|
|
{ OP, CODE, FLAGS, AARCH64_NO_FEATURES }, \
|
|
|
|
|
{ OP "nxs", CODE | CPENS (0, C9, 0, 0), FLAGS | F_ARCHEXT, AARCH64_FEATURE (XS) },
|
|
|
|
|
|
|
|
|
|
TLBI_XS_OP ( "vmalle1", CPENS (0, C8, C7, 0), 0)
|
|
|
|
|
TLBI_XS_OP ( "vae1", CPENS (0, C8, C7, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "aside1", CPENS (0, C8, C7, 2), F_HASXT )
|
|
|
|
|
TLBI_XS_OP ( "vaae1", CPENS (0, C8, C7, 3), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vmalle1is", CPENS (0, C8, C3, 0), 0)
|
|
|
|
|
TLBI_XS_OP ( "vae1is", CPENS (0, C8, C3, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "aside1is", CPENS (0, C8, C3, 2), F_HASXT )
|
|
|
|
|
TLBI_XS_OP ( "vaae1is", CPENS (0, C8, C3, 3), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "ipas2e1is", CPENS (4, C8, C0, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "ipas2le1is",CPENS (4, C8, C0, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "ipas2e1", CPENS (4, C8, C4, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "ipas2le1", CPENS (4, C8, C4, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vae2", CPENS (4, C8, C7, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vae2is", CPENS (4, C8, C3, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vmalls12e1",CPENS (4, C8, C7, 6), 0)
|
|
|
|
|
TLBI_XS_OP ( "vmalls12e1is",CPENS(4,C8, C3, 6), 0)
|
|
|
|
|
TLBI_XS_OP ( "vae3", CPENS (6, C8, C7, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vae3is", CPENS (6, C8, C3, 1), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "alle2", CPENS (4, C8, C7, 0), 0)
|
|
|
|
|
TLBI_XS_OP ( "alle2is", CPENS (4, C8, C3, 0), 0)
|
|
|
|
|
TLBI_XS_OP ( "alle1", CPENS (4, C8, C7, 4), 0)
|
|
|
|
|
TLBI_XS_OP ( "alle1is", CPENS (4, C8, C3, 4), 0)
|
|
|
|
|
TLBI_XS_OP ( "alle3", CPENS (6, C8, C7, 0), 0)
|
|
|
|
|
TLBI_XS_OP ( "alle3is", CPENS (6, C8, C3, 0), 0)
|
|
|
|
|
TLBI_XS_OP ( "vale1is", CPENS (0, C8, C3, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vale2is", CPENS (4, C8, C3, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vale3is", CPENS (6, C8, C3, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vaale1is", CPENS (0, C8, C3, 7), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vale1", CPENS (0, C8, C7, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vale2", CPENS (4, C8, C7, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vale3", CPENS (6, C8, C7, 5), F_HASXT | F_REG_128)
|
|
|
|
|
TLBI_XS_OP ( "vaale1", CPENS (0, C8, C7, 7), F_HASXT | F_REG_128)
|
|
|
|
|
|
|
|
|
|
#undef TLBI_XS_OP
|
|
|
|
|
#define TLBI_XS_OP(OP, CODE, FLAGS) \
|
|
|
|
|
{ OP, CODE, FLAGS | F_ARCHEXT, AARCH64_FEATURE (V8_4A) }, \
|
|
|
|
|
{ OP "nxs", CODE | CPENS (0, C9, 0, 0), FLAGS | F_ARCHEXT, AARCH64_FEATURE (XS) },
|
|
|
|
|
|
|
|
|
|
TLBI_XS_OP ( "vmalle1os", CPENS (0, C8, C1, 0), 0 )
|
|
|
|
|
TLBI_XS_OP ( "vae1os", CPENS (0, C8, C1, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "aside1os", CPENS (0, C8, C1, 2), F_HASXT )
|
|
|
|
|
TLBI_XS_OP ( "vaae1os", CPENS (0, C8, C1, 3), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "vale1os", CPENS (0, C8, C1, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "vaale1os", CPENS (0, C8, C1, 7), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ipas2e1os", CPENS (4, C8, C4, 0), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ipas2le1os", CPENS (4, C8, C4, 4), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "vae2os", CPENS (4, C8, C1, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "vale2os", CPENS (4, C8, C1, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "vmalls12e1os", CPENS (4, C8, C1, 6), 0 )
|
|
|
|
|
TLBI_XS_OP ( "vae3os", CPENS (6, C8, C1, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "vale3os", CPENS (6, C8, C1, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "alle2os", CPENS (4, C8, C1, 0), 0 )
|
|
|
|
|
TLBI_XS_OP ( "alle1os", CPENS (4, C8, C1, 4), 0 )
|
|
|
|
|
TLBI_XS_OP ( "alle3os", CPENS (6, C8, C1, 0), 0 )
|
|
|
|
|
|
|
|
|
|
TLBI_XS_OP ( "rvae1", CPENS (0, C8, C6, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvaae1", CPENS (0, C8, C6, 3), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale1", CPENS (0, C8, C6, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvaale1", CPENS (0, C8, C6, 7), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae1is", CPENS (0, C8, C2, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvaae1is", CPENS (0, C8, C2, 3), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale1is", CPENS (0, C8, C2, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvaale1is", CPENS (0, C8, C2, 7), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae1os", CPENS (0, C8, C5, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvaae1os", CPENS (0, C8, C5, 3), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale1os", CPENS (0, C8, C5, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvaale1os", CPENS (0, C8, C5, 7), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ripas2e1is", CPENS (4, C8, C0, 2), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ripas2le1is",CPENS (4, C8, C0, 6), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ripas2e1", CPENS (4, C8, C4, 2), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ripas2le1", CPENS (4, C8, C4, 6), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ripas2e1os", CPENS (4, C8, C4, 3), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "ripas2le1os",CPENS (4, C8, C4, 7), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae2", CPENS (4, C8, C6, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale2", CPENS (4, C8, C6, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae2is", CPENS (4, C8, C2, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale2is", CPENS (4, C8, C2, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae2os", CPENS (4, C8, C5, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale2os", CPENS (4, C8, C5, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae3", CPENS (6, C8, C6, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale3", CPENS (6, C8, C6, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae3is", CPENS (6, C8, C2, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale3is", CPENS (6, C8, C2, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvae3os", CPENS (6, C8, C5, 1), F_HASXT | F_REG_128 )
|
|
|
|
|
TLBI_XS_OP ( "rvale3os", CPENS (6, C8, C5, 5), F_HASXT | F_REG_128 )
|
|
|
|
|
|
|
|
|
|
#undef TLBI_XS_OP
|
2024-01-15 19:19:48 +08:00
|
|
|
|
|
|
|
|
|
{ 0, CPENS(0,0,0,0), 0, AARCH64_NO_FEATURES }
|
2012-08-13 22:52:54 +08:00
|
|
|
|
};
|
|
|
|
|
|
2018-09-26 17:52:51 +08:00
|
|
|
|
const aarch64_sys_ins_reg aarch64_sys_regs_sr[] =
|
|
|
|
|
{
|
|
|
|
|
/* RCTX is somewhat unique in a way that it has different values
|
|
|
|
|
(op2) based on the instruction in which it is used (cfp/dvp/cpp).
|
|
|
|
|
Thus op2 is masked out and instead encoded directly in the
|
|
|
|
|
aarch64_opcode_table entries for the respective instructions. */
|
2024-01-15 19:19:48 +08:00
|
|
|
|
{ "rctx", CPENS(3,C7,C3,0), F_HASXT | F_ARCHEXT | F_REG_WRITE, AARCH64_FEATURE (PREDRES) }, /* WO */
|
|
|
|
|
{ 0, CPENS(0,0,0,0), 0, AARCH64_NO_FEATURES }
|
2018-09-26 17:52:51 +08:00
|
|
|
|
};
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
2015-12-11 00:31:35 +08:00
|
|
|
|
aarch64_sys_ins_reg_has_xt (const aarch64_sys_ins_reg *sys_ins_reg)
|
|
|
|
|
{
|
|
|
|
|
return (sys_ins_reg->flags & F_HASXT) != 0;
|
|
|
|
|
}
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
extern bool
|
2015-12-11 00:38:44 +08:00
|
|
|
|
aarch64_sys_ins_reg_supported_p (const aarch64_feature_set features,
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
const char *reg_name,
|
|
|
|
|
uint32_t reg_flags,
|
|
|
|
|
const aarch64_feature_set *reg_features)
|
2015-12-11 00:38:44 +08:00
|
|
|
|
{
|
2020-09-08 21:21:44 +08:00
|
|
|
|
/* Armv8-R has no EL3. */
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
if (AARCH64_CPU_HAS_FEATURE (features, V8R))
|
2020-09-08 21:21:44 +08:00
|
|
|
|
{
|
|
|
|
|
const char *suffix = strrchr (reg_name, '_');
|
|
|
|
|
if (suffix && !strcmp (suffix, "_el3"))
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return false;
|
2020-09-08 21:21:44 +08:00
|
|
|
|
}
|
2020-08-10 23:20:17 +08:00
|
|
|
|
|
|
|
|
|
if (!(reg_flags & F_ARCHEXT))
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return true;
|
2020-08-10 23:20:17 +08:00
|
|
|
|
|
2024-01-15 19:19:48 +08:00
|
|
|
|
return AARCH64_CPU_HAS_ALL_FEATURES (features, *reg_features);
|
2015-12-11 00:38:44 +08:00
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
#undef C0
|
|
|
|
|
#undef C1
|
|
|
|
|
#undef C2
|
|
|
|
|
#undef C3
|
|
|
|
|
#undef C4
|
|
|
|
|
#undef C5
|
|
|
|
|
#undef C6
|
|
|
|
|
#undef C7
|
|
|
|
|
#undef C8
|
|
|
|
|
#undef C9
|
|
|
|
|
#undef C10
|
|
|
|
|
#undef C11
|
|
|
|
|
#undef C12
|
|
|
|
|
#undef C13
|
|
|
|
|
#undef C14
|
|
|
|
|
#undef C15
|
|
|
|
|
|
2016-04-28 16:11:03 +08:00
|
|
|
|
#define BIT(INSN,BT) (((INSN) >> (BT)) & 1)
|
|
|
|
|
#define BITS(INSN,HI,LO) (((INSN) >> (LO)) & ((1 << (((HI) - (LO)) + 1)) - 1))
|
|
|
|
|
|
2018-10-04 01:37:07 +08:00
|
|
|
|
static enum err_type
|
|
|
|
|
verify_ldpsw (const struct aarch64_inst *inst ATTRIBUTE_UNUSED,
|
|
|
|
|
const aarch64_insn insn, bfd_vma pc ATTRIBUTE_UNUSED,
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool encoding ATTRIBUTE_UNUSED,
|
2018-10-04 01:37:07 +08:00
|
|
|
|
aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
|
2018-10-04 01:38:42 +08:00
|
|
|
|
aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
|
2016-04-28 16:11:03 +08:00
|
|
|
|
{
|
|
|
|
|
int t = BITS (insn, 4, 0);
|
|
|
|
|
int n = BITS (insn, 9, 5);
|
|
|
|
|
int t2 = BITS (insn, 14, 10);
|
|
|
|
|
|
|
|
|
|
if (BIT (insn, 23))
|
|
|
|
|
{
|
|
|
|
|
/* Write back enabled. */
|
|
|
|
|
if ((t == n || t2 == n) && n != 31)
|
2018-10-04 01:37:07 +08:00
|
|
|
|
return ERR_UND;
|
2016-04-28 16:11:03 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (BIT (insn, 22))
|
|
|
|
|
{
|
|
|
|
|
/* Load */
|
|
|
|
|
if (t == t2)
|
2018-10-04 01:37:07 +08:00
|
|
|
|
return ERR_UND;
|
2016-04-28 16:11:03 +08:00
|
|
|
|
}
|
|
|
|
|
|
2018-10-04 01:37:07 +08:00
|
|
|
|
return ERR_OK;
|
2016-04-28 16:11:03 +08:00
|
|
|
|
}
|
|
|
|
|
|
2019-02-08 00:55:23 +08:00
|
|
|
|
/* Verifier for vector by element 3 operands functions where the
|
|
|
|
|
conditions `if sz:L == 11 then UNDEFINED` holds. */
|
|
|
|
|
|
|
|
|
|
static enum err_type
|
|
|
|
|
verify_elem_sd (const struct aarch64_inst *inst, const aarch64_insn insn,
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bfd_vma pc ATTRIBUTE_UNUSED, bool encoding,
|
2019-02-08 00:55:23 +08:00
|
|
|
|
aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
|
|
|
|
|
aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
|
|
|
|
|
{
|
|
|
|
|
const aarch64_insn undef_pattern = 0x3;
|
|
|
|
|
aarch64_insn value;
|
|
|
|
|
|
|
|
|
|
assert (inst->opcode);
|
|
|
|
|
assert (inst->opcode->operands[2] == AARCH64_OPND_Em);
|
|
|
|
|
value = encoding ? inst->value : insn;
|
|
|
|
|
assert (value);
|
|
|
|
|
|
|
|
|
|
if (undef_pattern == extract_fields (value, 0, 2, FLD_sz, FLD_L))
|
|
|
|
|
return ERR_UND;
|
|
|
|
|
|
|
|
|
|
return ERR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
aarch64: Add support for +mops
This patch adds support for FEAT_MOPS, an Armv8.8-A extension
that provides memcpy and memset acceleration instructions.
I took the perhaps controversial decision to generate the individual
instruction forms using macros rather than list them out individually.
This becomes useful with a follow-on patch to check that code follows
the correct P/M/E sequence.
[https://developer.arm.com/documentation/ddi0596/2021-09/Base-Instructions?lang=en]
include/
* opcode/aarch64.h (AARCH64_FEATURE_MOPS): New macro.
(AARCH64_ARCH_V8_8): Make armv8.8-a imply AARCH64_FEATURE_MOPS.
(AARCH64_OPND_MOPS_ADDR_Rd): New aarch64_opnd.
(AARCH64_OPND_MOPS_ADDR_Rs): Likewise.
(AARCH64_OPND_MOPS_WB_Rn): Likewise.
opcodes/
* aarch64-asm.h (ins_x0_to_x30): New inserter.
* aarch64-asm.c (aarch64_ins_x0_to_x30): New function.
* aarch64-dis.h (ext_x0_to_x30): New extractor.
* aarch64-dis.c (aarch64_ext_x0_to_x30): New function.
* aarch64-tbl.h (aarch64_feature_mops): New feature set.
(aarch64_feature_mops_memtag): Likewise.
(MOPS, MOPS_MEMTAG, MOPS_INSN, MOPS_MEMTAG_INSN)
(MOPS_CPY_OP1_OP2_PME_INSN, MOPS_CPY_OP1_OP2_INSN, MOPS_CPY_OP1_INSN)
(MOPS_CPY_INSN, MOPS_SET_OP1_OP2_PME_INSN, MOPS_SET_OP1_OP2_INSN)
(MOPS_SET_INSN): New macros.
(aarch64_opcode_table): Add MOPS instructions.
(aarch64_opcode_table): Add entries for AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
* aarch64-opc.c (aarch64_print_operand): Handle
AARCH64_OPND_MOPS_ADDR_Rd, AARCH64_OPND_MOPS_ADDR_Rs and
AARCH64_OPND_MOPS_WB_Rn.
(verify_three_different_regs): New function.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis-2.c: Likewise.
* aarch64-opc-2.c: Likewise.
gas/
* doc/c-aarch64.texi: Document +mops.
* config/tc-aarch64.c (parse_x0_to_x30): New function.
(parse_operands): Handle AARCH64_OPND_MOPS_ADDR_Rd,
AARCH64_OPND_MOPS_ADDR_Rs and AARCH64_OPND_MOPS_WB_Rn.
(aarch64_features): Add "mops".
* testsuite/gas/aarch64/mops.s, testsuite/gas/aarch64/mops.d: New test.
* testsuite/gas/aarch64/mops_invalid.s,
* testsuite/gas/aarch64/mops_invalid.d,
* testsuite/gas/aarch64/mops_invalid.l: Likewise.
2021-12-02 23:00:57 +08:00
|
|
|
|
/* Check an instruction that takes three register operands and that
|
|
|
|
|
requires the register numbers to be distinct from one another. */
|
|
|
|
|
|
|
|
|
|
static enum err_type
|
|
|
|
|
verify_three_different_regs (const struct aarch64_inst *inst,
|
|
|
|
|
const aarch64_insn insn ATTRIBUTE_UNUSED,
|
|
|
|
|
bfd_vma pc ATTRIBUTE_UNUSED,
|
|
|
|
|
bool encoding ATTRIBUTE_UNUSED,
|
|
|
|
|
aarch64_operand_error *mismatch_detail
|
|
|
|
|
ATTRIBUTE_UNUSED,
|
|
|
|
|
aarch64_instr_sequence *insn_sequence
|
|
|
|
|
ATTRIBUTE_UNUSED)
|
|
|
|
|
{
|
|
|
|
|
int rd, rs, rn;
|
|
|
|
|
|
|
|
|
|
rd = inst->operands[0].reg.regno;
|
|
|
|
|
rs = inst->operands[1].reg.regno;
|
|
|
|
|
rn = inst->operands[2].reg.regno;
|
|
|
|
|
if (rd == rs || rd == rn || rs == rn)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error
|
|
|
|
|
= _("the three register operands must be distinct from one another");
|
|
|
|
|
mismatch_detail->index = -1;
|
|
|
|
|
return ERR_UND;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ERR_OK;
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-02 23:00:56 +08:00
|
|
|
|
/* Add INST to the end of INSN_SEQUENCE. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
add_insn_to_sequence (const struct aarch64_inst *inst,
|
|
|
|
|
aarch64_instr_sequence *insn_sequence)
|
|
|
|
|
{
|
|
|
|
|
insn_sequence->instr[insn_sequence->num_added_insns++] = *inst;
|
|
|
|
|
}
|
|
|
|
|
|
2018-10-04 01:38:42 +08:00
|
|
|
|
/* Initialize an instruction sequence insn_sequence with the instruction INST.
|
|
|
|
|
If INST is NULL the given insn_sequence is cleared and the sequence is left
|
|
|
|
|
uninitialized. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
init_insn_sequence (const struct aarch64_inst *inst,
|
|
|
|
|
aarch64_instr_sequence *insn_sequence)
|
|
|
|
|
{
|
|
|
|
|
int num_req_entries = 0;
|
|
|
|
|
|
2021-12-02 23:00:56 +08:00
|
|
|
|
if (insn_sequence->instr)
|
2018-10-04 01:38:42 +08:00
|
|
|
|
{
|
2021-12-02 23:00:56 +08:00
|
|
|
|
XDELETE (insn_sequence->instr);
|
|
|
|
|
insn_sequence->instr = NULL;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle all the cases here. May need to think of something smarter than
|
|
|
|
|
a giant if/else chain if this grows. At that time, a lookup table may be
|
|
|
|
|
best. */
|
|
|
|
|
if (inst && inst->opcode->constraints & C_SCAN_MOVPRFX)
|
|
|
|
|
num_req_entries = 1;
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
if (inst && (inst->opcode->constraints & C_SCAN_MOPS_PME) == C_SCAN_MOPS_P)
|
|
|
|
|
num_req_entries = 2;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
|
2021-12-02 23:00:56 +08:00
|
|
|
|
insn_sequence->num_added_insns = 0;
|
|
|
|
|
insn_sequence->num_allocated_insns = num_req_entries;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
|
|
|
|
|
if (num_req_entries != 0)
|
|
|
|
|
{
|
2021-12-02 23:00:56 +08:00
|
|
|
|
insn_sequence->instr = XCNEWVEC (aarch64_inst, num_req_entries);
|
|
|
|
|
add_insn_to_sequence (inst, insn_sequence);
|
2018-10-04 01:38:42 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
/* Subroutine of verify_constraints. Check whether the instruction
|
|
|
|
|
is part of a MOPS P/M/E sequence and, if so, whether sequencing
|
|
|
|
|
expectations are met. Return true if the check passes, otherwise
|
|
|
|
|
describe the problem in MISMATCH_DETAIL.
|
|
|
|
|
|
|
|
|
|
IS_NEW_SECTION is true if INST is assumed to start a new section.
|
|
|
|
|
The other arguments are as for verify_constraints. */
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
verify_mops_pme_sequence (const struct aarch64_inst *inst,
|
|
|
|
|
bool is_new_section,
|
|
|
|
|
aarch64_operand_error *mismatch_detail,
|
|
|
|
|
aarch64_instr_sequence *insn_sequence)
|
|
|
|
|
{
|
|
|
|
|
const struct aarch64_opcode *opcode;
|
|
|
|
|
const struct aarch64_inst *prev_insn;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
opcode = inst->opcode;
|
|
|
|
|
if (insn_sequence->instr)
|
|
|
|
|
prev_insn = insn_sequence->instr + (insn_sequence->num_added_insns - 1);
|
|
|
|
|
else
|
|
|
|
|
prev_insn = NULL;
|
|
|
|
|
|
|
|
|
|
if (prev_insn
|
|
|
|
|
&& (prev_insn->opcode->constraints & C_SCAN_MOPS_PME)
|
|
|
|
|
&& prev_insn->opcode != opcode - 1)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_EXPECTED_A_AFTER_B;
|
2021-12-03 19:57:17 +08:00
|
|
|
|
mismatch_detail->error = NULL;
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
mismatch_detail->index = -1;
|
|
|
|
|
mismatch_detail->data[0].s = prev_insn->opcode[1].name;
|
|
|
|
|
mismatch_detail->data[1].s = prev_insn->opcode->name;
|
|
|
|
|
mismatch_detail->non_fatal = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (opcode->constraints & C_SCAN_MOPS_PME)
|
|
|
|
|
{
|
|
|
|
|
if (is_new_section || !prev_insn || prev_insn->opcode != opcode - 1)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_A_SHOULD_FOLLOW_B;
|
2021-12-03 19:57:17 +08:00
|
|
|
|
mismatch_detail->error = NULL;
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
mismatch_detail->index = -1;
|
|
|
|
|
mismatch_detail->data[0].s = opcode->name;
|
|
|
|
|
mismatch_detail->data[1].s = opcode[-1].name;
|
|
|
|
|
mismatch_detail->non_fatal = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < 3; ++i)
|
|
|
|
|
/* There's no specific requirement for the data register to be
|
|
|
|
|
the same between consecutive SET* instructions. */
|
|
|
|
|
if ((opcode->operands[i] == AARCH64_OPND_MOPS_ADDR_Rd
|
|
|
|
|
|| opcode->operands[i] == AARCH64_OPND_MOPS_ADDR_Rs
|
|
|
|
|
|| opcode->operands[i] == AARCH64_OPND_MOPS_WB_Rn)
|
|
|
|
|
&& prev_insn->operands[i].reg.regno != inst->operands[i].reg.regno)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
if (opcode->operands[i] == AARCH64_OPND_MOPS_ADDR_Rd)
|
|
|
|
|
mismatch_detail->error = _("destination register differs from "
|
|
|
|
|
"preceding instruction");
|
|
|
|
|
else if (opcode->operands[i] == AARCH64_OPND_MOPS_ADDR_Rs)
|
|
|
|
|
mismatch_detail->error = _("source register differs from "
|
|
|
|
|
"preceding instruction");
|
|
|
|
|
else
|
|
|
|
|
mismatch_detail->error = _("size register differs from "
|
|
|
|
|
"preceding instruction");
|
|
|
|
|
mismatch_detail->index = i;
|
|
|
|
|
mismatch_detail->non_fatal = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
2018-10-04 01:38:42 +08:00
|
|
|
|
|
|
|
|
|
/* This function verifies that the instruction INST adheres to its specified
|
|
|
|
|
constraints. If it does then ERR_OK is returned, if not then ERR_VFI is
|
|
|
|
|
returned and MISMATCH_DETAIL contains the reason why verification failed.
|
|
|
|
|
|
|
|
|
|
The function is called both during assembly and disassembly. If assembling
|
|
|
|
|
then ENCODING will be TRUE, else FALSE. If dissassembling PC will be set
|
|
|
|
|
and will contain the PC of the current instruction w.r.t to the section.
|
|
|
|
|
|
|
|
|
|
If ENCODING and PC=0 then you are at a start of a section. The constraints
|
|
|
|
|
are verified against the given state insn_sequence which is updated as it
|
|
|
|
|
transitions through the verification. */
|
|
|
|
|
|
|
|
|
|
enum err_type
|
|
|
|
|
verify_constraints (const struct aarch64_inst *inst,
|
|
|
|
|
const aarch64_insn insn ATTRIBUTE_UNUSED,
|
|
|
|
|
bfd_vma pc,
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool encoding,
|
2018-10-04 01:38:42 +08:00
|
|
|
|
aarch64_operand_error *mismatch_detail,
|
|
|
|
|
aarch64_instr_sequence *insn_sequence)
|
|
|
|
|
{
|
|
|
|
|
assert (inst);
|
|
|
|
|
assert (inst->opcode);
|
|
|
|
|
|
|
|
|
|
const struct aarch64_opcode *opcode = inst->opcode;
|
|
|
|
|
if (!opcode->constraints && !insn_sequence->instr)
|
|
|
|
|
return ERR_OK;
|
|
|
|
|
|
|
|
|
|
assert (insn_sequence);
|
|
|
|
|
|
|
|
|
|
enum err_type res = ERR_OK;
|
|
|
|
|
|
|
|
|
|
/* This instruction puts a constraint on the insn_sequence. */
|
|
|
|
|
if (opcode->flags & F_SCAN)
|
|
|
|
|
{
|
|
|
|
|
if (insn_sequence->instr)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("instruction opens new dependency "
|
|
|
|
|
"sequence without ending previous one");
|
|
|
|
|
mismatch_detail->index = -1;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
init_insn_sequence (inst, insn_sequence);
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
bool is_new_section = (!encoding && pc == 0);
|
|
|
|
|
if (!verify_mops_pme_sequence (inst, is_new_section, mismatch_detail,
|
|
|
|
|
insn_sequence))
|
|
|
|
|
{
|
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
if ((opcode->constraints & C_SCAN_MOPS_PME) != C_SCAN_MOPS_M)
|
|
|
|
|
init_insn_sequence (NULL, insn_sequence);
|
|
|
|
|
}
|
|
|
|
|
|
2018-10-04 01:38:42 +08:00
|
|
|
|
/* Verify constraints on an existing sequence. */
|
|
|
|
|
if (insn_sequence->instr)
|
|
|
|
|
{
|
|
|
|
|
const struct aarch64_opcode* inst_opcode = insn_sequence->instr->opcode;
|
|
|
|
|
/* If we're decoding and we hit PC=0 with an open sequence then we haven't
|
|
|
|
|
closed a previous one that we should have. */
|
aarch64: Enforce P/M/E order for MOPS instructions
The MOPS instructions should be used as a triple, such as:
cpyfp [x0]!, [x1]!, x2!
cpyfm [x0]!, [x1]!, x2!
cpyfe [x0]!, [x1]!, x2!
The registers should also be the same for each writeback operand.
This patch adds a warning for code that doesn't follow this rule,
along similar lines to the warning that we already emit for
invalid uses of MOVPRFX.
include/
* opcode/aarch64.h (C_SCAN_MOPS_P, C_SCAN_MOPS_M, C_SCAN_MOPS_E)
(C_SCAN_MOPS_PME): New macros.
(AARCH64_OPDE_A_SHOULD_FOLLOW_B): New aarch64_operand_error_kind.
(AARCH64_OPDE_EXPECTED_A_AFTER_B): Likewise.
(aarch64_operand_error): Make each data value a union between
an int and a string.
opcodes/
* aarch64-tbl.h (MOPS_CPY_OP1_OP2_INSN): Add scan flags.
(MOPS_SET_OP1_OP2_INSN): Likewise.
* aarch64-opc.c (set_out_of_range_error): Update after change to
aarch64_operand_error.
(set_unaligned_error, set_reg_list_error): Likewise.
(init_insn_sequence): Use a 3-instruction sequence for
MOPS P instructions.
(verify_mops_pme_sequence): New function.
(verify_constraints): Call it.
* aarch64-dis.c (print_verifier_notes): Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
gas/
* config/tc-aarch64.c (operand_mismatch_kind_names): Add entries
for AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
(operand_error_higher_severity_p): Check that
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B
come between AARCH64_OPDE_RECOVERABLE and AARCH64_OPDE_SYNTAX_ERROR;
their relative order is not significant.
(record_operand_error_with_data): Update after change to
aarch64_operand_error.
(output_operand_error_record): Likewise. Handle
AARCH64_OPDE_A_SHOULD_FOLLOW_B and AARCH64_OPDE_EXPECTED_A_AFTER_B.
* testsuite/gas/aarch64/mops_invalid_2.s,
testsuite/gas/aarch64/mops_invalid_2.d,
testsuite/gas/aarch64/mops_invalid_2.l: New test.
2021-12-02 23:00:57 +08:00
|
|
|
|
if (is_new_section && res == ERR_OK)
|
2018-10-04 01:38:42 +08:00
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("previous `movprfx' sequence not closed");
|
|
|
|
|
mismatch_detail->index = -1;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
/* Reset the sequence. */
|
|
|
|
|
init_insn_sequence (NULL, insn_sequence);
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Validate C_SCAN_MOVPRFX constraints. Move this to a lookup table. */
|
|
|
|
|
if (inst_opcode->constraints & C_SCAN_MOVPRFX)
|
|
|
|
|
{
|
|
|
|
|
/* Check to see if the MOVPRFX SVE instruction is followed by an SVE
|
|
|
|
|
instruction for better error messages. */
|
2019-05-09 17:29:13 +08:00
|
|
|
|
if (!opcode->avariant
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
|| (!AARCH64_CPU_HAS_FEATURE (*opcode->avariant, SVE)
|
|
|
|
|
&& !AARCH64_CPU_HAS_FEATURE (*opcode->avariant, SVE2)))
|
2018-10-04 01:38:42 +08:00
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("SVE instruction expected after "
|
|
|
|
|
"`movprfx'");
|
|
|
|
|
mismatch_detail->index = -1;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check to see if the MOVPRFX SVE instruction is followed by an SVE
|
|
|
|
|
instruction that is allowed to be used with a MOVPRFX. */
|
|
|
|
|
if (!(opcode->constraints & C_SCAN_MOVPRFX))
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("SVE `movprfx' compatible instruction "
|
|
|
|
|
"expected");
|
|
|
|
|
mismatch_detail->index = -1;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Next check for usage of the predicate register. */
|
|
|
|
|
aarch64_opnd_info blk_dest = insn_sequence->instr->operands[0];
|
2018-10-08 20:33:42 +08:00
|
|
|
|
aarch64_opnd_info blk_pred, inst_pred;
|
|
|
|
|
memset (&blk_pred, 0, sizeof (aarch64_opnd_info));
|
|
|
|
|
memset (&inst_pred, 0, sizeof (aarch64_opnd_info));
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool predicated = false;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
assert (blk_dest.type == AARCH64_OPND_SVE_Zd);
|
|
|
|
|
|
|
|
|
|
/* Determine if the movprfx instruction used is predicated or not. */
|
|
|
|
|
if (insn_sequence->instr->operands[1].type == AARCH64_OPND_SVE_Pg3)
|
|
|
|
|
{
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
predicated = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
blk_pred = insn_sequence->instr->operands[1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unsigned char max_elem_size = 0;
|
|
|
|
|
unsigned char current_elem_size;
|
|
|
|
|
int num_op_used = 0, last_op_usage = 0;
|
|
|
|
|
int i, inst_pred_idx = -1;
|
|
|
|
|
int num_ops = aarch64_num_of_operands (opcode);
|
|
|
|
|
for (i = 0; i < num_ops; i++)
|
|
|
|
|
{
|
|
|
|
|
aarch64_opnd_info inst_op = inst->operands[i];
|
|
|
|
|
switch (inst_op.type)
|
|
|
|
|
{
|
|
|
|
|
case AARCH64_OPND_SVE_Zd:
|
|
|
|
|
case AARCH64_OPND_SVE_Zm_5:
|
|
|
|
|
case AARCH64_OPND_SVE_Zm_16:
|
|
|
|
|
case AARCH64_OPND_SVE_Zn:
|
|
|
|
|
case AARCH64_OPND_SVE_Zt:
|
|
|
|
|
case AARCH64_OPND_SVE_Vm:
|
|
|
|
|
case AARCH64_OPND_SVE_Vn:
|
|
|
|
|
case AARCH64_OPND_Va:
|
|
|
|
|
case AARCH64_OPND_Vn:
|
|
|
|
|
case AARCH64_OPND_Vm:
|
|
|
|
|
case AARCH64_OPND_Sn:
|
|
|
|
|
case AARCH64_OPND_Sm:
|
|
|
|
|
if (inst_op.reg.regno == blk_dest.reg.regno)
|
|
|
|
|
{
|
|
|
|
|
num_op_used++;
|
|
|
|
|
last_op_usage = i;
|
|
|
|
|
}
|
|
|
|
|
current_elem_size
|
|
|
|
|
= aarch64_get_qualifier_esize (inst_op.qualifier);
|
|
|
|
|
if (current_elem_size > max_elem_size)
|
|
|
|
|
max_elem_size = current_elem_size;
|
|
|
|
|
break;
|
|
|
|
|
case AARCH64_OPND_SVE_Pd:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg3:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg4_5:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg4_10:
|
|
|
|
|
case AARCH64_OPND_SVE_Pg4_16:
|
|
|
|
|
case AARCH64_OPND_SVE_Pm:
|
|
|
|
|
case AARCH64_OPND_SVE_Pn:
|
|
|
|
|
case AARCH64_OPND_SVE_Pt:
|
2021-11-18 03:21:33 +08:00
|
|
|
|
case AARCH64_OPND_SME_Pm:
|
2018-10-04 01:38:42 +08:00
|
|
|
|
inst_pred = inst_op;
|
|
|
|
|
inst_pred_idx = i;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert (max_elem_size != 0);
|
|
|
|
|
aarch64_opnd_info inst_dest = inst->operands[0];
|
|
|
|
|
/* Determine the size that should be used to compare against the
|
|
|
|
|
movprfx size. */
|
|
|
|
|
current_elem_size
|
|
|
|
|
= opcode->constraints & C_MAX_ELEM
|
|
|
|
|
? max_elem_size
|
|
|
|
|
: aarch64_get_qualifier_esize (inst_dest.qualifier);
|
|
|
|
|
|
|
|
|
|
/* If movprfx is predicated do some extra checks. */
|
|
|
|
|
if (predicated)
|
|
|
|
|
{
|
|
|
|
|
/* The instruction must be predicated. */
|
|
|
|
|
if (inst_pred_idx < 0)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("predicated instruction expected "
|
|
|
|
|
"after `movprfx'");
|
|
|
|
|
mismatch_detail->index = -1;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The instruction must have a merging predicate. */
|
|
|
|
|
if (inst_pred.qualifier != AARCH64_OPND_QLF_P_M)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("merging predicate expected due "
|
|
|
|
|
"to preceding `movprfx'");
|
|
|
|
|
mismatch_detail->index = inst_pred_idx;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The same register must be used in instruction. */
|
|
|
|
|
if (blk_pred.reg.regno != inst_pred.reg.regno)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("predicate register differs "
|
|
|
|
|
"from that in preceding "
|
|
|
|
|
"`movprfx'");
|
|
|
|
|
mismatch_detail->index = inst_pred_idx;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Destructive operations by definition must allow one usage of the
|
|
|
|
|
same register. */
|
|
|
|
|
int allowed_usage
|
|
|
|
|
= aarch64_is_destructive_by_operands (opcode) ? 2 : 1;
|
|
|
|
|
|
|
|
|
|
/* Operand is not used at all. */
|
|
|
|
|
if (num_op_used == 0)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("output register of preceding "
|
|
|
|
|
"`movprfx' not used in current "
|
|
|
|
|
"instruction");
|
|
|
|
|
mismatch_detail->index = 0;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We now know it's used, now determine exactly where it's used. */
|
|
|
|
|
if (blk_dest.reg.regno != inst_dest.reg.regno)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("output register of preceding "
|
|
|
|
|
"`movprfx' expected as output");
|
|
|
|
|
mismatch_detail->index = 0;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Operand used more than allowed for the specific opcode type. */
|
|
|
|
|
if (num_op_used > allowed_usage)
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("output register of preceding "
|
|
|
|
|
"`movprfx' used as input");
|
|
|
|
|
mismatch_detail->index = last_op_usage;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now the only thing left is the qualifiers checks. The register
|
|
|
|
|
must have the same maximum element size. */
|
|
|
|
|
if (inst_dest.qualifier
|
|
|
|
|
&& blk_dest.qualifier
|
|
|
|
|
&& current_elem_size
|
|
|
|
|
!= aarch64_get_qualifier_esize (blk_dest.qualifier))
|
|
|
|
|
{
|
|
|
|
|
mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
|
|
|
|
|
mismatch_detail->error = _("register size not compatible with "
|
|
|
|
|
"previous `movprfx'");
|
|
|
|
|
mismatch_detail->index = 0;
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
mismatch_detail->non_fatal = true;
|
2018-10-04 01:38:42 +08:00
|
|
|
|
res = ERR_VFI;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2020-02-25 13:04:46 +08:00
|
|
|
|
done:
|
2021-12-02 23:00:56 +08:00
|
|
|
|
if (insn_sequence->num_added_insns == insn_sequence->num_allocated_insns)
|
|
|
|
|
/* We've checked the last instruction in the sequence and so
|
|
|
|
|
don't need the sequence any more. */
|
|
|
|
|
init_insn_sequence (NULL, insn_sequence);
|
|
|
|
|
else
|
|
|
|
|
add_insn_to_sequence (inst, insn_sequence);
|
2018-10-04 01:38:42 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
/* Return true if VALUE cannot be moved into an SVE register using DUP
|
|
|
|
|
(with any element size, not just ESIZE) and if using DUPM would
|
|
|
|
|
therefore be OK. ESIZE is the number of bytes in the immediate. */
|
|
|
|
|
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
bool
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
aarch64_sve_dupm_mov_immediate_p (uint64_t uvalue, int esize)
|
|
|
|
|
{
|
|
|
|
|
int64_t svalue = uvalue;
|
|
|
|
|
uint64_t upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
|
|
|
|
|
|
|
|
|
|
if ((uvalue & ~upper) != uvalue && (uvalue | upper) != uvalue)
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return false;
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
if (esize <= 4 || (uint32_t) uvalue == (uint32_t) (uvalue >> 32))
|
|
|
|
|
{
|
|
|
|
|
svalue = (int32_t) uvalue;
|
|
|
|
|
if (esize <= 2 || (uint16_t) uvalue == (uint16_t) (uvalue >> 16))
|
|
|
|
|
{
|
|
|
|
|
svalue = (int16_t) uvalue;
|
|
|
|
|
if (esize == 1 || (uint8_t) uvalue == (uint8_t) (uvalue >> 8))
|
Use bool in opcodes
cpu/
* frv.opc: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
opcodes/
* sysdep.h (POISON_BFD_BOOLEAN): Define.
* aarch64-asm-2.c, * aarch64-asm.c, * aarch64-asm.h,
* aarch64-dis-2.c, * aarch64-dis.c, * aarch64-dis.h,
* aarch64-gen.c, * aarch64-opc.c, * aarch64-opc.h, * arc-dis.c,
* arc-dis.h, * arc-fxi.h, * arc-opc.c, * arm-dis.c, * bfin-dis.c,
* cris-dis.c, * csky-dis.c, * csky-opc.h, * dis-buf.c,
* disassemble.c, * frv-opc.c, * frv-opc.h, * h8300-dis.c,
* i386-dis.c, * m68k-dis.c, * metag-dis.c, * microblaze-dis.c,
* microblaze-dis.h, * micromips-opc.c, * mips-dis.c,
* mips-formats.h, * mips-opc.c, * mips16-opc.c, * mmix-dis.c,
* msp430-dis.c, * nds32-dis.c, * nfp-dis.c, * nios2-dis.c,
* ppc-dis.c, * riscv-dis.c, * score-dis.c, * score7-dis.c,
* tic6x-dis.c, * v850-dis.c, * vax-dis.c, * wasm32-dis.c,
* xtensa-dis.c: Replace bfd_boolean with bool, FALSE with false,
and TRUE with true throughout.
2021-03-31 08:06:19 +08:00
|
|
|
|
return false;
|
[AArch64][SVE 27/32] Add SVE integer immediate operands
This patch adds the new SVE integer immediate operands. There are
three kinds:
- simple signed and unsigned ranges, but with new widths and positions.
- 13-bit logical immediates. These have the same form as in base AArch64,
but at a different bit position.
In the case of the "MOV Zn.<T>, #<limm>" alias of DUPM, the logical
immediate <limm> is not allowed to be a valid DUP immediate, since DUP
is preferred over DUPM for constants that both instructions can handle.
- a new 9-bit arithmetic immediate, of the form "<imm8>{, LSL #8}".
In some contexts the operand is signed and in others it's unsigned.
As an extension, we allow shifted immediates to be written as a single
integer, e.g. "#256" is equivalent to "#1, LSL #8". We also use the
shiftless form as the preferred disassembly, except for the special
case of "#0, LSL #8" (a redundant encoding of 0).
include/
* opcode/aarch64.h (AARCH64_OPND_SIMM5): New aarch64_opnd.
(AARCH64_OPND_SVE_AIMM, AARCH64_OPND_SVE_ASIMM)
(AARCH64_OPND_SVE_INV_LIMM, AARCH64_OPND_SVE_LIMM)
(AARCH64_OPND_SVE_LIMM_MOV, AARCH64_OPND_SVE_SHLIMM_PRED)
(AARCH64_OPND_SVE_SHLIMM_UNPRED, AARCH64_OPND_SVE_SHRIMM_PRED)
(AARCH64_OPND_SVE_SHRIMM_UNPRED, AARCH64_OPND_SVE_SIMM5)
(AARCH64_OPND_SVE_SIMM5B, AARCH64_OPND_SVE_SIMM6)
(AARCH64_OPND_SVE_SIMM8, AARCH64_OPND_SVE_UIMM3)
(AARCH64_OPND_SVE_UIMM7, AARCH64_OPND_SVE_UIMM8)
(AARCH64_OPND_SVE_UIMM8_53): Likewise.
(aarch64_sve_dupm_mov_immediate_p): Declare.
opcodes/
* aarch64-tbl.h (AARCH64_OPERANDS): Add entries for the new SVE
integer immediate operands.
* aarch64-opc.h (FLD_SVE_immN, FLD_SVE_imm3, FLD_SVE_imm5)
(FLD_SVE_imm5b, FLD_SVE_imm7, FLD_SVE_imm8, FLD_SVE_imm9)
(FLD_SVE_immr, FLD_SVE_imms, FLD_SVE_tszh): New aarch64_field_kinds.
* aarch64-opc.c (fields): Add corresponding entries.
(operand_general_constraint_met_p): Handle the new SVE integer
immediate operands.
(aarch64_print_operand): Likewise.
(aarch64_sve_dupm_mov_immediate_p): New function.
* aarch64-opc-2.c: Regenerate.
* aarch64-asm.h (ins_inv_limm, ins_sve_aimm, ins_sve_asimm)
(ins_sve_limm_mov, ins_sve_shlimm, ins_sve_shrimm): New inserters.
* aarch64-asm.c (aarch64_ins_limm_1): New function, split out from...
(aarch64_ins_limm): ...here.
(aarch64_ins_inv_limm): New function.
(aarch64_ins_sve_aimm): Likewise.
(aarch64_ins_sve_asimm): Likewise.
(aarch64_ins_sve_limm_mov): Likewise.
(aarch64_ins_sve_shlimm): Likewise.
(aarch64_ins_sve_shrimm): Likewise.
* aarch64-asm-2.c: Regenerate.
* aarch64-dis.h (ext_inv_limm, ext_sve_aimm, ext_sve_asimm)
(ext_sve_limm_mov, ext_sve_shlimm, ext_sve_shrimm): New extractors.
* aarch64-dis.c (decode_limm): New function, split out from...
(aarch64_ext_limm): ...here.
(aarch64_ext_inv_limm): New function.
(decode_sve_aimm): Likewise.
(aarch64_ext_sve_aimm): Likewise.
(aarch64_ext_sve_asimm): Likewise.
(aarch64_ext_sve_limm_mov): Likewise.
(aarch64_top_bit): Likewise.
(aarch64_ext_sve_shlimm): Likewise.
(aarch64_ext_sve_shrimm): Likewise.
* aarch64-dis-2.c: Regenerate.
gas/
* config/tc-aarch64.c (parse_operands): Handle the new SVE integer
immediate operands.
2016-09-21 23:56:57 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if ((svalue & 0xff) == 0)
|
|
|
|
|
svalue /= 256;
|
|
|
|
|
return svalue < -128 || svalue >= 128;
|
|
|
|
|
}
|
|
|
|
|
|
2023-03-30 18:09:09 +08:00
|
|
|
|
/* Return true if a CPU with the AARCH64_FEATURE_* bits in CPU_VARIANT
|
|
|
|
|
supports the instruction described by INST. */
|
|
|
|
|
|
|
|
|
|
bool
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
aarch64_cpu_supports_inst_p (aarch64_feature_set cpu_variant,
|
|
|
|
|
aarch64_inst *inst)
|
2023-03-30 18:09:09 +08:00
|
|
|
|
{
|
|
|
|
|
if (!inst->opcode->avariant
|
|
|
|
|
|| !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *inst->opcode->avariant))
|
|
|
|
|
return false;
|
|
|
|
|
|
2023-03-30 18:09:13 +08:00
|
|
|
|
if (inst->opcode->iclass == sme_fp_sd
|
|
|
|
|
&& inst->operands[0].qualifier == AARCH64_OPND_QLF_S_D
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
&& !AARCH64_CPU_HAS_FEATURE (cpu_variant, SME_F64F64))
|
2023-03-30 18:09:13 +08:00
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (inst->opcode->iclass == sme_int_sd
|
|
|
|
|
&& inst->operands[0].qualifier == AARCH64_OPND_QLF_S_D
|
aarch64: Restructure feature flag handling
The AArch64 feature-flag code is currently limited to a maximum
of 64 features. This patch reworks it so that the limit can be
increased more easily. The basic idea is:
(1) Turn the ARM_FEATURE_FOO macros into an enum, with the enum
counting bit positions.
(2) Make the feature-list macros take an array index argument
(currently always 0). The macros then return the
aarch64_feature_set contents for that array index.
An N-element array would then be initialised as:
{ MACRO (0), ..., MACRO (N - 1) }
(3) Provide convenience macros for initialising an
aarch64_feature_set for:
- a single feature
- a list of individual features
- an architecture version
- an architecture version + a list of additional features
(2) and (3) use the preprocessor to generate static initialisers.
The main restriction was that uses of the same preprocessor macro
cannot be nested. So if a macro wants to do something for N individual
arguments, it needs to use a chain of N macros to do it. There then
needs to be a way of deriving N, as a preprocessor token suitable for
pasting.
The easiest way of doing that was to precede each list of features
by the number of features in the list. So an aarch64_feature_set
initialiser for three features A, B and C would be written:
AARCH64_FEATURES (3, A, B, C)
This scheme makes it difficult to keep AARCH64_FEATURE_CRYPTO as a
synonym for SHA2+AES, so the patch expands the former to the latter.
2023-09-26 22:01:21 +08:00
|
|
|
|
&& !AARCH64_CPU_HAS_FEATURE (cpu_variant, SME_I16I64))
|
2023-03-30 18:09:13 +08:00
|
|
|
|
return false;
|
|
|
|
|
|
2023-03-30 18:09:09 +08:00
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2012-08-13 22:52:54 +08:00
|
|
|
|
/* Include the opcode description table as well as the operand description
|
|
|
|
|
table. */
|
2016-05-03 18:48:56 +08:00
|
|
|
|
#define VERIFIER(x) verify_##x
|
2012-08-13 22:52:54 +08:00
|
|
|
|
#include "aarch64-tbl.h"
|