binutils-gdb/gdb/gmp-utils.c

244 lines
6.7 KiB
C
Raw Normal View History

/* Copyright (C) 2019-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "gmp-utils.h"
/* See gmp-utils.h. */
std::string
gmp_string_printf (const char *fmt, ...)
{
va_list vp;
va_start (vp, fmt);
int size = gmp_vsnprintf (NULL, 0, fmt, vp);
va_end (vp);
std::string str (size, '\0');
/* C++11 and later guarantee std::string uses contiguous memory and
always includes the terminating '\0'. */
va_start (vp, fmt);
gmp_vsprintf (&str[0], fmt, vp);
va_end (vp);
return str;
}
/* See gmp-utils.h. */
void
gdb_mpz::read (gdb::array_view<const gdb_byte> buf, enum bfd_endian byte_order,
bool unsigned_p)
{
mpz_import (val, 1 /* count */, -1 /* order */, buf.size () /* size */,
byte_order == BFD_ENDIAN_BIG ? 1 : -1 /* endian */,
0 /* nails */, buf.data () /* op */);
if (!unsigned_p)
{
/* The value was imported as if it was a positive value,
as mpz_import does not handle signs. If the original value
was in fact negative, we need to adjust VAL accordingly. */
gdb_mpz max;
mpz_ui_pow_ui (max.val, 2, buf.size () * HOST_CHAR_BIT - 1);
if (mpz_cmp (val, max.val) >= 0)
mpz_submul_ui (val, max.val, 2);
}
}
/* See gmp-utils.h. */
void
gdb_mpz::write (gdb::array_view<gdb_byte> buf, enum bfd_endian byte_order,
bool unsigned_p) const
{
gmp-utils: protect gdb_mpz exports against out-of-range values The gdb_mpz class currently provides a couple of methods which essentially export an mpz_t value into either a buffer, or an integral type. The export is based on using the mpz_export function which we discovered can be a bit treacherous if used without caution. In particular, the initial motivation for this patch was to catch situations where the mpz_t value was so large that it would not fit in the destination area. mpz_export does not know the size of the buffer, and therefore can happily write past the end of our buffer. While designing a solution to the above problem, I also discovered that we also needed to be careful when exporting signed numbers. In particular, numbers which are larger than the maximum value for a given signed type size, but no so large as to fit in the *unsigned* version with the same size, would end up being exported incorrectly. This is related to the fact that mpz_export ignores the sign of the value being exportd, and assumes an unsigned export. Thus, for such large values, the appears as if mpz_export is able to fit our value into our buffer, but in fact, it does not. Also, I noticed that gdb_mpz::write wasn't taking its unsigned_p parameter, which was a hole. For all these reasons, a new low-level private method called "safe_export" has been added to class gdb_mpz, whose goal is to perform all necessary checks and manipulations for a safe and correct export. As a bonus, this method allows us to factorize the handling of negative value exports. The gdb_mpz::as_integer and gdb_mpz::write methods are then simplified to take advantage of this new safe_export method. gdb/ChangeLog: * gmp-utils.h (gdb_mpz::safe_export): New private method. (gdb_mpz::as_integer): Reimplement using gdb_mpz::safe_export. * gmp-utils.c (gdb_mpz::write): Rewrite using gdb_mpz::safe_export. (gdb_mpz::safe_export): New method. * unittests/gmp-utils-selftests .c (gdb_mpz_as_integer): Update function description. (check_as_integer_raises_out_of_range_error): New function. (gdb_mpz_as_integer_out_of_range): New function. (_initialize_gmp_utils_selftests): Register gdb_mpz_as_integer_out_of_range as a selftest.
2020-12-06 12:56:59 +08:00
this->safe_export
(buf, byte_order == BFD_ENDIAN_BIG ? 1 : -1 /* endian */, unsigned_p);
}
/* See gmp-utils.h. */
void
gdb_mpz::safe_export (gdb::array_view<gdb_byte> buf,
int endian, bool unsigned_p) const
{
gdb_assert (buf.size () > 0);
if (mpz_sgn (val) == 0)
{
/* Our value is zero, so no need to call mpz_export to do the work,
especially since mpz_export's documentation explicitly says
that the function is a noop in this case. Just write zero to
BUF ourselves. */
memset (buf.data (), 0, buf.size ());
return;
}
/* Determine the maximum range of values that our buffer can hold,
and verify that VAL is within that range. */
gdb_mpz lo, hi;
const size_t max_usable_bits = buf.size () * HOST_CHAR_BIT;
if (unsigned_p)
{
lo = 0;
mpz_ui_pow_ui (hi.val, 2, max_usable_bits);
mpz_sub_ui (hi.val, hi.val, 1);
}
else
{
mpz_ui_pow_ui (lo.val, 2, max_usable_bits - 1);
mpz_neg (lo.val, lo.val);
mpz_ui_pow_ui (hi.val, 2, max_usable_bits - 1);
mpz_sub_ui (hi.val, hi.val, 1);
}
if (mpz_cmp (val, lo.val) < 0 || mpz_cmp (val, hi.val) > 0)
error (_("Cannot export value %s as %zu-bits %s integer"
" (must be between %s and %s)"),
this->str ().c_str (),
max_usable_bits,
unsigned_p ? _("unsigned") : _("signed"),
lo.str ().c_str (),
hi.str ().c_str ());
gdb_mpz exported_val (val);
gmp-utils: protect gdb_mpz exports against out-of-range values The gdb_mpz class currently provides a couple of methods which essentially export an mpz_t value into either a buffer, or an integral type. The export is based on using the mpz_export function which we discovered can be a bit treacherous if used without caution. In particular, the initial motivation for this patch was to catch situations where the mpz_t value was so large that it would not fit in the destination area. mpz_export does not know the size of the buffer, and therefore can happily write past the end of our buffer. While designing a solution to the above problem, I also discovered that we also needed to be careful when exporting signed numbers. In particular, numbers which are larger than the maximum value for a given signed type size, but no so large as to fit in the *unsigned* version with the same size, would end up being exported incorrectly. This is related to the fact that mpz_export ignores the sign of the value being exportd, and assumes an unsigned export. Thus, for such large values, the appears as if mpz_export is able to fit our value into our buffer, but in fact, it does not. Also, I noticed that gdb_mpz::write wasn't taking its unsigned_p parameter, which was a hole. For all these reasons, a new low-level private method called "safe_export" has been added to class gdb_mpz, whose goal is to perform all necessary checks and manipulations for a safe and correct export. As a bonus, this method allows us to factorize the handling of negative value exports. The gdb_mpz::as_integer and gdb_mpz::write methods are then simplified to take advantage of this new safe_export method. gdb/ChangeLog: * gmp-utils.h (gdb_mpz::safe_export): New private method. (gdb_mpz::as_integer): Reimplement using gdb_mpz::safe_export. * gmp-utils.c (gdb_mpz::write): Rewrite using gdb_mpz::safe_export. (gdb_mpz::safe_export): New method. * unittests/gmp-utils-selftests .c (gdb_mpz_as_integer): Update function description. (check_as_integer_raises_out_of_range_error): New function. (gdb_mpz_as_integer_out_of_range): New function. (_initialize_gmp_utils_selftests): Register gdb_mpz_as_integer_out_of_range as a selftest.
2020-12-06 12:56:59 +08:00
if (mpz_cmp_ui (exported_val.val, 0) < 0)
{
/* mpz_export does not handle signed values, so create a positive
value whose bit representation as an unsigned of the same length
would be the same as our negative value. */
gdb_mpz neg_offset;
mpz_ui_pow_ui (neg_offset.val, 2, buf.size () * HOST_CHAR_BIT);
mpz_add (exported_val.val, exported_val.val, neg_offset.val);
}
gmp-utils: protect gdb_mpz exports against out-of-range values The gdb_mpz class currently provides a couple of methods which essentially export an mpz_t value into either a buffer, or an integral type. The export is based on using the mpz_export function which we discovered can be a bit treacherous if used without caution. In particular, the initial motivation for this patch was to catch situations where the mpz_t value was so large that it would not fit in the destination area. mpz_export does not know the size of the buffer, and therefore can happily write past the end of our buffer. While designing a solution to the above problem, I also discovered that we also needed to be careful when exporting signed numbers. In particular, numbers which are larger than the maximum value for a given signed type size, but no so large as to fit in the *unsigned* version with the same size, would end up being exported incorrectly. This is related to the fact that mpz_export ignores the sign of the value being exportd, and assumes an unsigned export. Thus, for such large values, the appears as if mpz_export is able to fit our value into our buffer, but in fact, it does not. Also, I noticed that gdb_mpz::write wasn't taking its unsigned_p parameter, which was a hole. For all these reasons, a new low-level private method called "safe_export" has been added to class gdb_mpz, whose goal is to perform all necessary checks and manipulations for a safe and correct export. As a bonus, this method allows us to factorize the handling of negative value exports. The gdb_mpz::as_integer and gdb_mpz::write methods are then simplified to take advantage of this new safe_export method. gdb/ChangeLog: * gmp-utils.h (gdb_mpz::safe_export): New private method. (gdb_mpz::as_integer): Reimplement using gdb_mpz::safe_export. * gmp-utils.c (gdb_mpz::write): Rewrite using gdb_mpz::safe_export. (gdb_mpz::safe_export): New method. * unittests/gmp-utils-selftests .c (gdb_mpz_as_integer): Update function description. (check_as_integer_raises_out_of_range_error): New function. (gdb_mpz_as_integer_out_of_range): New function. (_initialize_gmp_utils_selftests): Register gdb_mpz_as_integer_out_of_range as a selftest.
2020-12-06 12:56:59 +08:00
/* Do the export into a buffer allocated by GMP itself; that way,
we can detect cases where BUF is not large enough to export
our value, and thus avoid a buffer overlow. Normally, this should
never happen, since we verified earlier that the buffer is large
enough to accomodate our value, but doing this allows us to be
extra safe with the export.
After verification that the export behaved as expected, we will
copy the data over to BUF. */
size_t word_countp;
gdb::unique_xmalloc_ptr<void> exported
(mpz_export (NULL, &word_countp, -1 /* order */, buf.size () /* size */,
endian, 0 /* nails */, exported_val.val));
gdb_assert (word_countp == 1);
memcpy (buf.data (), exported.get (), buf.size ());
}
/* See gmp-utils.h. */
gdb_mpz
gdb_mpq::get_rounded () const
{
/* Work with a positive number so as to make the "floor" rounding
always round towards zero. */
gdb_mpq abs_val (val);
mpq_abs (abs_val.val, abs_val.val);
/* Convert our rational number into a quotient and remainder,
with "floor" rounding, which in our case means rounding
towards zero. */
gdb_mpz quotient, remainder;
mpz_fdiv_qr (quotient.val, remainder.val,
mpq_numref (abs_val.val), mpq_denref (abs_val.val));
/* Multiply the remainder by 2, and see if it is greater or equal
to abs_val's denominator. If yes, round to the next integer. */
mpz_mul_ui (remainder.val, remainder.val, 2);
if (mpz_cmp (remainder.val, mpq_denref (abs_val.val)) >= 0)
mpz_add_ui (quotient.val, quotient.val, 1);
/* Re-apply the sign if needed. */
if (mpq_sgn (val) < 0)
mpz_neg (quotient.val, quotient.val);
return quotient;
}
/* See gmp-utils.h. */
void
gdb_mpq::read_fixed_point (gdb::array_view<const gdb_byte> buf,
enum bfd_endian byte_order, bool unsigned_p,
const gdb_mpq &scaling_factor)
{
gdb_mpz vz;
vz.read (buf, byte_order, unsigned_p);
mpq_set_z (val, vz.val);
mpq_mul (val, val, scaling_factor.val);
}
/* See gmp-utils.h. */
void
gdb_mpq::write_fixed_point (gdb::array_view<gdb_byte> buf,
enum bfd_endian byte_order, bool unsigned_p,
const gdb_mpq &scaling_factor) const
{
gdb_mpq unscaled (val);
mpq_div (unscaled.val, unscaled.val, scaling_factor.val);
gdb_mpz unscaled_z = unscaled.get_rounded ();
unscaled_z.write (buf, byte_order, unsigned_p);
}
/* A wrapper around xrealloc that we can then register with GMP
as the "realloc" function. */
static void *
xrealloc_for_gmp (void *ptr, size_t old_size, size_t new_size)
{
return xrealloc (ptr, new_size);
}
/* A wrapper around xfree that we can then register with GMP
as the "free" function. */
static void
xfree_for_gmp (void *ptr, size_t size)
{
xfree (ptr);
}
void _initialize_gmp_utils ();
void
_initialize_gmp_utils ()
{
/* Tell GMP to use GDB's memory management routines. */
mp_set_memory_functions (xmalloc, xrealloc_for_gmp, xfree_for_gmp);
}