binutils-gdb/gdbsupport/event-loop.cc

878 lines
24 KiB
C++
Raw Permalink Normal View History

1999-05-12 04:29:07 +08:00
/* Event loop machinery for GDB, the GNU debugger.
Copyright (C) 1999-2024 Free Software Foundation, Inc.
1999-05-12 04:29:07 +08:00
Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
1999-05-12 04:29:07 +08:00
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
1999-05-12 04:29:07 +08:00
#include "gdbsupport/event-loop.h"
2000-07-05 18:25:43 +08:00
#include <chrono>
1999-05-12 04:29:07 +08:00
#ifdef HAVE_POLL
2000-07-05 18:25:43 +08:00
#if defined (HAVE_POLL_H)
1999-06-21 21:27:42 +08:00
#include <poll.h>
2000-07-05 18:25:43 +08:00
#elif defined (HAVE_SYS_POLL_H)
#include <sys/poll.h>
#endif
#endif
2000-07-05 18:25:43 +08:00
1999-06-21 21:27:42 +08:00
#include <sys/types.h>
Rename common to gdbsupport This is the next patch in the ongoing series to move gdbsever to the top level. This patch just renames the "common" directory. The idea is to do this move in two parts: first rename the directory (this patch), then move the directory to the top. This approach makes the patches a bit more tractable. I chose the name "gdbsupport" for the directory. However, as this patch was largely written by sed, we could pick a new name without too much difficulty. Tested by the buildbot. gdb/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * contrib/ari/gdb_ari.sh: Change common to gdbsupport. * configure: Rebuild. * configure.ac: Change common to gdbsupport. * gdbsupport: Rename from common. * acinclude.m4: Change common to gdbsupport. * Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES) (HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to gdbsupport. * aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c, amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c, amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c, amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c, amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c, arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c, arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c, arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c, arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c, auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h, btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c, charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c, cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c, coff-pe-read.c, command.h, compile/compile-c-support.c, compile/compile-c.h, compile/compile-cplus-symbols.c, compile/compile-cplus-types.c, compile/compile-cplus.h, compile/compile-loc2c.c, compile/compile.c, completer.c, completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c, cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c, darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c, disasm.h, dtrace-probe.c, dwarf-index-cache.c, dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c, dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c, event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c, features/aarch64-core.c, features/aarch64-fpu.c, features/aarch64-pauth.c, features/aarch64-sve.c, features/i386/32bit-avx.c, features/i386/32bit-avx512.c, features/i386/32bit-core.c, features/i386/32bit-linux.c, features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c, features/i386/32bit-segments.c, features/i386/32bit-sse.c, features/i386/64bit-avx.c, features/i386/64bit-avx512.c, features/i386/64bit-core.c, features/i386/64bit-linux.c, features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c, features/i386/64bit-segments.c, features/i386/64bit-sse.c, features/i386/x32-core.c, features/riscv/32bit-cpu.c, features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c, features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c, features/riscv/64bit-fpu.c, features/tic6x-c6xp.c, features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h, findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h, gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c, gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c, go32-nat.c, guile/guile.c, guile/scm-ports.c, guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c, i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c, i386-linux-tdep.c, i386-tdep.c, i387-tdep.c, ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c, inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h, inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h, inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c, linux-tdep.c, linux-thread-db.c, location.c, machoread.c, macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h, mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c, mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h, minsyms.c, mips-linux-tdep.c, namespace.h, nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h, nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c, nat/amd64-linux-siginfo.c, nat/fork-inferior.c, nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c, nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c, nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h, nat/linux-waitpid.c, nat/mips-linux-watch.c, nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c, nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c, nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h, obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c, parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c, procfs.c, producer.c, progspace.h, psymtab.h, python/py-framefilter.c, python/py-inferior.c, python/py-ref.h, python/py-type.c, python/python.c, record-btrace.c, record-full.c, record.c, record.h, regcache-dump.c, regcache.c, regcache.h, remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c, riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c, selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c, ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c, source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c, stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h, symtab.c, symtab.h, target-descriptions.c, target-descriptions.h, target-memory.c, target.c, target.h, target/waitstatus.c, target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c, top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c, tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h, unittests/array-view-selftests.c, unittests/child-path-selftests.c, unittests/cli-utils-selftests.c, unittests/common-utils-selftests.c, unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c, unittests/format_pieces-selftests.c, unittests/function-view-selftests.c, unittests/lookup_name_info-selftests.c, unittests/memory-map-selftests.c, unittests/memrange-selftests.c, unittests/mkdir-recursive-selftests.c, unittests/observable-selftests.c, unittests/offset-type-selftests.c, unittests/optional-selftests.c, unittests/parse-connection-spec-selftests.c, unittests/ptid-selftests.c, unittests/rsp-low-selftests.c, unittests/scoped_fd-selftests.c, unittests/scoped_mmap-selftests.c, unittests/scoped_restore-selftests.c, unittests/string_view-selftests.c, unittests/style-selftests.c, unittests/tracepoint-selftests.c, unittests/unpack-selftests.c, unittests/utils-selftests.c, unittests/xml-utils-selftests.c, utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c, value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c, xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c, xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport. gdb/gdbserver/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * configure: Rebuild. * configure.ac: Change common to gdbsupport. * acinclude.m4: Change common to gdbsupport. * Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS) (version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change common to gdbsupport. * ax.c, event-loop.c, fork-child.c, gdb_proc_service.h, gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c, inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c, linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c, linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c, linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h, nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c, server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h, thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change common to gdbsupport.
2019-05-06 10:29:24 +08:00
#include "gdbsupport/gdb_sys_time.h"
#include "gdbsupport/gdb_select.h"
#include <optional>
gdbsupport/event-loop: add a timeout parameter to gdb_do_one_event Since commit b2d8657, having a per-interpreter event/command loop is not possible anymore. As Insight uses a GUI that has its own event loop, gdb and GUI event loops have then to be "merged" (i.e.: work together). But this is problematic as gdb_do_one_event is not aware of this alternate event loop and thus may wait forever. A solution is to delegate GUI events handling to the gdb events handler. Insight uses Tck/Tk as GUI and the latter offers a "notifier" feature to implement such a delegation. The Tcl notifier spec requires the event wait function to support a timeout parameter. Unfortunately gdb_do_one_event does not feature such a parameter. This timeout cannot be implemented externally with a gdb timer, because it would become an event by itself and thus can cause a legitimate event to be missed if the timeout is 0. Tcl implements "idle events" that are (internally) triggered only when no other event is pending. For this reason, it can call the event wait function with a 0 timeout quite often. This patch implements a wait timeout to gdb_do_one_event. The initial pending events monitoring is performed as before without the possibility to enter a wait state. If no pending event has been found during this phase, a timer is then created for the given timeout in order to re-use the implemented timeout logic and the event wait is then performed. This "internal" timer only limits the wait time and should never be triggered. It is deleted upon gdb_do_one_event exit. The new parameter defaults to "no timeout" (-1): as it is used by Insight only, there is no need to update calls from the gdb source tree.
2022-07-15 23:18:32 +08:00
#include "gdbsupport/scope-exit.h"
1999-09-22 11:28:34 +08:00
/* See event-loop.h. */
debug_event_loop_kind debug_event_loop;
/* Tell create_file_handler what events we are interested in.
This is used by the select version of the event loop. */
#define GDB_READABLE (1<<1)
#define GDB_WRITABLE (1<<2)
#define GDB_EXCEPTION (1<<3)
1999-09-22 11:28:34 +08:00
/* Information about each file descriptor we register with the event
loop. */
1999-09-22 11:28:34 +08:00
struct file_handler
{
/* File descriptor. */
int fd;
/* Events we want to monitor: POLLIN, etc. */
int mask;
/* Events that have been seen since the last time. */
int ready_mask;
/* Procedure to call when fd is ready. */
handler_func *proc;
/* Argument to pass to proc. */
gdb_client_data client_data;
/* User-friendly name of this handler. */
std::string name;
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
/* If set, this file descriptor is used for a user interface. */
bool is_ui;
/* Was an error detected on this fd? */
int error;
/* Next registered file descriptor. */
struct file_handler *next_file;
};
1999-09-22 11:28:34 +08:00
1999-05-12 04:29:07 +08:00
#ifdef HAVE_POLL
/* Do we use poll or select? Some systems have poll, but then it's
not useable with all kinds of files. We probe that whenever a new
file handler is added. */
static bool use_poll = true;
#endif
1999-05-12 04:29:07 +08:00
#ifdef USE_WIN32API
#include <windows.h>
#include <io.h>
#endif
/* Gdb_notifier is just a list of file descriptors gdb is interested in.
These are the input file descriptor, and the target file
descriptor. We have two flavors of the notifier, one for platforms
that have the POLL function, the other for those that don't, and
only support SELECT. Each of the elements in the gdb_notifier list is
basically a description of what kind of events gdb is interested
in, for each fd. */
1999-05-12 04:29:07 +08:00
static struct
{
/* Ptr to head of file handler list. */
1999-05-12 04:29:07 +08:00
file_handler *first_file_handler;
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
/* Next file handler to handle, for the select variant. To level
the fairness across event sources, we serve file handlers in a
round-robin-like fashion. The number and order of the polled
file handlers may change between invocations, but this is good
enough. */
file_handler *next_file_handler;
#ifdef HAVE_POLL
/* Descriptors to poll. */
std::vector<struct pollfd> poll_fds;
1999-05-12 04:29:07 +08:00
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
/* Next file descriptor to handle, for the poll variant. To level
the fairness across event sources, we poll the file descriptors
in a round-robin-like fashion. The number and order of the
polled file descriptors may change between invocations, but
this is good enough. */
int next_poll_fds_index;
/* Timeout in milliseconds for calls to poll(). */
int poll_timeout;
#endif
1999-05-12 04:29:07 +08:00
/* Masks to be used in the next call to select.
Bits are set in response to calls to create_file_handler. */
fd_set check_masks[3];
1999-05-12 04:29:07 +08:00
/* What file descriptors were found ready by select. */
fd_set ready_masks[3];
1999-05-12 04:29:07 +08:00
/* Number of file descriptors to monitor (for poll). */
/* Number of valid bits (highest fd value + 1) (for select). */
1999-05-12 04:29:07 +08:00
int num_fds;
/* Time structure for calls to select(). */
struct timeval select_timeout;
1999-09-22 11:28:34 +08:00
/* Flag to tell whether the timeout should be used. */
1999-09-22 11:28:34 +08:00
int timeout_valid;
1999-09-29 05:55:21 +08:00
}
1999-05-12 04:29:07 +08:00
gdb_notifier;
/* Structure associated with a timer. PROC will be executed at the
first occasion after WHEN. */
1999-09-22 11:28:34 +08:00
struct gdb_timer
{
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
std::chrono::steady_clock::time_point when;
1999-09-22 11:28:34 +08:00
int timer_id;
struct gdb_timer *next;
timer_handler_func *proc; /* Function to call to do the work. */
gdb_client_data client_data; /* Argument to async_handler_func. */
};
1999-09-22 11:28:34 +08:00
/* List of currently active timers. It is sorted in order of
increasing timers. */
1999-09-22 11:28:34 +08:00
static struct
{
/* Pointer to first in timer list. */
1999-09-22 11:28:34 +08:00
struct gdb_timer *first_timer;
/* Id of the last timer created. */
1999-09-22 11:28:34 +08:00
int num_timers;
}
timer_list;
static void create_file_handler (int fd, int mask, handler_func *proc,
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
gdb_client_data client_data,
std::string &&name, bool is_ui);
static int gdb_wait_for_event (int);
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
static int update_wait_timeout (void);
static int poll_timers (void);
1999-05-12 04:29:07 +08:00
/* Process one high level event. If nothing is ready at this time,
gdbsupport/event-loop: add a timeout parameter to gdb_do_one_event Since commit b2d8657, having a per-interpreter event/command loop is not possible anymore. As Insight uses a GUI that has its own event loop, gdb and GUI event loops have then to be "merged" (i.e.: work together). But this is problematic as gdb_do_one_event is not aware of this alternate event loop and thus may wait forever. A solution is to delegate GUI events handling to the gdb events handler. Insight uses Tck/Tk as GUI and the latter offers a "notifier" feature to implement such a delegation. The Tcl notifier spec requires the event wait function to support a timeout parameter. Unfortunately gdb_do_one_event does not feature such a parameter. This timeout cannot be implemented externally with a gdb timer, because it would become an event by itself and thus can cause a legitimate event to be missed if the timeout is 0. Tcl implements "idle events" that are (internally) triggered only when no other event is pending. For this reason, it can call the event wait function with a 0 timeout quite often. This patch implements a wait timeout to gdb_do_one_event. The initial pending events monitoring is performed as before without the possibility to enter a wait state. If no pending event has been found during this phase, a timer is then created for the given timeout in order to re-use the implemented timeout logic and the event wait is then performed. This "internal" timer only limits the wait time and should never be triggered. It is deleted upon gdb_do_one_event exit. The new parameter defaults to "no timeout" (-1): as it is used by Insight only, there is no need to update calls from the gdb source tree.
2022-07-15 23:18:32 +08:00
wait at most MSTIMEOUT milliseconds for something to happen (via
gdb_wait_for_event), then process it. Returns >0 if something was
done, <0 if there are no event sources to wait for, =0 if timeout occurred.
A timeout of 0 allows to serve an already pending event, but does not
wait if none found.
Setting the timeout to a negative value disables it.
The timeout is never used by gdb itself, it is however needed to
integrate gdb event handling within Insight's GUI event loop. */
1999-11-09 09:23:30 +08:00
int
gdbsupport/event-loop: add a timeout parameter to gdb_do_one_event Since commit b2d8657, having a per-interpreter event/command loop is not possible anymore. As Insight uses a GUI that has its own event loop, gdb and GUI event loops have then to be "merged" (i.e.: work together). But this is problematic as gdb_do_one_event is not aware of this alternate event loop and thus may wait forever. A solution is to delegate GUI events handling to the gdb events handler. Insight uses Tck/Tk as GUI and the latter offers a "notifier" feature to implement such a delegation. The Tcl notifier spec requires the event wait function to support a timeout parameter. Unfortunately gdb_do_one_event does not feature such a parameter. This timeout cannot be implemented externally with a gdb timer, because it would become an event by itself and thus can cause a legitimate event to be missed if the timeout is 0. Tcl implements "idle events" that are (internally) triggered only when no other event is pending. For this reason, it can call the event wait function with a 0 timeout quite often. This patch implements a wait timeout to gdb_do_one_event. The initial pending events monitoring is performed as before without the possibility to enter a wait state. If no pending event has been found during this phase, a timer is then created for the given timeout in order to re-use the implemented timeout logic and the event wait is then performed. This "internal" timer only limits the wait time and should never be triggered. It is deleted upon gdb_do_one_event exit. The new parameter defaults to "no timeout" (-1): as it is used by Insight only, there is no need to update calls from the gdb source tree.
2022-07-15 23:18:32 +08:00
gdb_do_one_event (int mstimeout)
1999-05-12 04:29:07 +08:00
{
static int event_source_head = 0;
const int number_of_sources = 3;
int current = 0;
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* First let's see if there are any asynchronous signal handlers
that are ready. These would be the result of invoking any of the
signal handlers. */
if (invoke_async_signal_handlers ())
return 1;
/* To level the fairness across event sources, we poll them in a
round-robin fashion. */
for (current = 0; current < number_of_sources; current++)
1999-11-09 09:23:30 +08:00
{
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
int res;
switch (event_source_head)
{
case 0:
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* Are any timers that are ready? */
res = poll_timers ();
break;
case 1:
/* Are there events already waiting to be collected on the
monitored file descriptors? */
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
res = gdb_wait_for_event (0);
break;
case 2:
/* Are there any asynchronous event handlers ready? */
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
res = check_async_event_handlers ();
break;
default:
internal_error ("unexpected event_source_head %d",
event_source_head);
}
event_source_head++;
if (event_source_head == number_of_sources)
event_source_head = 0;
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
if (res > 0)
return 1;
}
if (mstimeout == 0)
return 0; /* 0ms timeout: do not wait for an event. */
gdbsupport/event-loop: add a timeout parameter to gdb_do_one_event Since commit b2d8657, having a per-interpreter event/command loop is not possible anymore. As Insight uses a GUI that has its own event loop, gdb and GUI event loops have then to be "merged" (i.e.: work together). But this is problematic as gdb_do_one_event is not aware of this alternate event loop and thus may wait forever. A solution is to delegate GUI events handling to the gdb events handler. Insight uses Tck/Tk as GUI and the latter offers a "notifier" feature to implement such a delegation. The Tcl notifier spec requires the event wait function to support a timeout parameter. Unfortunately gdb_do_one_event does not feature such a parameter. This timeout cannot be implemented externally with a gdb timer, because it would become an event by itself and thus can cause a legitimate event to be missed if the timeout is 0. Tcl implements "idle events" that are (internally) triggered only when no other event is pending. For this reason, it can call the event wait function with a 0 timeout quite often. This patch implements a wait timeout to gdb_do_one_event. The initial pending events monitoring is performed as before without the possibility to enter a wait state. If no pending event has been found during this phase, a timer is then created for the given timeout in order to re-use the implemented timeout logic and the event wait is then performed. This "internal" timer only limits the wait time and should never be triggered. It is deleted upon gdb_do_one_event exit. The new parameter defaults to "no timeout" (-1): as it is used by Insight only, there is no need to update calls from the gdb source tree.
2022-07-15 23:18:32 +08:00
/* Block waiting for a new event. If gdb_wait_for_event returns -1,
we should get out because this means that there are no event
sources left. This will make the event loop stop, and the
gdbsupport/event-loop: add a timeout parameter to gdb_do_one_event Since commit b2d8657, having a per-interpreter event/command loop is not possible anymore. As Insight uses a GUI that has its own event loop, gdb and GUI event loops have then to be "merged" (i.e.: work together). But this is problematic as gdb_do_one_event is not aware of this alternate event loop and thus may wait forever. A solution is to delegate GUI events handling to the gdb events handler. Insight uses Tck/Tk as GUI and the latter offers a "notifier" feature to implement such a delegation. The Tcl notifier spec requires the event wait function to support a timeout parameter. Unfortunately gdb_do_one_event does not feature such a parameter. This timeout cannot be implemented externally with a gdb timer, because it would become an event by itself and thus can cause a legitimate event to be missed if the timeout is 0. Tcl implements "idle events" that are (internally) triggered only when no other event is pending. For this reason, it can call the event wait function with a 0 timeout quite often. This patch implements a wait timeout to gdb_do_one_event. The initial pending events monitoring is performed as before without the possibility to enter a wait state. If no pending event has been found during this phase, a timer is then created for the given timeout in order to re-use the implemented timeout logic and the event wait is then performed. This "internal" timer only limits the wait time and should never be triggered. It is deleted upon gdb_do_one_event exit. The new parameter defaults to "no timeout" (-1): as it is used by Insight only, there is no need to update calls from the gdb source tree.
2022-07-15 23:18:32 +08:00
application exit.
If a timeout has been given, a new timer is set accordingly
to abort event wait. It is deleted upon gdb_wait_for_event
termination and thus should never be triggered.
When the timeout is reached, events are not monitored again:
they already have been checked in the loop above. */
std::optional<int> timer_id;
gdbsupport/event-loop: add a timeout parameter to gdb_do_one_event Since commit b2d8657, having a per-interpreter event/command loop is not possible anymore. As Insight uses a GUI that has its own event loop, gdb and GUI event loops have then to be "merged" (i.e.: work together). But this is problematic as gdb_do_one_event is not aware of this alternate event loop and thus may wait forever. A solution is to delegate GUI events handling to the gdb events handler. Insight uses Tck/Tk as GUI and the latter offers a "notifier" feature to implement such a delegation. The Tcl notifier spec requires the event wait function to support a timeout parameter. Unfortunately gdb_do_one_event does not feature such a parameter. This timeout cannot be implemented externally with a gdb timer, because it would become an event by itself and thus can cause a legitimate event to be missed if the timeout is 0. Tcl implements "idle events" that are (internally) triggered only when no other event is pending. For this reason, it can call the event wait function with a 0 timeout quite often. This patch implements a wait timeout to gdb_do_one_event. The initial pending events monitoring is performed as before without the possibility to enter a wait state. If no pending event has been found during this phase, a timer is then created for the given timeout in order to re-use the implemented timeout logic and the event wait is then performed. This "internal" timer only limits the wait time and should never be triggered. It is deleted upon gdb_do_one_event exit. The new parameter defaults to "no timeout" (-1): as it is used by Insight only, there is no need to update calls from the gdb source tree.
2022-07-15 23:18:32 +08:00
SCOPE_EXIT
{
if (timer_id.has_value ())
delete_timer (*timer_id);
};
if (mstimeout > 0)
timer_id = create_timer (mstimeout,
[] (gdb_client_data arg)
{
((std::optional<int> *) arg)->reset ();
gdbsupport/event-loop: add a timeout parameter to gdb_do_one_event Since commit b2d8657, having a per-interpreter event/command loop is not possible anymore. As Insight uses a GUI that has its own event loop, gdb and GUI event loops have then to be "merged" (i.e.: work together). But this is problematic as gdb_do_one_event is not aware of this alternate event loop and thus may wait forever. A solution is to delegate GUI events handling to the gdb events handler. Insight uses Tck/Tk as GUI and the latter offers a "notifier" feature to implement such a delegation. The Tcl notifier spec requires the event wait function to support a timeout parameter. Unfortunately gdb_do_one_event does not feature such a parameter. This timeout cannot be implemented externally with a gdb timer, because it would become an event by itself and thus can cause a legitimate event to be missed if the timeout is 0. Tcl implements "idle events" that are (internally) triggered only when no other event is pending. For this reason, it can call the event wait function with a 0 timeout quite often. This patch implements a wait timeout to gdb_do_one_event. The initial pending events monitoring is performed as before without the possibility to enter a wait state. If no pending event has been found during this phase, a timer is then created for the given timeout in order to re-use the implemented timeout logic and the event wait is then performed. This "internal" timer only limits the wait time and should never be triggered. It is deleted upon gdb_do_one_event exit. The new parameter defaults to "no timeout" (-1): as it is used by Insight only, there is no need to update calls from the gdb source tree.
2022-07-15 23:18:32 +08:00
},
&timer_id);
return gdb_wait_for_event (1);
1999-11-09 09:23:30 +08:00
}
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
/* See event-loop.h */
1999-05-12 04:29:07 +08:00
1999-07-08 04:19:36 +08:00
void
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
add_file_handler (int fd, handler_func *proc, gdb_client_data client_data,
std::string &&name, bool is_ui)
1999-06-29 00:06:02 +08:00
{
#ifdef HAVE_POLL
if (use_poll)
{
struct pollfd fds;
/* Check to see if poll () is usable. If not, we'll switch to
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 23:26:14 +08:00
use select. This can happen on systems like
m68k-motorola-sys, `poll' cannot be used to wait for `stdin'.
On m68k-motorola-sysv, tty's are not stream-based and not
`poll'able. */
fds.fd = fd;
fds.events = POLLIN;
if (poll (&fds, 1, 0) == 1 && (fds.revents & POLLNVAL))
use_poll = false;
}
if (use_poll)
{
create_file_handler (fd, POLLIN, proc, client_data, std::move (name),
is_ui);
}
else
#endif /* HAVE_POLL */
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION,
proc, client_data, std::move (name), is_ui);
1999-06-29 00:06:02 +08:00
}
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
/* Helper for add_file_handler.
For the poll case, MASK is a combination (OR) of POLLIN,
POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM, POLLWRBAND:
these are the events we are interested in. If any of them occurs,
proc should be called.
For the select case, MASK is a combination of READABLE, WRITABLE,
EXCEPTION. PROC is the procedure that will be called when an event
occurs for FD. CLIENT_DATA is the argument to pass to PROC. */
1999-06-29 00:06:02 +08:00
static void
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
create_file_handler (int fd, int mask, handler_func * proc,
gdb_client_data client_data, std::string &&name,
bool is_ui)
1999-05-12 04:29:07 +08:00
{
file_handler *file_ptr;
/* Do we already have a file handler for this file? (We may be
changing its associated procedure). */
1999-05-12 04:29:07 +08:00
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
file_ptr = file_ptr->next_file)
{
if (file_ptr->fd == fd)
break;
}
/* It is a new file descriptor. Add it to the list. Otherwise, just
change the data associated with it. */
1999-05-12 04:29:07 +08:00
if (file_ptr == NULL)
{
file_ptr = new file_handler;
1999-05-12 04:29:07 +08:00
file_ptr->fd = fd;
file_ptr->ready_mask = 0;
file_ptr->next_file = gdb_notifier.first_file_handler;
gdb_notifier.first_file_handler = file_ptr;
#ifdef HAVE_POLL
if (use_poll)
{
gdb_notifier.num_fds++;
struct pollfd new_fd;
new_fd.fd = fd;
new_fd.events = mask;
new_fd.revents = 0;
gdb_notifier.poll_fds.push_back (new_fd);
}
else
#endif /* HAVE_POLL */
{
if (mask & GDB_READABLE)
FD_SET (fd, &gdb_notifier.check_masks[0]);
else
FD_CLR (fd, &gdb_notifier.check_masks[0]);
if (mask & GDB_WRITABLE)
FD_SET (fd, &gdb_notifier.check_masks[1]);
else
FD_CLR (fd, &gdb_notifier.check_masks[1]);
if (mask & GDB_EXCEPTION)
FD_SET (fd, &gdb_notifier.check_masks[2]);
else
FD_CLR (fd, &gdb_notifier.check_masks[2]);
if (gdb_notifier.num_fds <= fd)
gdb_notifier.num_fds = fd + 1;
}
}
file_ptr->proc = proc;
file_ptr->client_data = client_data;
file_ptr->mask = mask;
file_ptr->name = std::move (name);
file_ptr->is_ui = is_ui;
1999-05-12 04:29:07 +08:00
}
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
/* Return the next file handler to handle, and advance to the next
file handler, wrapping around if the end of the list is
reached. */
static file_handler *
get_next_file_handler_to_handle_and_advance (void)
{
file_handler *curr_next;
/* The first time around, this is still NULL. */
if (gdb_notifier.next_file_handler == NULL)
gdb_notifier.next_file_handler = gdb_notifier.first_file_handler;
curr_next = gdb_notifier.next_file_handler;
gdb_assert (curr_next != NULL);
/* Advance. */
gdb_notifier.next_file_handler = curr_next->next_file;
/* Wrap around, if necessary. */
if (gdb_notifier.next_file_handler == NULL)
gdb_notifier.next_file_handler = gdb_notifier.first_file_handler;
return curr_next;
}
1999-05-12 04:29:07 +08:00
/* Remove the file descriptor FD from the list of monitored fd's:
i.e. we don't care anymore about events on the FD. */
1999-05-12 04:29:07 +08:00
void
1999-09-22 11:28:34 +08:00
delete_file_handler (int fd)
1999-05-12 04:29:07 +08:00
{
file_handler *file_ptr, *prev_ptr = NULL;
int i;
1999-05-12 04:29:07 +08:00
/* Find the entry for the given file. */
1999-05-12 04:29:07 +08:00
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
file_ptr = file_ptr->next_file)
{
if (file_ptr->fd == fd)
break;
}
if (file_ptr == NULL)
return;
#ifdef HAVE_POLL
if (use_poll)
{
auto iter = std::remove_if (gdb_notifier.poll_fds.begin (),
gdb_notifier.poll_fds.end (),
[=] (const pollfd &item)
{
return item.fd == fd;
});
gdb_notifier.poll_fds.erase (iter, gdb_notifier.poll_fds.end());
gdb_notifier.num_fds--;
1999-05-12 04:29:07 +08:00
}
else
#endif /* HAVE_POLL */
{
if (file_ptr->mask & GDB_READABLE)
FD_CLR (fd, &gdb_notifier.check_masks[0]);
if (file_ptr->mask & GDB_WRITABLE)
FD_CLR (fd, &gdb_notifier.check_masks[1]);
if (file_ptr->mask & GDB_EXCEPTION)
FD_CLR (fd, &gdb_notifier.check_masks[2]);
1999-05-12 04:29:07 +08:00
/* Find current max fd. */
1999-05-12 04:29:07 +08:00
if ((fd + 1) == gdb_notifier.num_fds)
1999-05-12 04:29:07 +08:00
{
gdb_notifier.num_fds--;
for (i = gdb_notifier.num_fds; i; i--)
{
if (FD_ISSET (i - 1, &gdb_notifier.check_masks[0])
|| FD_ISSET (i - 1, &gdb_notifier.check_masks[1])
|| FD_ISSET (i - 1, &gdb_notifier.check_masks[2]))
break;
}
gdb_notifier.num_fds = i;
1999-05-12 04:29:07 +08:00
}
}
1999-09-14 05:40:00 +08:00
/* Deactivate the file descriptor, by clearing its mask,
so that it will not fire again. */
1999-09-14 05:40:00 +08:00
file_ptr->mask = 0;
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
/* If this file handler was going to be the next one to be handled,
advance to the next's next, if any. */
if (gdb_notifier.next_file_handler == file_ptr)
{
if (file_ptr->next_file == NULL
&& file_ptr == gdb_notifier.first_file_handler)
gdb_notifier.next_file_handler = NULL;
else
get_next_file_handler_to_handle_and_advance ();
}
/* Get rid of the file handler in the file handler list. */
1999-05-12 04:29:07 +08:00
if (file_ptr == gdb_notifier.first_file_handler)
gdb_notifier.first_file_handler = file_ptr->next_file;
else
{
for (prev_ptr = gdb_notifier.first_file_handler;
1999-06-21 21:27:42 +08:00
prev_ptr->next_file != file_ptr;
1999-05-12 04:29:07 +08:00
prev_ptr = prev_ptr->next_file)
;
prev_ptr->next_file = file_ptr->next_file;
}
gdb: give names to event loop file handlers Assign names to event loop file handlers. They will be used in debug messages when file handlers are invoked. In GDB, each UI used to get its own unique number, until commit cbe256847e19 ("Remove ui::num"). Re-introduce this field, and use it to make a unique name for the handler. I'm not too sure what goes on in ser-base.c, all I know is that it's what is used when debugging remotely. I've just named the main handler "serial". It would be good to have unique names there too. For instance when debugging with two different remote connections, we'd ideally want the handlers to have unique names. I didn't do it in this patch though. gdb/ChangeLog: * async-event.c (initialize_async_signal_handlers): Pass name to add_file_handler * event-top.c (ui_register_input_event_handler): Likewise. * linux-nat.c (linux_nat_target::async): Likewise. * run-on-main-thread.c (_initialize_run_on_main_thread): Likewise * ser-base.c (reschedule): Likewise. (ser_base_async): Likewise. * tui/tui-io.c: Likewise. * top.h (struct ui) <num>: New field. * top.c (highest_ui_num): New variable. (ui::ui): Initialize num. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::async): Pass name to add_file_handler. * remote-utils.cc (handle_accept_event): Likewise. (remote_open): Likewise. gdbsupport/ChangeLog: * event-loop.h (add_file_handler): Add "name" parameter. * event-loop.cc (struct file_handler) <name>: New field. (create_file_handler): Add "name" parameter, assign it to file handler. (add_file_handler): Add "name" parameter. Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-03 02:45:52 +08:00
delete file_ptr;
1999-05-12 04:29:07 +08:00
}
/* Handle the given event by calling the procedure associated to the
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
corresponding file handler. */
1999-05-12 04:29:07 +08:00
static void
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
handle_file_event (file_handler *file_ptr, int ready_mask)
1999-05-12 04:29:07 +08:00
{
1999-09-22 11:28:34 +08:00
int mask;
1999-05-12 04:29:07 +08:00
/* See if the desired events (mask) match the received events
(ready_mask). */
#ifdef HAVE_POLL
if (use_poll)
1999-05-12 04:29:07 +08:00
{
int error_mask;
1999-05-12 04:29:07 +08:00
/* With poll, the ready_mask could have any of three events set
to 1: POLLHUP, POLLERR, POLLNVAL. These events cannot be
used in the requested event mask (events), but they can be
returned in the return mask (revents). We need to check for
those event too, and add them to the mask which will be
passed to the handler. */
1999-05-12 04:29:07 +08:00
/* POLLHUP means EOF, but can be combined with POLLIN to
signal more data to read. */
error_mask = POLLHUP | POLLERR | POLLNVAL;
mask = ready_mask & (file_ptr->mask | error_mask);
1999-05-12 04:29:07 +08:00
if ((mask & (POLLERR | POLLNVAL)) != 0)
{
/* Work in progress. We may need to tell somebody
what kind of error we had. */
if (mask & POLLERR)
warning (_("Error detected on fd %d"), file_ptr->fd);
if (mask & POLLNVAL)
warning (_("Invalid or non-`poll'able fd %d"),
file_ptr->fd);
file_ptr->error = 1;
}
else
file_ptr->error = 0;
}
else
#endif /* HAVE_POLL */
{
if (ready_mask & GDB_EXCEPTION)
{
warning (_("Exception condition detected on fd %d"),
file_ptr->fd);
file_ptr->error = 1;
1999-05-12 04:29:07 +08:00
}
else
file_ptr->error = 0;
mask = ready_mask & file_ptr->mask;
}
/* If there was a match, then call the handler. */
if (mask != 0)
{
event_loop_ui_debug_printf (file_ptr->is_ui,
"invoking fd file handler `%s`",
file_ptr->name.c_str ());
file_ptr->proc (file_ptr->error, file_ptr->client_data);
1999-05-12 04:29:07 +08:00
}
}
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* Wait for new events on the monitored file descriptors. Run the
event handler if the first descriptor that is detected by the poll.
If BLOCK and if there are no events, this function will block in
the call to poll. Return 1 if an event was handled. Return -1 if
there are no file descriptors to monitor. Return 1 if an event was
handled, otherwise returns 0. */
1999-05-12 04:29:07 +08:00
static int
gdb_wait_for_event (int block)
1999-05-12 04:29:07 +08:00
{
file_handler *file_ptr;
1999-06-15 02:08:47 +08:00
int num_found = 0;
1999-05-12 04:29:07 +08:00
/* Make sure all output is done before getting another event. */
flush_streams ();
1999-08-17 03:57:19 +08:00
1999-05-12 04:29:07 +08:00
if (gdb_notifier.num_fds == 0)
return -1;
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
if (block)
update_wait_timeout ();
#ifdef HAVE_POLL
if (use_poll)
{
int timeout;
if (block)
timeout = gdb_notifier.timeout_valid ? gdb_notifier.poll_timeout : -1;
else
timeout = 0;
num_found = poll (gdb_notifier.poll_fds.data (),
(unsigned long) gdb_notifier.num_fds, timeout);
/* Don't print anything if we get out of poll because of a
signal. */
if (num_found == -1 && errno != EINTR)
2005-02-11 Andrew Cagney <cagney@gnu.org> Mark up error_no_arg, query, perror_with_name, complaint, and internal_error. * breakpoint.c, cp-abi.c, cp-namespace.c, cp-support.c: Update. * cris-tdep.c, dbxread.c, dictionary.c, dsrec.c: Update. * dummy-frame.c, dve3900-rom.c, dwarf2-frame.c, dwarf2expr.c: Update. * dwarf2read.c, dwarfread.c, elfread.c, event-loop.c: Update. * exceptions.c, exec.c, f-lang.c, findvar.c, fork-child.c: Update. * frame-unwind.c, frame.c, frv-linux-tdep.c, frv-tdep.c: Update. * gdb_assert.h, gdbarch.c, gdbtypes.c, gnu-nat.c: Update. * go32-nat.c, hppa-tdep.c, hppabsd-nat.c, hpread.c: Update. * i386-linux-nat.c, i386-nat.c, i386-tdep.c, i386bsd-nat.c: Update. * i386fbsd-nat.c, inf-ptrace.c, inf-ttrace.c, infcall.c: Update. * infcmd.c, inflow.c, infptrace.c, infrun.c, inftarg.c: Update. * interps.c, language.c, linespec.c, linux-nat.c: Update. * m32r-linux-nat.c, m68k-tdep.c, m68kbsd-nat.c: Update. * m68klinux-nat.c, m88kbsd-nat.c, macroexp.c, macroscope.c: Update. * macrotab.c, maint.c, mdebugread.c, memattr.c: Update. * mips-linux-tdep.c, mips-tdep.c, mips64obsd-nat.c: Update. * mipsnbsd-nat.c, mn10300-tdep.c, monitor.c, nto-procfs.c: Update. * objc-lang.c, objfiles.c, objfiles.h, ocd.c, osabi.c: Update. * parse.c, ppc-bdm.c, ppc-linux-nat.c, ppc-sysv-tdep.c: Update. * ppcnbsd-nat.c, ppcobsd-nat.c, printcmd.c, procfs.c: Update. * regcache.c, reggroups.c, remote-e7000.c, remote-mips.c: Update. * remote-rdp.c, remote-sds.c, remote-sim.c, remote-st.c: Update. * remote-utils.c, remote.c, rs6000-nat.c, rs6000-tdep.c: Update. * s390-nat.c, s390-tdep.c, sentinel-frame.c, serial.c: Update. * sh-tdep.c, sh3-rom.c, sh64-tdep.c, shnbsd-nat.c: Update. * solib-aix5.c, solib-svr4.c, solib.c, source.c: Update. * sparc-nat.c, stabsread.c, stack.c, symfile.c, symtab.c: Update. * symtab.h, target.c, tracepoint.c, ui-file.c, ui-out.c: Update. * utils.c, valops.c, valprint.c, vax-nat.c, vaxbsd-nat.c: Update. * win32-nat.c, xcoffread.c, xstormy16-tdep.c: Update. * cli/cli-cmds.c, cli/cli-logging.c, cli/cli-script.c: Update. * cli/cli-setshow.c, mi/mi-cmd-break.c, mi/mi-cmds.c: Update. * mi/mi-console.c, mi/mi-getopt.c, mi/mi-out.c: Update. * tui/tui-file.c, tui/tui-interp.c: Update.
2005-02-12 02:13:55 +08:00
perror_with_name (("poll"));
}
else
#endif /* HAVE_POLL */
1999-09-22 11:28:34 +08:00
{
struct timeval select_timeout;
struct timeval *timeout_p;
if (block)
timeout_p = gdb_notifier.timeout_valid
? &gdb_notifier.select_timeout : NULL;
else
{
memset (&select_timeout, 0, sizeof (select_timeout));
timeout_p = &select_timeout;
}
gdb_notifier.ready_masks[0] = gdb_notifier.check_masks[0];
gdb_notifier.ready_masks[1] = gdb_notifier.check_masks[1];
gdb_notifier.ready_masks[2] = gdb_notifier.check_masks[2];
num_found = gdb_select (gdb_notifier.num_fds,
&gdb_notifier.ready_masks[0],
&gdb_notifier.ready_masks[1],
&gdb_notifier.ready_masks[2],
timeout_p);
/* Clear the masks after an error from select. */
if (num_found == -1)
{
FD_ZERO (&gdb_notifier.ready_masks[0]);
FD_ZERO (&gdb_notifier.ready_masks[1]);
FD_ZERO (&gdb_notifier.ready_masks[2]);
/* Dont print anything if we got a signal, let gdb handle
it. */
if (errno != EINTR)
2005-02-11 Andrew Cagney <cagney@gnu.org> Mark up error_no_arg, query, perror_with_name, complaint, and internal_error. * breakpoint.c, cp-abi.c, cp-namespace.c, cp-support.c: Update. * cris-tdep.c, dbxread.c, dictionary.c, dsrec.c: Update. * dummy-frame.c, dve3900-rom.c, dwarf2-frame.c, dwarf2expr.c: Update. * dwarf2read.c, dwarfread.c, elfread.c, event-loop.c: Update. * exceptions.c, exec.c, f-lang.c, findvar.c, fork-child.c: Update. * frame-unwind.c, frame.c, frv-linux-tdep.c, frv-tdep.c: Update. * gdb_assert.h, gdbarch.c, gdbtypes.c, gnu-nat.c: Update. * go32-nat.c, hppa-tdep.c, hppabsd-nat.c, hpread.c: Update. * i386-linux-nat.c, i386-nat.c, i386-tdep.c, i386bsd-nat.c: Update. * i386fbsd-nat.c, inf-ptrace.c, inf-ttrace.c, infcall.c: Update. * infcmd.c, inflow.c, infptrace.c, infrun.c, inftarg.c: Update. * interps.c, language.c, linespec.c, linux-nat.c: Update. * m32r-linux-nat.c, m68k-tdep.c, m68kbsd-nat.c: Update. * m68klinux-nat.c, m88kbsd-nat.c, macroexp.c, macroscope.c: Update. * macrotab.c, maint.c, mdebugread.c, memattr.c: Update. * mips-linux-tdep.c, mips-tdep.c, mips64obsd-nat.c: Update. * mipsnbsd-nat.c, mn10300-tdep.c, monitor.c, nto-procfs.c: Update. * objc-lang.c, objfiles.c, objfiles.h, ocd.c, osabi.c: Update. * parse.c, ppc-bdm.c, ppc-linux-nat.c, ppc-sysv-tdep.c: Update. * ppcnbsd-nat.c, ppcobsd-nat.c, printcmd.c, procfs.c: Update. * regcache.c, reggroups.c, remote-e7000.c, remote-mips.c: Update. * remote-rdp.c, remote-sds.c, remote-sim.c, remote-st.c: Update. * remote-utils.c, remote.c, rs6000-nat.c, rs6000-tdep.c: Update. * s390-nat.c, s390-tdep.c, sentinel-frame.c, serial.c: Update. * sh-tdep.c, sh3-rom.c, sh64-tdep.c, shnbsd-nat.c: Update. * solib-aix5.c, solib-svr4.c, solib.c, source.c: Update. * sparc-nat.c, stabsread.c, stack.c, symfile.c, symtab.c: Update. * symtab.h, target.c, tracepoint.c, ui-file.c, ui-out.c: Update. * utils.c, valops.c, valprint.c, vax-nat.c, vaxbsd-nat.c: Update. * win32-nat.c, xcoffread.c, xstormy16-tdep.c: Update. * cli/cli-cmds.c, cli/cli-logging.c, cli/cli-script.c: Update. * cli/cli-setshow.c, mi/mi-cmd-break.c, mi/mi-cmds.c: Update. * mi/mi-console.c, mi/mi-getopt.c, mi/mi-out.c: Update. * tui/tui-file.c, tui/tui-interp.c: Update.
2005-02-12 02:13:55 +08:00
perror_with_name (("select"));
}
1999-09-22 11:28:34 +08:00
}
1999-05-12 04:29:07 +08:00
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
/* Avoid looking at poll_fds[i]->revents if no event fired. */
if (num_found <= 0)
return 0;
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* Run event handlers. We always run just one handler and go back
to polling, in case a handler changes the notifier list. Since
events for sources we haven't consumed yet wake poll/select
immediately, no event is lost. */
1999-05-12 04:29:07 +08:00
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
/* To level the fairness across event descriptors, we handle them in
a round-robin-like fashion. The number and order of descriptors
may change between invocations, but this is good enough. */
#ifdef HAVE_POLL
if (use_poll)
{
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
int i;
int mask;
1999-05-12 04:29:07 +08:00
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
while (1)
{
if (gdb_notifier.next_poll_fds_index >= gdb_notifier.num_fds)
gdb_notifier.next_poll_fds_index = 0;
i = gdb_notifier.next_poll_fds_index++;
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
gdb_assert (i < gdb_notifier.num_fds);
if (gdb_notifier.poll_fds[i].revents)
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
break;
}
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
for (file_ptr = gdb_notifier.first_file_handler;
file_ptr != NULL;
file_ptr = file_ptr->next_file)
{
if (file_ptr->fd == gdb_notifier.poll_fds[i].fd)
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
break;
}
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
gdb_assert (file_ptr != NULL);
mask = gdb_notifier.poll_fds[i].revents;
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
handle_file_event (file_ptr, mask);
return 1;
}
else
#endif /* HAVE_POLL */
{
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
/* See comment about even source fairness above. */
int mask = 0;
do
1999-05-12 04:29:07 +08:00
{
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
file_ptr = get_next_file_handler_to_handle_and_advance ();
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[0]))
mask |= GDB_READABLE;
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[1]))
mask |= GDB_WRITABLE;
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[2]))
mask |= GDB_EXCEPTION;
1999-05-12 04:29:07 +08:00
}
Fix gdb.mi/mi-nsmoribund.exp timeouts The PPC64 buildbot has been showing timeouts in mi-nsmoribund.exp, like this: (...) -thread-info FAIL: gdb.mi/mi-nsmoribund.exp: thread state: all running except the breakpoint thread (timeout) ... and I can reproduce this on gcc110 (PPC64) on the gcc compile farm. That is, the test sends "-thread-info" to GDB, but GDB never replies back. The problem is that these machines are too fast for gdb. :-) That test has a few threads running the same tight loop, and constantly hitting a thread-specific breakpoint that needs to be stepped over. If threads trip on breakpoints fast enough that linux-nat.c's event pipe associated with SIGCHLD is constantly being written to, even if the stdin file descriptor also has an event to handle, gdb never gets to it. because linux-nat.c's pipe comes first in the set of descriptors served by the poll/select code in the event loop. Fix this by having the event loop serve file event sources in round-robin-like fashion, similarly to how its done in gdb_do_one_event. Unfortunately, the poll and the select variants each need their own fixing. Tested on x86_64 Fedora 20 (poll and select variants), and PPC64 Fedora 18. Fixes the timeout in the PPC64 machine in the compile farm that times out without this, and I won't be surprised if it fixes other random timeouts in other tests. (gdbserver's copy of the event-loop doesn't need this (yet), as it still pushes all ready events to an event queue. That is, it hasn't had 70b66289 merged yet. We should really merge both event-loop.c copies into a single shared file, but that's for another day.) gdb/ChangeLog: 2015-05-15 Pedro Alves <palves@redhat.com> Simon Marchi <simon.marchi@ericsson.com> * event-loop.c (gdb_notifier) <next_file_handler, next_poll_fds_index>: New fields. (get_next_file_handler_to_handle_and_advance): New function. (delete_file_handler): If deleting the next file handler to handle, advance to the next file handler. (gdb_wait_for_event): Bail early if no event fired. Poll file handlers in round-robin fashion.
2015-05-15 23:26:53 +08:00
while (mask == 0);
handle_file_event (file_ptr, mask);
return 1;
1999-05-12 04:29:07 +08:00
}
return 0;
}
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
/* Create a timer that will expire in MS milliseconds from now. When
the timer is ready, PROC will be executed. At creation, the timer
is added to the timers queue. This queue is kept sorted in order
of increasing timers. Return a handle to the timer struct. */
1999-09-22 11:28:34 +08:00
int
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
create_timer (int ms, timer_handler_func *proc,
gdb_client_data client_data)
1999-09-22 11:28:34 +08:00
{
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
using namespace std::chrono;
1999-09-22 11:28:34 +08:00
struct gdb_timer *timer_ptr, *timer_index, *prev_timer;
1999-09-29 05:55:21 +08:00
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
steady_clock::time_point time_now = steady_clock::now ();
1999-09-22 11:28:34 +08:00
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
timer_ptr = new gdb_timer ();
timer_ptr->when = time_now + milliseconds (ms);
1999-09-22 11:28:34 +08:00
timer_ptr->proc = proc;
timer_ptr->client_data = client_data;
1999-09-29 05:55:21 +08:00
timer_list.num_timers++;
1999-09-22 11:28:34 +08:00
timer_ptr->timer_id = timer_list.num_timers;
/* Now add the timer to the timer queue, making sure it is sorted in
increasing order of expiration. */
1999-09-22 11:28:34 +08:00
1999-09-29 05:55:21 +08:00
for (timer_index = timer_list.first_timer;
timer_index != NULL;
1999-09-22 11:28:34 +08:00
timer_index = timer_index->next)
{
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
if (timer_index->when > timer_ptr->when)
1999-09-22 11:28:34 +08:00
break;
}
1999-09-29 05:55:21 +08:00
1999-09-22 11:28:34 +08:00
if (timer_index == timer_list.first_timer)
{
timer_ptr->next = timer_list.first_timer;
timer_list.first_timer = timer_ptr;
}
else
{
1999-09-29 05:55:21 +08:00
for (prev_timer = timer_list.first_timer;
prev_timer->next != timer_index;
1999-09-22 11:28:34 +08:00
prev_timer = prev_timer->next)
;
1999-09-29 05:55:21 +08:00
1999-09-22 11:28:34 +08:00
prev_timer->next = timer_ptr;
timer_ptr->next = timer_index;
}
gdb_notifier.timeout_valid = 0;
return timer_ptr->timer_id;
}
/* There is a chance that the creator of the timer wants to get rid of
it before it expires. */
1999-09-22 11:28:34 +08:00
void
delete_timer (int id)
{
struct gdb_timer *timer_ptr, *prev_timer = NULL;
/* Find the entry for the given timer. */
1999-09-22 11:28:34 +08:00
for (timer_ptr = timer_list.first_timer; timer_ptr != NULL;
timer_ptr = timer_ptr->next)
{
if (timer_ptr->timer_id == id)
break;
}
if (timer_ptr == NULL)
return;
/* Get rid of the timer in the timer list. */
1999-09-22 11:28:34 +08:00
if (timer_ptr == timer_list.first_timer)
timer_list.first_timer = timer_ptr->next;
else
{
for (prev_timer = timer_list.first_timer;
prev_timer->next != timer_ptr;
prev_timer = prev_timer->next)
;
prev_timer->next = timer_ptr->next;
}
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
delete timer_ptr;
1999-09-22 11:28:34 +08:00
gdb_notifier.timeout_valid = 0;
}
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
/* Convert a std::chrono duration to a struct timeval. */
template<typename Duration>
static struct timeval
duration_cast_timeval (const Duration &d)
{
using namespace std::chrono;
seconds sec = duration_cast<seconds> (d);
microseconds msec = duration_cast<microseconds> (d - sec);
struct timeval tv;
tv.tv_sec = sec.count ();
tv.tv_usec = msec.count ();
return tv;
}
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* Update the timeout for the select() or poll(). Returns true if the
timer has already expired, false otherwise. */
1999-09-29 05:55:21 +08:00
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
static int
update_wait_timeout (void)
1999-09-22 11:28:34 +08:00
{
1999-10-06 07:13:56 +08:00
if (timer_list.first_timer != NULL)
1999-09-22 11:28:34 +08:00
{
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
using namespace std::chrono;
steady_clock::time_point time_now = steady_clock::now ();
struct timeval timeout;
1999-09-29 05:55:21 +08:00
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
if (timer_list.first_timer->when < time_now)
1999-09-22 11:28:34 +08:00
{
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* It expired already. */
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
timeout.tv_sec = 0;
timeout.tv_usec = 0;
}
else
{
steady_clock::duration d = timer_list.first_timer->when - time_now;
timeout = duration_cast_timeval (d);
1999-09-22 11:28:34 +08:00
}
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* Update the timeout for select/ poll. */
1999-09-22 11:28:34 +08:00
#ifdef HAVE_POLL
if (use_poll)
gdb_notifier.poll_timeout = timeout.tv_sec * 1000;
else
#endif /* HAVE_POLL */
{
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
gdb_notifier.select_timeout.tv_sec = timeout.tv_sec;
gdb_notifier.select_timeout.tv_usec = timeout.tv_usec;
}
1999-09-22 11:28:34 +08:00
gdb_notifier.timeout_valid = 1;
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
gdb: Use C++11 std::chrono This patch fixes a few problems with GDB's time handling. #1 - It avoids problems with gnulib's C++ namespace support On MinGW, the struct timeval that should be passed to gnulib's gettimeofday replacement is incompatible with libiberty's timeval_sub/timeval_add. That's because gnulib also replaces "struct timeval" with its own definition, while libiberty expects the system's. E.g., in code like this: gettimeofday (&prompt_ended, NULL); timeval_sub (&prompt_delta, &prompt_ended, &prompt_started); timeval_add (&prompt_for_continue_wait_time, &prompt_for_continue_wait_time, &prompt_delta); That's currently handled in gdb by not using gnulib's gettimeofday at all (see common/gdb_sys_time.h), but that #undef hack won't work with if/when we enable gnulib's C++ namespace support, because that mode adds compile time warnings for uses of ::gettimeofday, which are hard errors with -Werror. #2 - But there's an elephant in the room: gettimeofday is not monotonic... We're using it to: a) check how long functions take, for performance analysis b) compute when in the future to fire events in the event-loop c) print debug timestamps But that's exactly what gettimeofday is NOT meant for. Straight from the man page: ~~~ The time returned by gettimeofday() is affected by discontinuous jumps in the system time (e.g., if the system administrator manually changes the system time). If you need a monotonically increasing clock, see clock_gettime(2). ~~~ std::chrono (part of the C++11 standard library) has a monotonic clock exactly for such purposes (std::chrono::steady_clock). This commit switches to use that instead of gettimeofday, fixing all the issues mentioned above. gdb/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add common/run-time-clock.c. (HFILES_NO_SRCDIR): Add common/run-time-clock.h. (COMMON_OBS): Add run-time-clock.o. * common/run-time-clock.c, common/run-time-clock.h: New files. * defs.h (struct timeval, print_transfer_performance): Delete declarations. * event-loop.c (struct gdb_timer) <when>: Now a std::chrono::steady_clock::time_point. (create_timer): use std::chrono::steady_clock instead of gettimeofday. Use new instead of malloc. (delete_timer): Use delete instead of xfree. (duration_cast_timeval): New. (update_wait_timeout): Use std::chrono::steady_clock instead of gettimeofday. * maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h> and "timeval-utils.h". (scoped_command_stats::~scoped_command_stats) (scoped_command_stats::scoped_command_stats): Use std::chrono::steady_clock instead of gettimeofday. Use user_cpu_time_clock instead of get_run_time. * maint.h: Include "run-time-clock.h" and <chrono>. (scoped_command_stats): <m_start_cpu_time>: Now a user_cpu_time_clock::time_point. <m_start_wall_time>: Now a std::chrono::steady_clock::time_point. * mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h" and <sys/resource.h>. (rusage): Delete. (mi_execute_command): Use new instead of XNEW. (mi_load_progress): Use std::chrono::steady_clock instead of gettimeofday. (timestamp): Rewrite in terms of std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. (timeval_diff): Delete. (print_diff): Adjust to use std::chrono::steady_clock, user_cpu_time_clock and system_cpu_time_clock. * mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead of "gdb_sys_time.h". (struct mi_timestamp): Change fields types to std::chrono::steady_clock::time_point, user_cpu_time_clock::time and system_cpu_time_clock::time_point, instead of struct timeval. * symfile.c: Include <chrono> instead of <time.h> and "gdb_sys_time.h". (struct time_range): New. (generic_load): Use std::chrono::steady_clock instead of gettimeofday. (print_transfer_performance): Replace timeval parameters with a std::chrono::steady_clock::duration parameter. Adjust. * utils.c: Include <chrono> instead of "timeval-utils.h", "gdb_sys_time.h", and <time.h>. (prompt_for_continue_wait_time): Now a std::chrono::steady_clock::duration. (defaulted_query, prompt_for_continue): Use std::chrono::steady_clock instead of gettimeofday/timeval_sub/timeval_add. (reset_prompt_for_continue_wait_time): Use std::chrono::steady_clock::duration instead of struct timeval. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. (vfprintf_unfiltered): Use std::chrono::steady_clock instead of gettimeofday. Use std::string. Use '.' instead of ':'. * utils.h: Include <chrono>. (get_prompt_for_continue_wait_time): Return a std::chrono::steady_clock::duration instead of struct timeval. gdb/gdbserver/ChangeLog: 2016-11-23 Pedro Alves <palves@redhat.com> * debug.c: Include <chrono> instead of "gdb_sys_time.h". (debug_vprintf): Use std::chrono::steady_clock instead of gettimeofday. Use '.' instead of ':'. * tracepoint.c: Include <chrono> instead of "gdb_sys_time.h". (get_timestamp): Use std::chrono::steady_clock instead of gettimeofday.
2016-11-23 23:36:26 +08:00
if (timer_list.first_timer->when < time_now)
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
return 1;
1999-09-22 11:28:34 +08:00
}
1999-09-29 05:55:21 +08:00
else
1999-09-22 11:28:34 +08:00
gdb_notifier.timeout_valid = 0;
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
return 0;
}
/* Check whether a timer in the timers queue is ready. If a timer is
ready, call its handler and return. Update the timeout for the
select() or poll() as well. Return 1 if an event was handled,
otherwise returns 0.*/
static int
poll_timers (void)
{
if (update_wait_timeout ())
{
struct gdb_timer *timer_ptr = timer_list.first_timer;
timer_handler_func *proc = timer_ptr->proc;
gdb_client_data client_data = timer_ptr->client_data;
/* Get rid of the timer from the beginning of the list. */
timer_list.first_timer = timer_ptr->next;
/* Delete the timer before calling the callback, not after, in
case the callback itself decides to try deleting the timer
too. */
delete timer_ptr;
Simplify event-loop core, remove two-step event processing Even with the previous patch installed, we'll still see sigall-reverse.exp occasionally fail. The problem is that the event loop's event handling processing is done in two steps: #1 - poll all event sources, and push new event objects to the event queue, until all event sources are drained. #2 - go through the event queue, processing each event object at a time. For each event, call the associated callback, and deletes the event object from the queue. and then bad things happen if between #1 and #2 something decides that events from an event source that has already queued events shouldn't be processed yet. To do that, we either remove the event source from the list of event sources, or clear its "have events" flag. However, if an event for that source has meanwhile already been pushed in the event queue, #2 will still process it and call the associated callback... One way to fix it that I considered was to do something to the event objects already in the event queue when an event source is no longer interesting. But then I couldn't find any good reason for the two-step process in the first place. It's much simpler (and less code) to call the event source callbacks as we poll the sources and find events. Tested on x86-64 Fedora 20, native and gdbserver. gdb/ 2015-02-03 Pedro Alves <palves@redhat.com> * event-loop.c: Don't declare nor define a queue type for gdb_event_p. (event_queue): Delete. (create_event, create_file_event, gdb_event_xfree) (initialize_event_loop, process_event): Delete. (gdb_do_one_event): Return as soon as one event is handled. (handle_file_event): Change prototype. Used the passed in file_handler pointer and ready_mask instead of looping over all file handlers. (gdb_wait_for_event): Update the poll/select timeouts before blocking. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (struct async_event_handler_data): Delete. (invoke_async_event_handler): Delete. (check_async_event_handlers): Change return type to int. Run event handlers directly instead of queueing events. Return as soon as one event is handled. (handle_timer_event): Delete. (update_wait_timeout): New function, factored out from poll_timers. (poll_timers): Reimplement. * event-loop.h (initialize_event_loop): Delete declaration. * top.c (gdb_init): Don't call initialize_event_loop.
2015-02-03 23:07:54 +08:00
/* Call the procedure associated with that timer. */
(proc) (client_data);
return 1;
}
return 0;
1999-09-22 11:28:34 +08:00
}