mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-13 23:34:05 +08:00
22650f1481
The generic/464 xfstest causes kAFS to emit occasional warnings of the
form:
kAFS: vnode modified {100055:8a} 30->31 YFS.StoreData64 (c=6015)
This indicates that the data version received back from the server did not
match the expected value (the DV should be incremented monotonically for
each individual modification op committed to a vnode).
What is happening is that a lookup call is doing a bulk status fetch
speculatively on a bunch of vnodes in a directory besides getting the
status of the vnode it's actually interested in. This is racing with a
StoreData operation (though it could also occur with, say, a MakeDir op).
On the client, a modification operation locks the vnode, but the bulk
status fetch only locks the parent directory, so no ordering is imposed
there (thereby avoiding an avenue to deadlock).
On the server, the StoreData op handler doesn't lock the vnode until it's
received all the request data, and downgrades the lock after committing the
data until it has finished sending change notifications to other clients -
which allows the status fetch to occur before it has finished.
This means that:
- a status fetch can access the target vnode either side of the exclusive
section of the modification
- the status fetch could start before the modification, yet finish after,
and vice-versa.
- the status fetch and the modification RPCs can complete in either order.
- the status fetch can return either the before or the after DV from the
modification.
- the status fetch might regress the locally cached DV.
Some of these are handled by the previous fix[1], but that's not sufficient
because it checks the DV it received against the DV it cached at the start
of the op, but the DV might've been updated in the meantime by a locally
generated modification op.
Fix this by the following means:
(1) Keep track of when we're performing a modification operation on a
vnode. This is done by marking vnode parameters with a 'modification'
note that causes the AFS_VNODE_MODIFYING flag to be set on the vnode
for the duration.
(2) Alter the speculation race detection to ignore speculative status
fetches if either the vnode is marked as being modified or the data
version number is not what we expected.
Note that whilst the "vnode modified" warning does get recovered from as it
causes the client to refetch the status at the next opportunity, it will
also invalidate the pagecache, so changes might get lost.
Fixes: a9e5c87ca7
("afs: Fix speculative status fetch going out of order wrt to modifications")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-and-reviewed-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/160605082531.252452.14708077925602709042.stgit@warthog.procyon.org.uk/ [1]
Link: https://lore.kernel.org/linux-fsdevel/161961335926.39335.2552653972195467566.stgit@warthog.procyon.org.uk/ # v1
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
951 lines
22 KiB
C
951 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* handling of writes to regular files and writing back to the server
|
|
*
|
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/netfs.h>
|
|
#include <linux/fscache.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* mark a page as having been made dirty and thus needing writeback
|
|
*/
|
|
int afs_set_page_dirty(struct page *page)
|
|
{
|
|
_enter("");
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
/*
|
|
* prepare to perform part of a write to a page
|
|
*/
|
|
int afs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **_page, void **fsdata)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
|
|
struct page *page;
|
|
unsigned long priv;
|
|
unsigned f, from;
|
|
unsigned t, to;
|
|
pgoff_t index;
|
|
int ret;
|
|
|
|
_enter("{%llx:%llu},%llx,%x",
|
|
vnode->fid.vid, vnode->fid.vnode, pos, len);
|
|
|
|
/* Prefetch area to be written into the cache if we're caching this
|
|
* file. We need to do this before we get a lock on the page in case
|
|
* there's more than one writer competing for the same cache block.
|
|
*/
|
|
ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
|
|
&afs_req_ops, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
index = page->index;
|
|
from = pos - index * PAGE_SIZE;
|
|
to = from + len;
|
|
|
|
try_again:
|
|
/* See if this page is already partially written in a way that we can
|
|
* merge the new write with.
|
|
*/
|
|
if (PagePrivate(page)) {
|
|
priv = page_private(page);
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
ASSERTCMP(f, <=, t);
|
|
|
|
if (PageWriteback(page)) {
|
|
trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
|
|
goto flush_conflicting_write;
|
|
}
|
|
/* If the file is being filled locally, allow inter-write
|
|
* spaces to be merged into writes. If it's not, only write
|
|
* back what the user gives us.
|
|
*/
|
|
if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
|
|
(to < f || from > t))
|
|
goto flush_conflicting_write;
|
|
}
|
|
|
|
*_page = page;
|
|
_leave(" = 0");
|
|
return 0;
|
|
|
|
/* The previous write and this write aren't adjacent or overlapping, so
|
|
* flush the page out.
|
|
*/
|
|
flush_conflicting_write:
|
|
_debug("flush conflict");
|
|
ret = write_one_page(page);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = lock_page_killable(page);
|
|
if (ret < 0)
|
|
goto error;
|
|
goto try_again;
|
|
|
|
error:
|
|
put_page(page);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* finalise part of a write to a page
|
|
*/
|
|
int afs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
|
|
unsigned long priv;
|
|
unsigned int f, from = pos & (thp_size(page) - 1);
|
|
unsigned int t, to = from + copied;
|
|
loff_t i_size, maybe_i_size;
|
|
|
|
_enter("{%llx:%llu},{%lx}",
|
|
vnode->fid.vid, vnode->fid.vnode, page->index);
|
|
|
|
if (copied == 0)
|
|
goto out;
|
|
|
|
maybe_i_size = pos + copied;
|
|
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
if (maybe_i_size > i_size) {
|
|
write_seqlock(&vnode->cb_lock);
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
if (maybe_i_size > i_size)
|
|
i_size_write(&vnode->vfs_inode, maybe_i_size);
|
|
write_sequnlock(&vnode->cb_lock);
|
|
}
|
|
|
|
ASSERT(PageUptodate(page));
|
|
|
|
if (PagePrivate(page)) {
|
|
priv = page_private(page);
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
if (from < f)
|
|
f = from;
|
|
if (to > t)
|
|
t = to;
|
|
priv = afs_page_dirty(page, f, t);
|
|
set_page_private(page, priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
|
|
} else {
|
|
priv = afs_page_dirty(page, from, to);
|
|
attach_page_private(page, (void *)priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
|
|
}
|
|
|
|
if (set_page_dirty(page))
|
|
_debug("dirtied %lx", page->index);
|
|
|
|
out:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return copied;
|
|
}
|
|
|
|
/*
|
|
* kill all the pages in the given range
|
|
*/
|
|
static void afs_kill_pages(struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct pagevec pv;
|
|
unsigned int loop, psize;
|
|
|
|
_enter("{%llx:%llu},%llx @%llx",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
pagevec_init(&pv);
|
|
|
|
do {
|
|
_debug("kill %llx @%llx", len, start);
|
|
|
|
pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
|
|
PAGEVEC_SIZE, pv.pages);
|
|
if (pv.nr == 0)
|
|
break;
|
|
|
|
for (loop = 0; loop < pv.nr; loop++) {
|
|
struct page *page = pv.pages[loop];
|
|
|
|
if (page->index * PAGE_SIZE >= start + len)
|
|
break;
|
|
|
|
psize = thp_size(page);
|
|
start += psize;
|
|
len -= psize;
|
|
ClearPageUptodate(page);
|
|
end_page_writeback(page);
|
|
lock_page(page);
|
|
generic_error_remove_page(mapping, page);
|
|
unlock_page(page);
|
|
}
|
|
|
|
__pagevec_release(&pv);
|
|
} while (len > 0);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Redirty all the pages in a given range.
|
|
*/
|
|
static void afs_redirty_pages(struct writeback_control *wbc,
|
|
struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct pagevec pv;
|
|
unsigned int loop, psize;
|
|
|
|
_enter("{%llx:%llu},%llx @%llx",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
pagevec_init(&pv);
|
|
|
|
do {
|
|
_debug("redirty %llx @%llx", len, start);
|
|
|
|
pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
|
|
PAGEVEC_SIZE, pv.pages);
|
|
if (pv.nr == 0)
|
|
break;
|
|
|
|
for (loop = 0; loop < pv.nr; loop++) {
|
|
struct page *page = pv.pages[loop];
|
|
|
|
if (page->index * PAGE_SIZE >= start + len)
|
|
break;
|
|
|
|
psize = thp_size(page);
|
|
start += psize;
|
|
len -= psize;
|
|
redirty_page_for_writepage(wbc, page);
|
|
end_page_writeback(page);
|
|
}
|
|
|
|
__pagevec_release(&pv);
|
|
} while (len > 0);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* completion of write to server
|
|
*/
|
|
static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
|
|
{
|
|
struct address_space *mapping = vnode->vfs_inode.i_mapping;
|
|
struct page *page;
|
|
pgoff_t end;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
|
|
|
|
_enter("{%llx:%llu},{%x @%llx}",
|
|
vnode->fid.vid, vnode->fid.vnode, len, start);
|
|
|
|
rcu_read_lock();
|
|
|
|
end = (start + len - 1) / PAGE_SIZE;
|
|
xas_for_each(&xas, page, end) {
|
|
if (!PageWriteback(page)) {
|
|
kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
|
|
ASSERT(PageWriteback(page));
|
|
}
|
|
|
|
trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
|
|
detach_page_private(page);
|
|
page_endio(page, true, 0);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
afs_prune_wb_keys(vnode);
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Find a key to use for the writeback. We cached the keys used to author the
|
|
* writes on the vnode. *_wbk will contain the last writeback key used or NULL
|
|
* and we need to start from there if it's set.
|
|
*/
|
|
static int afs_get_writeback_key(struct afs_vnode *vnode,
|
|
struct afs_wb_key **_wbk)
|
|
{
|
|
struct afs_wb_key *wbk = NULL;
|
|
struct list_head *p;
|
|
int ret = -ENOKEY, ret2;
|
|
|
|
spin_lock(&vnode->wb_lock);
|
|
if (*_wbk)
|
|
p = (*_wbk)->vnode_link.next;
|
|
else
|
|
p = vnode->wb_keys.next;
|
|
|
|
while (p != &vnode->wb_keys) {
|
|
wbk = list_entry(p, struct afs_wb_key, vnode_link);
|
|
_debug("wbk %u", key_serial(wbk->key));
|
|
ret2 = key_validate(wbk->key);
|
|
if (ret2 == 0) {
|
|
refcount_inc(&wbk->usage);
|
|
_debug("USE WB KEY %u", key_serial(wbk->key));
|
|
break;
|
|
}
|
|
|
|
wbk = NULL;
|
|
if (ret == -ENOKEY)
|
|
ret = ret2;
|
|
p = p->next;
|
|
}
|
|
|
|
spin_unlock(&vnode->wb_lock);
|
|
if (*_wbk)
|
|
afs_put_wb_key(*_wbk);
|
|
*_wbk = wbk;
|
|
return 0;
|
|
}
|
|
|
|
static void afs_store_data_success(struct afs_operation *op)
|
|
{
|
|
struct afs_vnode *vnode = op->file[0].vnode;
|
|
|
|
op->ctime = op->file[0].scb.status.mtime_client;
|
|
afs_vnode_commit_status(op, &op->file[0]);
|
|
if (op->error == 0) {
|
|
if (!op->store.laundering)
|
|
afs_pages_written_back(vnode, op->store.pos, op->store.size);
|
|
afs_stat_v(vnode, n_stores);
|
|
atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
|
|
}
|
|
}
|
|
|
|
static const struct afs_operation_ops afs_store_data_operation = {
|
|
.issue_afs_rpc = afs_fs_store_data,
|
|
.issue_yfs_rpc = yfs_fs_store_data,
|
|
.success = afs_store_data_success,
|
|
};
|
|
|
|
/*
|
|
* write to a file
|
|
*/
|
|
static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
|
|
bool laundering)
|
|
{
|
|
struct afs_operation *op;
|
|
struct afs_wb_key *wbk = NULL;
|
|
loff_t size = iov_iter_count(iter), i_size;
|
|
int ret = -ENOKEY;
|
|
|
|
_enter("%s{%llx:%llu.%u},%llx,%llx",
|
|
vnode->volume->name,
|
|
vnode->fid.vid,
|
|
vnode->fid.vnode,
|
|
vnode->fid.unique,
|
|
size, pos);
|
|
|
|
ret = afs_get_writeback_key(vnode, &wbk);
|
|
if (ret) {
|
|
_leave(" = %d [no keys]", ret);
|
|
return ret;
|
|
}
|
|
|
|
op = afs_alloc_operation(wbk->key, vnode->volume);
|
|
if (IS_ERR(op)) {
|
|
afs_put_wb_key(wbk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
|
|
afs_op_set_vnode(op, 0, vnode);
|
|
op->file[0].dv_delta = 1;
|
|
op->file[0].modification = true;
|
|
op->store.write_iter = iter;
|
|
op->store.pos = pos;
|
|
op->store.size = size;
|
|
op->store.i_size = max(pos + size, i_size);
|
|
op->store.laundering = laundering;
|
|
op->mtime = vnode->vfs_inode.i_mtime;
|
|
op->flags |= AFS_OPERATION_UNINTR;
|
|
op->ops = &afs_store_data_operation;
|
|
|
|
try_next_key:
|
|
afs_begin_vnode_operation(op);
|
|
afs_wait_for_operation(op);
|
|
|
|
switch (op->error) {
|
|
case -EACCES:
|
|
case -EPERM:
|
|
case -ENOKEY:
|
|
case -EKEYEXPIRED:
|
|
case -EKEYREJECTED:
|
|
case -EKEYREVOKED:
|
|
_debug("next");
|
|
|
|
ret = afs_get_writeback_key(vnode, &wbk);
|
|
if (ret == 0) {
|
|
key_put(op->key);
|
|
op->key = key_get(wbk->key);
|
|
goto try_next_key;
|
|
}
|
|
break;
|
|
}
|
|
|
|
afs_put_wb_key(wbk);
|
|
_leave(" = %d", op->error);
|
|
return afs_put_operation(op);
|
|
}
|
|
|
|
/*
|
|
* Extend the region to be written back to include subsequent contiguously
|
|
* dirty pages if possible, but don't sleep while doing so.
|
|
*
|
|
* If this page holds new content, then we can include filler zeros in the
|
|
* writeback.
|
|
*/
|
|
static void afs_extend_writeback(struct address_space *mapping,
|
|
struct afs_vnode *vnode,
|
|
long *_count,
|
|
loff_t start,
|
|
loff_t max_len,
|
|
bool new_content,
|
|
unsigned int *_len)
|
|
{
|
|
struct pagevec pvec;
|
|
struct page *page;
|
|
unsigned long priv;
|
|
unsigned int psize, filler = 0;
|
|
unsigned int f, t;
|
|
loff_t len = *_len;
|
|
pgoff_t index = (start + len) / PAGE_SIZE;
|
|
bool stop = true;
|
|
unsigned int i;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, index);
|
|
pagevec_init(&pvec);
|
|
|
|
do {
|
|
/* Firstly, we gather up a batch of contiguous dirty pages
|
|
* under the RCU read lock - but we can't clear the dirty flags
|
|
* there if any of those pages are mapped.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
xas_for_each(&xas, page, ULONG_MAX) {
|
|
stop = true;
|
|
if (xas_retry(&xas, page))
|
|
continue;
|
|
if (xa_is_value(page))
|
|
break;
|
|
if (page->index != index)
|
|
break;
|
|
|
|
if (!page_cache_get_speculative(page)) {
|
|
xas_reset(&xas);
|
|
continue;
|
|
}
|
|
|
|
/* Has the page moved or been split? */
|
|
if (unlikely(page != xas_reload(&xas)))
|
|
break;
|
|
|
|
if (!trylock_page(page))
|
|
break;
|
|
if (!PageDirty(page) || PageWriteback(page)) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
|
|
psize = thp_size(page);
|
|
priv = page_private(page);
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
if (f != 0 && !new_content) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
|
|
len += filler + t;
|
|
filler = psize - t;
|
|
if (len >= max_len || *_count <= 0)
|
|
stop = true;
|
|
else if (t == psize || new_content)
|
|
stop = false;
|
|
|
|
index += thp_nr_pages(page);
|
|
if (!pagevec_add(&pvec, page))
|
|
break;
|
|
if (stop)
|
|
break;
|
|
}
|
|
|
|
if (!stop)
|
|
xas_pause(&xas);
|
|
rcu_read_unlock();
|
|
|
|
/* Now, if we obtained any pages, we can shift them to being
|
|
* writable and mark them for caching.
|
|
*/
|
|
if (!pagevec_count(&pvec))
|
|
break;
|
|
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
page = pvec.pages[i];
|
|
trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
BUG();
|
|
if (test_set_page_writeback(page))
|
|
BUG();
|
|
|
|
*_count -= thp_nr_pages(page);
|
|
unlock_page(page);
|
|
}
|
|
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
} while (!stop);
|
|
|
|
*_len = len;
|
|
}
|
|
|
|
/*
|
|
* Synchronously write back the locked page and any subsequent non-locked dirty
|
|
* pages.
|
|
*/
|
|
static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
struct page *page,
|
|
loff_t start, loff_t end)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct iov_iter iter;
|
|
unsigned long priv;
|
|
unsigned int offset, to, len, max_len;
|
|
loff_t i_size = i_size_read(&vnode->vfs_inode);
|
|
bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
|
|
long count = wbc->nr_to_write;
|
|
int ret;
|
|
|
|
_enter(",%lx,%llx-%llx", page->index, start, end);
|
|
|
|
if (test_set_page_writeback(page))
|
|
BUG();
|
|
|
|
count -= thp_nr_pages(page);
|
|
|
|
/* Find all consecutive lockable dirty pages that have contiguous
|
|
* written regions, stopping when we find a page that is not
|
|
* immediately lockable, is not dirty or is missing, or we reach the
|
|
* end of the range.
|
|
*/
|
|
priv = page_private(page);
|
|
offset = afs_page_dirty_from(page, priv);
|
|
to = afs_page_dirty_to(page, priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
|
|
|
|
len = to - offset;
|
|
start += offset;
|
|
if (start < i_size) {
|
|
/* Trim the write to the EOF; the extra data is ignored. Also
|
|
* put an upper limit on the size of a single storedata op.
|
|
*/
|
|
max_len = 65536 * 4096;
|
|
max_len = min_t(unsigned long long, max_len, end - start + 1);
|
|
max_len = min_t(unsigned long long, max_len, i_size - start);
|
|
|
|
if (len < max_len &&
|
|
(to == thp_size(page) || new_content))
|
|
afs_extend_writeback(mapping, vnode, &count,
|
|
start, max_len, new_content, &len);
|
|
len = min_t(loff_t, len, max_len);
|
|
}
|
|
|
|
/* We now have a contiguous set of dirty pages, each with writeback
|
|
* set; the first page is still locked at this point, but all the rest
|
|
* have been unlocked.
|
|
*/
|
|
unlock_page(page);
|
|
|
|
if (start < i_size) {
|
|
_debug("write back %x @%llx [%llx]", len, start, i_size);
|
|
|
|
iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
|
|
ret = afs_store_data(vnode, &iter, start, false);
|
|
} else {
|
|
_debug("write discard %x @%llx [%llx]", len, start, i_size);
|
|
|
|
/* The dirty region was entirely beyond the EOF. */
|
|
afs_pages_written_back(vnode, start, len);
|
|
ret = 0;
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
wbc->nr_to_write = count;
|
|
ret = len;
|
|
break;
|
|
|
|
default:
|
|
pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
|
|
fallthrough;
|
|
case -EACCES:
|
|
case -EPERM:
|
|
case -ENOKEY:
|
|
case -EKEYEXPIRED:
|
|
case -EKEYREJECTED:
|
|
case -EKEYREVOKED:
|
|
afs_redirty_pages(wbc, mapping, start, len);
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
|
|
case -EDQUOT:
|
|
case -ENOSPC:
|
|
afs_redirty_pages(wbc, mapping, start, len);
|
|
mapping_set_error(mapping, -ENOSPC);
|
|
break;
|
|
|
|
case -EROFS:
|
|
case -EIO:
|
|
case -EREMOTEIO:
|
|
case -EFBIG:
|
|
case -ENOENT:
|
|
case -ENOMEDIUM:
|
|
case -ENXIO:
|
|
trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
|
|
afs_kill_pages(mapping, start, len);
|
|
mapping_set_error(mapping, ret);
|
|
break;
|
|
}
|
|
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* write a page back to the server
|
|
* - the caller locked the page for us
|
|
*/
|
|
int afs_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
ssize_t ret;
|
|
loff_t start;
|
|
|
|
_enter("{%lx},", page->index);
|
|
|
|
start = page->index * PAGE_SIZE;
|
|
ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
|
|
start, LLONG_MAX - start);
|
|
if (ret < 0) {
|
|
_leave(" = %zd", ret);
|
|
return ret;
|
|
}
|
|
|
|
_leave(" = 0");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* write a region of pages back to the server
|
|
*/
|
|
static int afs_writepages_region(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
loff_t start, loff_t end, loff_t *_next)
|
|
{
|
|
struct page *page;
|
|
ssize_t ret;
|
|
int n;
|
|
|
|
_enter("%llx,%llx,", start, end);
|
|
|
|
do {
|
|
pgoff_t index = start / PAGE_SIZE;
|
|
|
|
n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
|
|
PAGECACHE_TAG_DIRTY, 1, &page);
|
|
if (!n)
|
|
break;
|
|
|
|
start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
|
|
|
|
_debug("wback %lx", page->index);
|
|
|
|
/* At this point we hold neither the i_pages lock nor the
|
|
* page lock: the page may be truncated or invalidated
|
|
* (changing page->mapping to NULL), or even swizzled
|
|
* back from swapper_space to tmpfs file mapping
|
|
*/
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
ret = lock_page_killable(page);
|
|
if (ret < 0) {
|
|
put_page(page);
|
|
return ret;
|
|
}
|
|
} else {
|
|
if (!trylock_page(page)) {
|
|
put_page(page);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (page->mapping != mapping || !PageDirty(page)) {
|
|
start += thp_size(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (PageWriteback(page)) {
|
|
unlock_page(page);
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
wait_on_page_writeback(page);
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
BUG();
|
|
ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
|
|
put_page(page);
|
|
if (ret < 0) {
|
|
_leave(" = %zd", ret);
|
|
return ret;
|
|
}
|
|
|
|
start += ret * PAGE_SIZE;
|
|
|
|
cond_resched();
|
|
} while (wbc->nr_to_write > 0);
|
|
|
|
*_next = start;
|
|
_leave(" = 0 [%llx]", *_next);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* write some of the pending data back to the server
|
|
*/
|
|
int afs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
loff_t start, next;
|
|
int ret;
|
|
|
|
_enter("");
|
|
|
|
/* We have to be careful as we can end up racing with setattr()
|
|
* truncating the pagecache since the caller doesn't take a lock here
|
|
* to prevent it.
|
|
*/
|
|
if (wbc->sync_mode == WB_SYNC_ALL)
|
|
down_read(&vnode->validate_lock);
|
|
else if (!down_read_trylock(&vnode->validate_lock))
|
|
return 0;
|
|
|
|
if (wbc->range_cyclic) {
|
|
start = mapping->writeback_index * PAGE_SIZE;
|
|
ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
|
|
if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
|
|
ret = afs_writepages_region(mapping, wbc, 0, start,
|
|
&next);
|
|
mapping->writeback_index = next / PAGE_SIZE;
|
|
} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
|
|
ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
|
|
if (wbc->nr_to_write > 0)
|
|
mapping->writeback_index = next;
|
|
} else {
|
|
ret = afs_writepages_region(mapping, wbc,
|
|
wbc->range_start, wbc->range_end, &next);
|
|
}
|
|
|
|
up_read(&vnode->validate_lock);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* write to an AFS file
|
|
*/
|
|
ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
|
|
ssize_t result;
|
|
size_t count = iov_iter_count(from);
|
|
|
|
_enter("{%llx:%llu},{%zu},",
|
|
vnode->fid.vid, vnode->fid.vnode, count);
|
|
|
|
if (IS_SWAPFILE(&vnode->vfs_inode)) {
|
|
printk(KERN_INFO
|
|
"AFS: Attempt to write to active swap file!\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
result = generic_file_write_iter(iocb, from);
|
|
|
|
_leave(" = %zd", result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* flush any dirty pages for this process, and check for write errors.
|
|
* - the return status from this call provides a reliable indication of
|
|
* whether any write errors occurred for this process.
|
|
*/
|
|
int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct afs_vnode *vnode = AFS_FS_I(inode);
|
|
|
|
_enter("{%llx:%llu},{n=%pD},%d",
|
|
vnode->fid.vid, vnode->fid.vnode, file,
|
|
datasync);
|
|
|
|
return file_write_and_wait_range(file, start, end);
|
|
}
|
|
|
|
/*
|
|
* notification that a previously read-only page is about to become writable
|
|
* - if it returns an error, the caller will deliver a bus error signal
|
|
*/
|
|
vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct page *page = thp_head(vmf->page);
|
|
struct file *file = vmf->vma->vm_file;
|
|
struct inode *inode = file_inode(file);
|
|
struct afs_vnode *vnode = AFS_FS_I(inode);
|
|
unsigned long priv;
|
|
|
|
_enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
/* Wait for the page to be written to the cache before we allow it to
|
|
* be modified. We then assume the entire page will need writing back.
|
|
*/
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
if (PageFsCache(page) &&
|
|
wait_on_page_fscache_killable(page) < 0)
|
|
return VM_FAULT_RETRY;
|
|
#endif
|
|
|
|
if (wait_on_page_writeback_killable(page))
|
|
return VM_FAULT_RETRY;
|
|
|
|
if (lock_page_killable(page) < 0)
|
|
return VM_FAULT_RETRY;
|
|
|
|
/* We mustn't change page->private until writeback is complete as that
|
|
* details the portion of the page we need to write back and we might
|
|
* need to redirty the page if there's a problem.
|
|
*/
|
|
if (wait_on_page_writeback_killable(page) < 0) {
|
|
unlock_page(page);
|
|
return VM_FAULT_RETRY;
|
|
}
|
|
|
|
priv = afs_page_dirty(page, 0, thp_size(page));
|
|
priv = afs_page_dirty_mmapped(priv);
|
|
if (PagePrivate(page)) {
|
|
set_page_private(page, priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
|
|
} else {
|
|
attach_page_private(page, (void *)priv);
|
|
trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
|
|
}
|
|
file_update_time(file);
|
|
|
|
sb_end_pagefault(inode->i_sb);
|
|
return VM_FAULT_LOCKED;
|
|
}
|
|
|
|
/*
|
|
* Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
|
|
*/
|
|
void afs_prune_wb_keys(struct afs_vnode *vnode)
|
|
{
|
|
LIST_HEAD(graveyard);
|
|
struct afs_wb_key *wbk, *tmp;
|
|
|
|
/* Discard unused keys */
|
|
spin_lock(&vnode->wb_lock);
|
|
|
|
if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
|
|
!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
|
|
list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
|
|
if (refcount_read(&wbk->usage) == 1)
|
|
list_move(&wbk->vnode_link, &graveyard);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&vnode->wb_lock);
|
|
|
|
while (!list_empty(&graveyard)) {
|
|
wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
|
|
list_del(&wbk->vnode_link);
|
|
afs_put_wb_key(wbk);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up a page during invalidation.
|
|
*/
|
|
int afs_launder_page(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
|
|
struct iov_iter iter;
|
|
struct bio_vec bv[1];
|
|
unsigned long priv;
|
|
unsigned int f, t;
|
|
int ret = 0;
|
|
|
|
_enter("{%lx}", page->index);
|
|
|
|
priv = page_private(page);
|
|
if (clear_page_dirty_for_io(page)) {
|
|
f = 0;
|
|
t = thp_size(page);
|
|
if (PagePrivate(page)) {
|
|
f = afs_page_dirty_from(page, priv);
|
|
t = afs_page_dirty_to(page, priv);
|
|
}
|
|
|
|
bv[0].bv_page = page;
|
|
bv[0].bv_offset = f;
|
|
bv[0].bv_len = t - f;
|
|
iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
|
|
|
|
trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
|
|
ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE,
|
|
true);
|
|
}
|
|
|
|
trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
|
|
detach_page_private(page);
|
|
wait_on_page_fscache(page);
|
|
return ret;
|
|
}
|