linux/drivers/thunderbolt/debugfs.c
Aapo Vienamo ab3de2c7ec thunderbolt: Fix memory leaks in {port|retimer}_sb_regs_write()
Add missing free_page() call for the memory allocated by
validate_and_copy_from_user().

Fixes: 6d241fa001 ("thunderbolt: Add sideband register access to debugfs")
Signed-off-by: Aapo Vienamo <aapo.vienamo@linux.intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2024-08-02 09:59:51 +03:00

1924 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Debugfs interface
*
* Copyright (C) 2020, Intel Corporation
* Authors: Gil Fine <gil.fine@intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/bitfield.h>
#include <linux/debugfs.h>
#include <linux/pm_runtime.h>
#include <linux/uaccess.h>
#include "tb.h"
#include "sb_regs.h"
#define PORT_CAP_V1_PCIE_LEN 1
#define PORT_CAP_V2_PCIE_LEN 2
#define PORT_CAP_POWER_LEN 2
#define PORT_CAP_LANE_LEN 3
#define PORT_CAP_USB3_LEN 5
#define PORT_CAP_DP_V1_LEN 9
#define PORT_CAP_DP_V2_LEN 14
#define PORT_CAP_TMU_V1_LEN 8
#define PORT_CAP_TMU_V2_LEN 10
#define PORT_CAP_BASIC_LEN 9
#define PORT_CAP_USB4_LEN 20
#define SWITCH_CAP_TMU_LEN 26
#define SWITCH_CAP_BASIC_LEN 27
#define PATH_LEN 2
#define COUNTER_SET_LEN 3
/* Sideband registers and their sizes as defined in the USB4 spec */
struct sb_reg {
unsigned int reg;
unsigned int size;
};
#define SB_MAX_SIZE 64
/* Sideband registers for router */
static const struct sb_reg port_sb_regs[] = {
{ USB4_SB_VENDOR_ID, 4 },
{ USB4_SB_PRODUCT_ID, 4 },
{ USB4_SB_DEBUG_CONF, 4 },
{ USB4_SB_DEBUG, 54 },
{ USB4_SB_LRD_TUNING, 4 },
{ USB4_SB_OPCODE, 4 },
{ USB4_SB_METADATA, 4 },
{ USB4_SB_LINK_CONF, 3 },
{ USB4_SB_GEN23_TXFFE, 4 },
{ USB4_SB_GEN4_TXFFE, 4 },
{ USB4_SB_VERSION, 4 },
{ USB4_SB_DATA, 64 },
};
/* Sideband registers for retimer */
static const struct sb_reg retimer_sb_regs[] = {
{ USB4_SB_VENDOR_ID, 4 },
{ USB4_SB_PRODUCT_ID, 4 },
{ USB4_SB_FW_VERSION, 4 },
{ USB4_SB_LRD_TUNING, 4 },
{ USB4_SB_OPCODE, 4 },
{ USB4_SB_METADATA, 4 },
{ USB4_SB_GEN23_TXFFE, 4 },
{ USB4_SB_GEN4_TXFFE, 4 },
{ USB4_SB_VERSION, 4 },
{ USB4_SB_DATA, 64 },
};
#define DEBUGFS_ATTR(__space, __write) \
static int __space ## _open(struct inode *inode, struct file *file) \
{ \
return single_open(file, __space ## _show, inode->i_private); \
} \
\
static const struct file_operations __space ## _fops = { \
.owner = THIS_MODULE, \
.open = __space ## _open, \
.release = single_release, \
.read = seq_read, \
.write = __write, \
.llseek = seq_lseek, \
}
#define DEBUGFS_ATTR_RO(__space) \
DEBUGFS_ATTR(__space, NULL)
#define DEBUGFS_ATTR_RW(__space) \
DEBUGFS_ATTR(__space, __space ## _write)
static struct dentry *tb_debugfs_root;
static void *validate_and_copy_from_user(const void __user *user_buf,
size_t *count)
{
size_t nbytes;
void *buf;
if (!*count)
return ERR_PTR(-EINVAL);
if (!access_ok(user_buf, *count))
return ERR_PTR(-EFAULT);
buf = (void *)get_zeroed_page(GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
nbytes = min_t(size_t, *count, PAGE_SIZE);
if (copy_from_user(buf, user_buf, nbytes)) {
free_page((unsigned long)buf);
return ERR_PTR(-EFAULT);
}
*count = nbytes;
return buf;
}
static bool parse_line(char **line, u32 *offs, u32 *val, int short_fmt_len,
int long_fmt_len)
{
char *token;
u32 v[5];
int ret;
token = strsep(line, "\n");
if (!token)
return false;
/*
* For Adapter/Router configuration space:
* Short format is: offset value\n
* v[0] v[1]
* Long format as produced from the read side:
* offset relative_offset cap_id vs_cap_id value\n
* v[0] v[1] v[2] v[3] v[4]
*
* For Counter configuration space:
* Short format is: offset\n
* v[0]
* Long format as produced from the read side:
* offset relative_offset counter_id value\n
* v[0] v[1] v[2] v[3]
*/
ret = sscanf(token, "%i %i %i %i %i", &v[0], &v[1], &v[2], &v[3], &v[4]);
/* In case of Counters, clear counter, "val" content is NA */
if (ret == short_fmt_len) {
*offs = v[0];
*val = v[short_fmt_len - 1];
return true;
} else if (ret == long_fmt_len) {
*offs = v[0];
*val = v[long_fmt_len - 1];
return true;
}
return false;
}
#if IS_ENABLED(CONFIG_USB4_DEBUGFS_WRITE)
static ssize_t regs_write(struct tb_switch *sw, struct tb_port *port,
const char __user *user_buf, size_t count,
loff_t *ppos)
{
struct tb *tb = sw->tb;
char *line, *buf;
u32 val, offset;
int ret = 0;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
/* User did hardware changes behind the driver's back */
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
line = buf;
while (parse_line(&line, &offset, &val, 2, 5)) {
if (port)
ret = tb_port_write(port, &val, TB_CFG_PORT, offset, 1);
else
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, offset, 1);
if (ret)
break;
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static ssize_t port_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
return regs_write(port->sw, port, user_buf, count, ppos);
}
static ssize_t switch_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_switch *sw = s->private;
return regs_write(sw, NULL, user_buf, count, ppos);
}
static bool parse_sb_line(char **line, u8 *reg, u8 *data, size_t data_size,
size_t *bytes_read)
{
char *field, *token;
int i;
token = strsep(line, "\n");
if (!token)
return false;
/* Parse the register first */
field = strsep(&token, " ");
if (!field)
return false;
if (kstrtou8(field, 0, reg))
return false;
/* Then the values for the register, up to data_size */
for (i = 0; i < data_size; i++) {
field = strsep(&token, " ");
if (!field)
break;
if (kstrtou8(field, 0, &data[i]))
return false;
}
*bytes_read = i;
return true;
}
static ssize_t sb_regs_write(struct tb_port *port, const struct sb_reg *sb_regs,
size_t size, enum usb4_sb_target target, u8 index,
char *buf, size_t count, loff_t *ppos)
{
u8 reg, data[SB_MAX_SIZE];
size_t bytes_read;
char *line = buf;
/* User did hardware changes behind the driver's back */
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
/*
* For sideband registers we accept:
* reg b0 b1 b2...\n
*
* Here "reg" is the byte offset of the sideband register and "b0"..
* are the byte values. There can be less byte values than the register
* size. The leftovers will not be overwritten.
*/
while (parse_sb_line(&line, &reg, data, ARRAY_SIZE(data), &bytes_read)) {
const struct sb_reg *sb_reg;
int ret;
/* At least one byte must be passed */
if (bytes_read < 1)
return -EINVAL;
/* Find the register */
sb_reg = NULL;
for (int i = 0; i < size; i++) {
if (sb_regs[i].reg == reg) {
sb_reg = &sb_regs[i];
break;
}
}
if (!sb_reg)
return -EINVAL;
if (bytes_read > sb_regs->size)
return -E2BIG;
ret = usb4_port_sb_write(port, target, index, sb_reg->reg, data,
bytes_read);
if (ret)
return ret;
}
return 0;
}
static ssize_t port_sb_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
char *buf;
int ret;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
ret = sb_regs_write(port, port_sb_regs, ARRAY_SIZE(port_sb_regs),
USB4_SB_TARGET_ROUTER, 0, buf, count, ppos);
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static ssize_t retimer_sb_regs_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_retimer *rt = s->private;
struct tb *tb = rt->tb;
char *buf;
int ret;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&rt->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
ret = sb_regs_write(rt->port, retimer_sb_regs, ARRAY_SIZE(retimer_sb_regs),
USB4_SB_TARGET_RETIMER, rt->index, buf, count, ppos);
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&rt->dev);
pm_runtime_put_autosuspend(&rt->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
#define DEBUGFS_MODE 0600
#else
#define port_regs_write NULL
#define switch_regs_write NULL
#define port_sb_regs_write NULL
#define retimer_sb_regs_write NULL
#define DEBUGFS_MODE 0400
#endif
#if IS_ENABLED(CONFIG_USB4_DEBUGFS_MARGINING)
/**
* struct tb_margining - Lane margining support
* @port: USB4 port through which the margining operations are run
* @target: Sideband target
* @index: Retimer index if taget is %USB4_SB_TARGET_RETIMER
* @dev: Pointer to the device that is the target (USB4 port or retimer)
* @caps: Port lane margining capabilities
* @results: Last lane margining results
* @lanes: %0, %1 or %7 (all)
* @min_ber_level: Minimum supported BER level contour value
* @max_ber_level: Maximum supported BER level contour value
* @ber_level: Current BER level contour value
* @voltage_steps: Number of mandatory voltage steps
* @max_voltage_offset: Maximum mandatory voltage offset (in mV)
* @time_steps: Number of time margin steps
* @max_time_offset: Maximum time margin offset (in mUI)
* @software: %true if software margining is used instead of hardware
* @time: %true if time margining is used instead of voltage
* @right_high: %false if left/low margin test is performed, %true if
* right/high
*/
struct tb_margining {
struct tb_port *port;
enum usb4_sb_target target;
u8 index;
struct device *dev;
u32 caps[2];
u32 results[2];
unsigned int lanes;
unsigned int min_ber_level;
unsigned int max_ber_level;
unsigned int ber_level;
unsigned int voltage_steps;
unsigned int max_voltage_offset;
unsigned int time_steps;
unsigned int max_time_offset;
bool software;
bool time;
bool right_high;
};
static bool supports_software(const struct tb_margining *margining)
{
return margining->caps[0] & USB4_MARGIN_CAP_0_MODES_SW;
}
static bool supports_hardware(const struct tb_margining *margining)
{
return margining->caps[0] & USB4_MARGIN_CAP_0_MODES_HW;
}
static bool both_lanes(const struct tb_margining *margining)
{
return margining->caps[0] & USB4_MARGIN_CAP_0_2_LANES;
}
static unsigned int
independent_voltage_margins(const struct tb_margining *margining)
{
return FIELD_GET(USB4_MARGIN_CAP_0_VOLTAGE_INDP_MASK, margining->caps[0]);
}
static bool supports_time(const struct tb_margining *margining)
{
return margining->caps[0] & USB4_MARGIN_CAP_0_TIME;
}
/* Only applicable if supports_time() returns true */
static unsigned int
independent_time_margins(const struct tb_margining *margining)
{
return FIELD_GET(USB4_MARGIN_CAP_1_TIME_INDP_MASK, margining->caps[1]);
}
static ssize_t
margining_ber_level_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
unsigned int val;
int ret = 0;
char *buf;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (margining->software) {
ret = -EINVAL;
goto out_unlock;
}
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf)) {
ret = PTR_ERR(buf);
goto out_unlock;
}
buf[count - 1] = '\0';
ret = kstrtouint(buf, 10, &val);
if (ret)
goto out_free;
if (val < margining->min_ber_level ||
val > margining->max_ber_level) {
ret = -EINVAL;
goto out_free;
}
margining->ber_level = val;
out_free:
free_page((unsigned long)buf);
out_unlock:
mutex_unlock(&tb->lock);
return ret < 0 ? ret : count;
}
static void ber_level_show(struct seq_file *s, unsigned int val)
{
if (val % 2)
seq_printf(s, "3 * 1e%d (%u)\n", -12 + (val + 1) / 2, val);
else
seq_printf(s, "1e%d (%u)\n", -12 + val / 2, val);
}
static int margining_ber_level_show(struct seq_file *s, void *not_used)
{
const struct tb_margining *margining = s->private;
if (margining->software)
return -EINVAL;
ber_level_show(s, margining->ber_level);
return 0;
}
DEBUGFS_ATTR_RW(margining_ber_level);
static int margining_caps_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
u32 cap0, cap1;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Dump the raw caps first */
cap0 = margining->caps[0];
seq_printf(s, "0x%08x\n", cap0);
cap1 = margining->caps[1];
seq_printf(s, "0x%08x\n", cap1);
seq_printf(s, "# software margining: %s\n",
supports_software(margining) ? "yes" : "no");
if (supports_hardware(margining)) {
seq_puts(s, "# hardware margining: yes\n");
seq_puts(s, "# minimum BER level contour: ");
ber_level_show(s, margining->min_ber_level);
seq_puts(s, "# maximum BER level contour: ");
ber_level_show(s, margining->max_ber_level);
} else {
seq_puts(s, "# hardware margining: no\n");
}
seq_printf(s, "# both lanes simultaneously: %s\n",
both_lanes(margining) ? "yes" : "no");
seq_printf(s, "# voltage margin steps: %u\n",
margining->voltage_steps);
seq_printf(s, "# maximum voltage offset: %u mV\n",
margining->max_voltage_offset);
switch (independent_voltage_margins(margining)) {
case USB4_MARGIN_CAP_0_VOLTAGE_MIN:
seq_puts(s, "# returns minimum between high and low voltage margins\n");
break;
case USB4_MARGIN_CAP_0_VOLTAGE_HL:
seq_puts(s, "# returns high or low voltage margin\n");
break;
case USB4_MARGIN_CAP_0_VOLTAGE_BOTH:
seq_puts(s, "# returns both high and low margins\n");
break;
}
if (supports_time(margining)) {
seq_puts(s, "# time margining: yes\n");
seq_printf(s, "# time margining is destructive: %s\n",
cap1 & USB4_MARGIN_CAP_1_TIME_DESTR ? "yes" : "no");
switch (independent_time_margins(margining)) {
case USB4_MARGIN_CAP_1_TIME_MIN:
seq_puts(s, "# returns minimum between left and right time margins\n");
break;
case USB4_MARGIN_CAP_1_TIME_LR:
seq_puts(s, "# returns left or right margin\n");
break;
case USB4_MARGIN_CAP_1_TIME_BOTH:
seq_puts(s, "# returns both left and right margins\n");
break;
}
seq_printf(s, "# time margin steps: %u\n",
margining->time_steps);
seq_printf(s, "# maximum time offset: %u mUI\n",
margining->max_time_offset);
} else {
seq_puts(s, "# time margining: no\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RO(margining_caps);
static ssize_t
margining_lanes_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "0")) {
margining->lanes = 0;
} else if (!strcmp(buf, "1")) {
margining->lanes = 1;
} else if (!strcmp(buf, "all")) {
/* Needs to be supported */
if (both_lanes(margining))
margining->lanes = 7;
else
ret = -EINVAL;
} else {
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static int margining_lanes_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
unsigned int lanes;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
lanes = margining->lanes;
if (both_lanes(margining)) {
if (!lanes)
seq_puts(s, "[0] 1 all\n");
else if (lanes == 1)
seq_puts(s, "0 [1] all\n");
else
seq_puts(s, "0 1 [all]\n");
} else {
if (!lanes)
seq_puts(s, "[0] 1\n");
else
seq_puts(s, "0 [1]\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_lanes);
static ssize_t margining_mode_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "software")) {
if (supports_software(margining))
margining->software = true;
else
ret = -EINVAL;
} else if (!strcmp(buf, "hardware")) {
if (supports_hardware(margining))
margining->software = false;
else
ret = -EINVAL;
} else {
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_mode_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
const char *space = "";
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (supports_software(margining)) {
if (margining->software)
seq_puts(s, "[software]");
else
seq_puts(s, "software");
space = " ";
}
if (supports_hardware(margining)) {
if (margining->software)
seq_printf(s, "%shardware", space);
else
seq_printf(s, "%s[hardware]", space);
}
mutex_unlock(&tb->lock);
seq_puts(s, "\n");
return 0;
}
DEBUGFS_ATTR_RW(margining_mode);
static int margining_run_write(void *data, u64 val)
{
struct tb_margining *margining = data;
struct tb_port *port = margining->port;
struct device *dev = margining->dev;
struct tb_switch *sw = port->sw;
struct tb_switch *down_sw;
struct tb *tb = sw->tb;
int ret, clx;
if (val != 1)
return -EINVAL;
pm_runtime_get_sync(dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
if (tb_is_upstream_port(port))
down_sw = sw;
else if (port->remote)
down_sw = port->remote->sw;
else
down_sw = NULL;
if (down_sw) {
/*
* CL states may interfere with lane margining so
* disable them temporarily now.
*/
ret = tb_switch_clx_disable(down_sw);
if (ret < 0) {
tb_sw_warn(down_sw, "failed to disable CL states\n");
goto out_unlock;
}
clx = ret;
}
if (margining->software) {
tb_port_dbg(port,
"running software %s lane margining for %s lanes %u\n",
margining->time ? "time" : "voltage", dev_name(dev),
margining->lanes);
ret = usb4_port_sw_margin(port, margining->target, margining->index,
margining->lanes, margining->time,
margining->right_high,
USB4_MARGIN_SW_COUNTER_CLEAR);
if (ret)
goto out_clx;
ret = usb4_port_sw_margin_errors(port, margining->target,
margining->index,
&margining->results[0]);
} else {
tb_port_dbg(port,
"running hardware %s lane margining for %s lanes %u\n",
margining->time ? "time" : "voltage", dev_name(dev),
margining->lanes);
/* Clear the results */
margining->results[0] = 0;
margining->results[1] = 0;
ret = usb4_port_hw_margin(port, margining->target, margining->index,
margining->lanes, margining->ber_level,
margining->time, margining->right_high,
margining->results);
}
out_clx:
if (down_sw)
tb_switch_clx_enable(down_sw, clx);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(margining_run_fops, NULL, margining_run_write,
"%llu\n");
static ssize_t margining_results_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Just clear the results */
margining->results[0] = 0;
margining->results[1] = 0;
mutex_unlock(&tb->lock);
return count;
}
static void voltage_margin_show(struct seq_file *s,
const struct tb_margining *margining, u8 val)
{
unsigned int tmp, voltage;
tmp = FIELD_GET(USB4_MARGIN_HW_RES_1_MARGIN_MASK, val);
voltage = tmp * margining->max_voltage_offset / margining->voltage_steps;
seq_printf(s, "%u mV (%u)", voltage, tmp);
if (val & USB4_MARGIN_HW_RES_1_EXCEEDS)
seq_puts(s, " exceeds maximum");
seq_puts(s, "\n");
}
static void time_margin_show(struct seq_file *s,
const struct tb_margining *margining, u8 val)
{
unsigned int tmp, interval;
tmp = FIELD_GET(USB4_MARGIN_HW_RES_1_MARGIN_MASK, val);
interval = tmp * margining->max_time_offset / margining->time_steps;
seq_printf(s, "%u mUI (%u)", interval, tmp);
if (val & USB4_MARGIN_HW_RES_1_EXCEEDS)
seq_puts(s, " exceeds maximum");
seq_puts(s, "\n");
}
static int margining_results_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Dump the raw results first */
seq_printf(s, "0x%08x\n", margining->results[0]);
/* Only the hardware margining has two result dwords */
if (!margining->software) {
unsigned int val;
seq_printf(s, "0x%08x\n", margining->results[1]);
if (margining->time) {
if (!margining->lanes || margining->lanes == 7) {
val = margining->results[1];
seq_puts(s, "# lane 0 right time margin: ");
time_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L0_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 0 left time margin: ");
time_margin_show(s, margining, val);
}
if (margining->lanes == 1 || margining->lanes == 7) {
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_RH_MARGIN_SHIFT;
seq_puts(s, "# lane 1 right time margin: ");
time_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 1 left time margin: ");
time_margin_show(s, margining, val);
}
} else {
if (!margining->lanes || margining->lanes == 7) {
val = margining->results[1];
seq_puts(s, "# lane 0 high voltage margin: ");
voltage_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L0_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 0 low voltage margin: ");
voltage_margin_show(s, margining, val);
}
if (margining->lanes == 1 || margining->lanes == 7) {
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_RH_MARGIN_SHIFT;
seq_puts(s, "# lane 1 high voltage margin: ");
voltage_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 1 low voltage margin: ");
voltage_margin_show(s, margining, val);
}
}
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_results);
static ssize_t margining_test_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "time") && supports_time(margining))
margining->time = true;
else if (!strcmp(buf, "voltage"))
margining->time = false;
else
ret = -EINVAL;
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_test_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (supports_time(margining)) {
if (margining->time)
seq_puts(s, "voltage [time]\n");
else
seq_puts(s, "[voltage] time\n");
} else {
seq_puts(s, "[voltage]\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_test);
static ssize_t margining_margin_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (margining->time) {
if (!strcmp(buf, "left"))
margining->right_high = false;
else if (!strcmp(buf, "right"))
margining->right_high = true;
else
ret = -EINVAL;
} else {
if (!strcmp(buf, "low"))
margining->right_high = false;
else if (!strcmp(buf, "high"))
margining->right_high = true;
else
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_margin_show(struct seq_file *s, void *not_used)
{
struct tb_margining *margining = s->private;
struct tb *tb = margining->port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (margining->time) {
if (margining->right_high)
seq_puts(s, "left [right]\n");
else
seq_puts(s, "[left] right\n");
} else {
if (margining->right_high)
seq_puts(s, "low [high]\n");
else
seq_puts(s, "[low] high\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_margin);
static struct tb_margining *margining_alloc(struct tb_port *port,
struct device *dev,
enum usb4_sb_target target,
u8 index, struct dentry *parent)
{
struct tb_margining *margining;
struct dentry *dir;
unsigned int val;
int ret;
margining = kzalloc(sizeof(*margining), GFP_KERNEL);
if (!margining)
return NULL;
margining->port = port;
margining->target = target;
margining->index = index;
margining->dev = dev;
ret = usb4_port_margining_caps(port, target, index, margining->caps);
if (ret) {
kfree(margining);
return NULL;
}
/* Set the initial mode */
if (supports_software(margining))
margining->software = true;
val = FIELD_GET(USB4_MARGIN_CAP_0_VOLTAGE_STEPS_MASK, margining->caps[0]);
margining->voltage_steps = val;
val = FIELD_GET(USB4_MARGIN_CAP_0_MAX_VOLTAGE_OFFSET_MASK, margining->caps[0]);
margining->max_voltage_offset = 74 + val * 2;
if (supports_time(margining)) {
val = FIELD_GET(USB4_MARGIN_CAP_1_TIME_STEPS_MASK, margining->caps[1]);
margining->time_steps = val;
val = FIELD_GET(USB4_MARGIN_CAP_1_TIME_OFFSET_MASK, margining->caps[1]);
/*
* Store it as mUI (milli Unit Interval) because we want
* to keep it as integer.
*/
margining->max_time_offset = 200 + 10 * val;
}
dir = debugfs_create_dir("margining", parent);
if (supports_hardware(margining)) {
val = FIELD_GET(USB4_MARGIN_CAP_1_MIN_BER_MASK, margining->caps[1]);
margining->min_ber_level = val;
val = FIELD_GET(USB4_MARGIN_CAP_1_MAX_BER_MASK, margining->caps[1]);
margining->max_ber_level = val;
/* Set the default to minimum */
margining->ber_level = margining->min_ber_level;
debugfs_create_file("ber_level_contour", 0400, dir, margining,
&margining_ber_level_fops);
}
debugfs_create_file("caps", 0400, dir, margining, &margining_caps_fops);
debugfs_create_file("lanes", 0600, dir, margining, &margining_lanes_fops);
debugfs_create_file("mode", 0600, dir, margining, &margining_mode_fops);
debugfs_create_file("run", 0600, dir, margining, &margining_run_fops);
debugfs_create_file("results", 0600, dir, margining,
&margining_results_fops);
debugfs_create_file("test", 0600, dir, margining, &margining_test_fops);
if (independent_voltage_margins(margining) == USB4_MARGIN_CAP_0_VOLTAGE_HL ||
(supports_time(margining) &&
independent_time_margins(margining) == USB4_MARGIN_CAP_1_TIME_LR))
debugfs_create_file("margin", 0600, dir, margining,
&margining_margin_fops);
return margining;
}
static void margining_port_init(struct tb_port *port)
{
struct dentry *parent;
char dir_name[10];
if (!port->usb4)
return;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
parent = debugfs_lookup(dir_name, port->sw->debugfs_dir);
port->usb4->margining = margining_alloc(port, &port->usb4->dev,
USB4_SB_TARGET_ROUTER, 0,
parent);
}
static void margining_port_remove(struct tb_port *port)
{
struct dentry *parent;
char dir_name[10];
if (!port->usb4)
return;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
parent = debugfs_lookup(dir_name, port->sw->debugfs_dir);
if (parent)
debugfs_lookup_and_remove("margining", parent);
kfree(port->usb4->margining);
port->usb4->margining = NULL;
}
static void margining_switch_init(struct tb_switch *sw)
{
struct tb_port *upstream, *downstream;
struct tb_switch *parent_sw;
u64 route = tb_route(sw);
if (!route)
return;
upstream = tb_upstream_port(sw);
parent_sw = tb_switch_parent(sw);
downstream = tb_port_at(route, parent_sw);
margining_port_init(downstream);
margining_port_init(upstream);
}
static void margining_switch_remove(struct tb_switch *sw)
{
struct tb_port *upstream, *downstream;
struct tb_switch *parent_sw;
u64 route = tb_route(sw);
if (!route)
return;
upstream = tb_upstream_port(sw);
parent_sw = tb_switch_parent(sw);
downstream = tb_port_at(route, parent_sw);
margining_port_remove(upstream);
margining_port_remove(downstream);
}
static void margining_xdomain_init(struct tb_xdomain *xd)
{
struct tb_switch *parent_sw;
struct tb_port *downstream;
parent_sw = tb_xdomain_parent(xd);
downstream = tb_port_at(xd->route, parent_sw);
margining_port_init(downstream);
}
static void margining_xdomain_remove(struct tb_xdomain *xd)
{
struct tb_switch *parent_sw;
struct tb_port *downstream;
parent_sw = tb_xdomain_parent(xd);
downstream = tb_port_at(xd->route, parent_sw);
margining_port_remove(downstream);
}
static void margining_retimer_init(struct tb_retimer *rt, struct dentry *debugfs_dir)
{
rt->margining = margining_alloc(rt->port, &rt->dev,
USB4_SB_TARGET_RETIMER, rt->index,
debugfs_dir);
}
static void margining_retimer_remove(struct tb_retimer *rt)
{
kfree(rt->margining);
rt->margining = NULL;
}
#else
static inline void margining_switch_init(struct tb_switch *sw) { }
static inline void margining_switch_remove(struct tb_switch *sw) { }
static inline void margining_xdomain_init(struct tb_xdomain *xd) { }
static inline void margining_xdomain_remove(struct tb_xdomain *xd) { }
static inline void margining_retimer_init(struct tb_retimer *rt,
struct dentry *debugfs_dir) { }
static inline void margining_retimer_remove(struct tb_retimer *rt) { }
#endif
static int port_clear_all_counters(struct tb_port *port)
{
u32 *buf;
int ret;
buf = kcalloc(COUNTER_SET_LEN * port->config.max_counters, sizeof(u32),
GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = tb_port_write(port, buf, TB_CFG_COUNTERS, 0,
COUNTER_SET_LEN * port->config.max_counters);
kfree(buf);
return ret;
}
static ssize_t counters_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = port->sw->tb;
char *buf;
int ret;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
/* If written delimiter only, clear all counters in one shot */
if (buf[0] == '\n') {
ret = port_clear_all_counters(port);
} else {
char *line = buf;
u32 val, offset;
ret = -EINVAL;
while (parse_line(&line, &offset, &val, 1, 4)) {
ret = tb_port_write(port, &val, TB_CFG_COUNTERS,
offset, 1);
if (ret)
break;
}
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static void cap_show_by_dw(struct seq_file *s, struct tb_switch *sw,
struct tb_port *port, unsigned int cap,
unsigned int offset, u8 cap_id, u8 vsec_id,
int dwords)
{
int i, ret;
u32 data;
for (i = 0; i < dwords; i++) {
if (port)
ret = tb_port_read(port, &data, TB_CFG_PORT, cap + offset + i, 1);
else
ret = tb_sw_read(sw, &data, TB_CFG_SWITCH, cap + offset + i, 1);
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n", cap + offset + i);
continue;
}
seq_printf(s, "0x%04x %4d 0x%02x 0x%02x 0x%08x\n", cap + offset + i,
offset + i, cap_id, vsec_id, data);
}
}
static void cap_show(struct seq_file *s, struct tb_switch *sw,
struct tb_port *port, unsigned int cap, u8 cap_id,
u8 vsec_id, int length)
{
int ret, offset = 0;
while (length > 0) {
int i, dwords = min(length, TB_MAX_CONFIG_RW_LENGTH);
u32 data[TB_MAX_CONFIG_RW_LENGTH];
if (port)
ret = tb_port_read(port, data, TB_CFG_PORT, cap + offset,
dwords);
else
ret = tb_sw_read(sw, data, TB_CFG_SWITCH, cap + offset, dwords);
if (ret) {
cap_show_by_dw(s, sw, port, cap, offset, cap_id, vsec_id, length);
return;
}
for (i = 0; i < dwords; i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%02x 0x%08x\n",
cap + offset + i, offset + i,
cap_id, vsec_id, data[i]);
}
length -= dwords;
offset += dwords;
}
}
static void port_cap_show(struct tb_port *port, struct seq_file *s,
unsigned int cap)
{
struct tb_cap_any header;
u8 vsec_id = 0;
size_t length;
int ret;
ret = tb_port_read(port, &header, TB_CFG_PORT, cap, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n", cap);
return;
}
switch (header.basic.cap) {
case TB_PORT_CAP_PHY:
length = PORT_CAP_LANE_LEN;
break;
case TB_PORT_CAP_TIME1:
if (usb4_switch_version(port->sw) < 2)
length = PORT_CAP_TMU_V1_LEN;
else
length = PORT_CAP_TMU_V2_LEN;
break;
case TB_PORT_CAP_POWER:
length = PORT_CAP_POWER_LEN;
break;
case TB_PORT_CAP_ADAP:
if (tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) {
if (usb4_switch_version(port->sw) < 2)
length = PORT_CAP_V1_PCIE_LEN;
else
length = PORT_CAP_V2_PCIE_LEN;
} else if (tb_port_is_dpin(port)) {
if (usb4_switch_version(port->sw) < 2)
length = PORT_CAP_DP_V1_LEN;
else
length = PORT_CAP_DP_V2_LEN;
} else if (tb_port_is_dpout(port)) {
length = PORT_CAP_DP_V1_LEN;
} else if (tb_port_is_usb3_down(port) ||
tb_port_is_usb3_up(port)) {
length = PORT_CAP_USB3_LEN;
} else {
seq_printf(s, "0x%04x <unsupported capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
break;
case TB_PORT_CAP_VSE:
if (!header.extended_short.length) {
ret = tb_port_read(port, (u32 *)&header + 1, TB_CFG_PORT,
cap + 1, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n",
cap + 1);
return;
}
length = header.extended_long.length;
vsec_id = header.extended_short.vsec_id;
} else {
length = header.extended_short.length;
vsec_id = header.extended_short.vsec_id;
}
break;
case TB_PORT_CAP_USB4:
length = PORT_CAP_USB4_LEN;
break;
default:
seq_printf(s, "0x%04x <unsupported capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
cap_show(s, NULL, port, cap, header.basic.cap, vsec_id, length);
}
static void port_caps_show(struct tb_port *port, struct seq_file *s)
{
int cap;
cap = tb_port_next_cap(port, 0);
while (cap > 0) {
port_cap_show(port, s, cap);
cap = tb_port_next_cap(port, cap);
}
}
static int port_basic_regs_show(struct tb_port *port, struct seq_file *s)
{
u32 data[PORT_CAP_BASIC_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_PORT, 0, ARRAY_SIZE(data));
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(data); i++)
seq_printf(s, "0x%04x %4d 0x00 0x00 0x%08x\n", i, i, data[i]);
return 0;
}
static int port_regs_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset cap_id vs_cap_id value\n");
ret = port_basic_regs_show(port, s);
if (ret)
goto out_unlock;
port_caps_show(port, s);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(port_regs);
static void switch_cap_show(struct tb_switch *sw, struct seq_file *s,
unsigned int cap)
{
struct tb_cap_any header;
int ret, length;
u8 vsec_id = 0;
ret = tb_sw_read(sw, &header, TB_CFG_SWITCH, cap, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n", cap);
return;
}
if (header.basic.cap == TB_SWITCH_CAP_VSE) {
if (!header.extended_short.length) {
ret = tb_sw_read(sw, (u32 *)&header + 1, TB_CFG_SWITCH,
cap + 1, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n",
cap + 1);
return;
}
length = header.extended_long.length;
} else {
length = header.extended_short.length;
}
vsec_id = header.extended_short.vsec_id;
} else {
if (header.basic.cap == TB_SWITCH_CAP_TMU) {
length = SWITCH_CAP_TMU_LEN;
} else {
seq_printf(s, "0x%04x <unknown capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
}
cap_show(s, sw, NULL, cap, header.basic.cap, vsec_id, length);
}
static void switch_caps_show(struct tb_switch *sw, struct seq_file *s)
{
int cap;
cap = tb_switch_next_cap(sw, 0);
while (cap > 0) {
switch_cap_show(sw, s, cap);
cap = tb_switch_next_cap(sw, cap);
}
}
static int switch_basic_regs_show(struct tb_switch *sw, struct seq_file *s)
{
u32 data[SWITCH_CAP_BASIC_LEN];
size_t dwords;
int ret, i;
/* Only USB4 has the additional registers */
if (tb_switch_is_usb4(sw))
dwords = ARRAY_SIZE(data);
else
dwords = 5;
ret = tb_sw_read(sw, data, TB_CFG_SWITCH, 0, dwords);
if (ret)
return ret;
for (i = 0; i < dwords; i++)
seq_printf(s, "0x%04x %4d 0x00 0x00 0x%08x\n", i, i, data[i]);
return 0;
}
static int switch_regs_show(struct seq_file *s, void *not_used)
{
struct tb_switch *sw = s->private;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset cap_id vs_cap_id value\n");
ret = switch_basic_regs_show(sw, s);
if (ret)
goto out_unlock;
switch_caps_show(sw, s);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(switch_regs);
static int path_show_one(struct tb_port *port, struct seq_file *s, int hopid)
{
u32 data[PATH_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_HOPS, hopid * PATH_LEN,
ARRAY_SIZE(data));
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n", hopid * PATH_LEN);
return ret;
}
for (i = 0; i < ARRAY_SIZE(data); i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%08x\n",
hopid * PATH_LEN + i, i, hopid, data[i]);
}
return 0;
}
static int path_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int start, i, ret = 0;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset in_hop_id value\n");
/* NHI and lane adapters have entry for path 0 */
if (tb_port_is_null(port) || tb_port_is_nhi(port)) {
ret = path_show_one(port, s, 0);
if (ret)
goto out_unlock;
}
start = tb_port_is_nhi(port) ? 1 : TB_PATH_MIN_HOPID;
for (i = start; i <= port->config.max_in_hop_id; i++) {
ret = path_show_one(port, s, i);
if (ret)
break;
}
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RO(path);
static int counter_set_regs_show(struct tb_port *port, struct seq_file *s,
int counter)
{
u32 data[COUNTER_SET_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_COUNTERS,
counter * COUNTER_SET_LEN, ARRAY_SIZE(data));
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n",
counter * COUNTER_SET_LEN);
return ret;
}
for (i = 0; i < ARRAY_SIZE(data); i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%08x\n",
counter * COUNTER_SET_LEN + i, i, counter, data[i]);
}
return 0;
}
static int counters_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int i, ret = 0;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
seq_puts(s, "# offset relative_offset counter_id value\n");
for (i = 0; i < port->config.max_counters; i++) {
ret = counter_set_regs_show(port, s, i);
if (ret)
break;
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(counters);
static int sb_regs_show(struct tb_port *port, const struct sb_reg *sb_regs,
size_t size, enum usb4_sb_target target, u8 index,
struct seq_file *s)
{
int ret, i;
seq_puts(s, "# register value\n");
for (i = 0; i < size; i++) {
const struct sb_reg *regs = &sb_regs[i];
u8 data[64];
int j;
memset(data, 0, sizeof(data));
ret = usb4_port_sb_read(port, target, index, regs->reg, data,
regs->size);
if (ret)
return ret;
seq_printf(s, "0x%02x", regs->reg);
for (j = 0; j < regs->size; j++)
seq_printf(s, " 0x%02x", data[j]);
seq_puts(s, "\n");
}
return 0;
}
static int port_sb_regs_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
ret = sb_regs_show(port, port_sb_regs, ARRAY_SIZE(port_sb_regs),
USB4_SB_TARGET_ROUTER, 0, s);
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(port_sb_regs);
/**
* tb_switch_debugfs_init() - Add debugfs entries for router
* @sw: Pointer to the router
*
* Adds debugfs directories and files for given router.
*/
void tb_switch_debugfs_init(struct tb_switch *sw)
{
struct dentry *debugfs_dir;
struct tb_port *port;
debugfs_dir = debugfs_create_dir(dev_name(&sw->dev), tb_debugfs_root);
sw->debugfs_dir = debugfs_dir;
debugfs_create_file("regs", DEBUGFS_MODE, debugfs_dir, sw,
&switch_regs_fops);
tb_switch_for_each_port(sw, port) {
struct dentry *debugfs_dir;
char dir_name[10];
if (port->disabled)
continue;
if (port->config.type == TB_TYPE_INACTIVE)
continue;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
debugfs_dir = debugfs_create_dir(dir_name, sw->debugfs_dir);
debugfs_create_file("regs", DEBUGFS_MODE, debugfs_dir,
port, &port_regs_fops);
debugfs_create_file("path", 0400, debugfs_dir, port,
&path_fops);
if (port->config.counters_support)
debugfs_create_file("counters", 0600, debugfs_dir, port,
&counters_fops);
if (port->usb4)
debugfs_create_file("sb_regs", DEBUGFS_MODE, debugfs_dir,
port, &port_sb_regs_fops);
}
margining_switch_init(sw);
}
/**
* tb_switch_debugfs_remove() - Remove all router debugfs entries
* @sw: Pointer to the router
*
* Removes all previously added debugfs entries under this router.
*/
void tb_switch_debugfs_remove(struct tb_switch *sw)
{
margining_switch_remove(sw);
debugfs_remove_recursive(sw->debugfs_dir);
}
void tb_xdomain_debugfs_init(struct tb_xdomain *xd)
{
margining_xdomain_init(xd);
}
void tb_xdomain_debugfs_remove(struct tb_xdomain *xd)
{
margining_xdomain_remove(xd);
}
/**
* tb_service_debugfs_init() - Add debugfs directory for service
* @svc: Thunderbolt service pointer
*
* Adds debugfs directory for service.
*/
void tb_service_debugfs_init(struct tb_service *svc)
{
svc->debugfs_dir = debugfs_create_dir(dev_name(&svc->dev),
tb_debugfs_root);
}
/**
* tb_service_debugfs_remove() - Remove service debugfs directory
* @svc: Thunderbolt service pointer
*
* Removes the previously created debugfs directory for @svc.
*/
void tb_service_debugfs_remove(struct tb_service *svc)
{
debugfs_remove_recursive(svc->debugfs_dir);
svc->debugfs_dir = NULL;
}
static int retimer_sb_regs_show(struct seq_file *s, void *not_used)
{
struct tb_retimer *rt = s->private;
struct tb *tb = rt->tb;
int ret;
pm_runtime_get_sync(&rt->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
ret = sb_regs_show(rt->port, retimer_sb_regs, ARRAY_SIZE(retimer_sb_regs),
USB4_SB_TARGET_RETIMER, rt->index, s);
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&rt->dev);
pm_runtime_put_autosuspend(&rt->dev);
return ret;
}
DEBUGFS_ATTR_RW(retimer_sb_regs);
/**
* tb_retimer_debugfs_init() - Add debugfs directory for retimer
* @rt: Pointer to retimer structure
*
* Adds and populates retimer debugfs directory.
*/
void tb_retimer_debugfs_init(struct tb_retimer *rt)
{
struct dentry *debugfs_dir;
debugfs_dir = debugfs_create_dir(dev_name(&rt->dev), tb_debugfs_root);
debugfs_create_file("sb_regs", DEBUGFS_MODE, debugfs_dir, rt,
&retimer_sb_regs_fops);
margining_retimer_init(rt, debugfs_dir);
}
/**
* tb_retimer_debugfs_remove() - Remove retimer debugfs directory
* @rt: Pointer to retimer structure
*
* Removes the retimer debugfs directory along with its contents.
*/
void tb_retimer_debugfs_remove(struct tb_retimer *rt)
{
debugfs_lookup_and_remove(dev_name(&rt->dev), tb_debugfs_root);
margining_retimer_remove(rt);
}
void tb_debugfs_init(void)
{
tb_debugfs_root = debugfs_create_dir("thunderbolt", NULL);
}
void tb_debugfs_exit(void)
{
debugfs_remove_recursive(tb_debugfs_root);
}