mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-23 20:24:12 +08:00
48eb03dd26
This change actually defines the (initial) metadata layout that should be used by AF_XDP userspace (xsk_tx_metadata). The first field is flags which requests appropriate offloads, followed by the offload-specific fields. The supported per-device offloads are exported via netlink (new xsk-flags). The offloads themselves are still implemented in a bit of a framework-y fashion that's left from my initial kfunc attempt. I'm introducing new xsk_tx_metadata_ops which drivers are supposed to implement. The drivers are also supposed to call xsk_tx_metadata_request/xsk_tx_metadata_complete in the right places. Since xsk_tx_metadata_{request,_complete} are static inline, we don't incur any extra overhead doing indirect calls. The benefit of this scheme is as follows: - keeps all metadata layout parsing away from driver code - makes it easy to grep and see which drivers implement what - don't need any extra flags to maintain to keep track of what offloads are implemented; if the callback is implemented - the offload is supported (used by netlink reporting code) Two offloads are defined right now: 1. XDP_TXMD_FLAGS_CHECKSUM: skb-style csum_start+csum_offset 2. XDP_TXMD_FLAGS_TIMESTAMP: writes TX timestamp back into metadata area upon completion (tx_timestamp field) XDP_TXMD_FLAGS_TIMESTAMP is also implemented for XDP_COPY mode: it writes SW timestamp from the skb destructor (note I'm reusing hwtstamps to pass metadata pointer). The struct is forward-compatible and can be extended in the future by appending more fields. Reviewed-by: Song Yoong Siang <yoong.siang.song@intel.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20231127190319.1190813-3-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
466 lines
12 KiB
C
466 lines
12 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/* XDP user-space ring structure
|
|
* Copyright(c) 2018 Intel Corporation.
|
|
*/
|
|
|
|
#ifndef _LINUX_XSK_QUEUE_H
|
|
#define _LINUX_XSK_QUEUE_H
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/if_xdp.h>
|
|
#include <net/xdp_sock.h>
|
|
#include <net/xsk_buff_pool.h>
|
|
|
|
#include "xsk.h"
|
|
|
|
struct xdp_ring {
|
|
u32 producer ____cacheline_aligned_in_smp;
|
|
/* Hinder the adjacent cache prefetcher to prefetch the consumer
|
|
* pointer if the producer pointer is touched and vice versa.
|
|
*/
|
|
u32 pad1 ____cacheline_aligned_in_smp;
|
|
u32 consumer ____cacheline_aligned_in_smp;
|
|
u32 pad2 ____cacheline_aligned_in_smp;
|
|
u32 flags;
|
|
u32 pad3 ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
/* Used for the RX and TX queues for packets */
|
|
struct xdp_rxtx_ring {
|
|
struct xdp_ring ptrs;
|
|
struct xdp_desc desc[] ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
/* Used for the fill and completion queues for buffers */
|
|
struct xdp_umem_ring {
|
|
struct xdp_ring ptrs;
|
|
u64 desc[] ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
struct xsk_queue {
|
|
u32 ring_mask;
|
|
u32 nentries;
|
|
u32 cached_prod;
|
|
u32 cached_cons;
|
|
struct xdp_ring *ring;
|
|
u64 invalid_descs;
|
|
u64 queue_empty_descs;
|
|
size_t ring_vmalloc_size;
|
|
};
|
|
|
|
struct parsed_desc {
|
|
u32 mb;
|
|
u32 valid;
|
|
};
|
|
|
|
/* The structure of the shared state of the rings are a simple
|
|
* circular buffer, as outlined in
|
|
* Documentation/core-api/circular-buffers.rst. For the Rx and
|
|
* completion ring, the kernel is the producer and user space is the
|
|
* consumer. For the Tx and fill rings, the kernel is the consumer and
|
|
* user space is the producer.
|
|
*
|
|
* producer consumer
|
|
*
|
|
* if (LOAD ->consumer) { (A) LOAD.acq ->producer (C)
|
|
* STORE $data LOAD $data
|
|
* STORE.rel ->producer (B) STORE.rel ->consumer (D)
|
|
* }
|
|
*
|
|
* (A) pairs with (D), and (B) pairs with (C).
|
|
*
|
|
* Starting with (B), it protects the data from being written after
|
|
* the producer pointer. If this barrier was missing, the consumer
|
|
* could observe the producer pointer being set and thus load the data
|
|
* before the producer has written the new data. The consumer would in
|
|
* this case load the old data.
|
|
*
|
|
* (C) protects the consumer from speculatively loading the data before
|
|
* the producer pointer actually has been read. If we do not have this
|
|
* barrier, some architectures could load old data as speculative loads
|
|
* are not discarded as the CPU does not know there is a dependency
|
|
* between ->producer and data.
|
|
*
|
|
* (A) is a control dependency that separates the load of ->consumer
|
|
* from the stores of $data. In case ->consumer indicates there is no
|
|
* room in the buffer to store $data we do not. The dependency will
|
|
* order both of the stores after the loads. So no barrier is needed.
|
|
*
|
|
* (D) protects the load of the data to be observed to happen after the
|
|
* store of the consumer pointer. If we did not have this memory
|
|
* barrier, the producer could observe the consumer pointer being set
|
|
* and overwrite the data with a new value before the consumer got the
|
|
* chance to read the old value. The consumer would thus miss reading
|
|
* the old entry and very likely read the new entry twice, once right
|
|
* now and again after circling through the ring.
|
|
*/
|
|
|
|
/* The operations on the rings are the following:
|
|
*
|
|
* producer consumer
|
|
*
|
|
* RESERVE entries PEEK in the ring for entries
|
|
* WRITE data into the ring READ data from the ring
|
|
* SUBMIT entries RELEASE entries
|
|
*
|
|
* The producer reserves one or more entries in the ring. It can then
|
|
* fill in these entries and finally submit them so that they can be
|
|
* seen and read by the consumer.
|
|
*
|
|
* The consumer peeks into the ring to see if the producer has written
|
|
* any new entries. If so, the consumer can then read these entries
|
|
* and when it is done reading them release them back to the producer
|
|
* so that the producer can use these slots to fill in new entries.
|
|
*
|
|
* The function names below reflect these operations.
|
|
*/
|
|
|
|
/* Functions that read and validate content from consumer rings. */
|
|
|
|
static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
u32 idx = cached_cons & q->ring_mask;
|
|
|
|
*addr = ring->desc[idx];
|
|
}
|
|
|
|
static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
|
|
{
|
|
if (q->cached_cons != q->cached_prod) {
|
|
__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool xp_unused_options_set(u32 options)
|
|
{
|
|
return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA);
|
|
}
|
|
|
|
static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
|
|
struct xdp_desc *desc)
|
|
{
|
|
u64 addr = desc->addr - pool->tx_metadata_len;
|
|
u64 len = desc->len + pool->tx_metadata_len;
|
|
u64 offset = addr & (pool->chunk_size - 1);
|
|
|
|
if (!desc->len)
|
|
return false;
|
|
|
|
if (offset + len > pool->chunk_size)
|
|
return false;
|
|
|
|
if (addr >= pool->addrs_cnt)
|
|
return false;
|
|
|
|
if (xp_unused_options_set(desc->options))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
|
|
struct xdp_desc *desc)
|
|
{
|
|
u64 addr = xp_unaligned_add_offset_to_addr(desc->addr) - pool->tx_metadata_len;
|
|
u64 len = desc->len + pool->tx_metadata_len;
|
|
|
|
if (!desc->len)
|
|
return false;
|
|
|
|
if (len > pool->chunk_size)
|
|
return false;
|
|
|
|
if (addr >= pool->addrs_cnt || addr + len > pool->addrs_cnt ||
|
|
xp_desc_crosses_non_contig_pg(pool, addr, len))
|
|
return false;
|
|
|
|
if (xp_unused_options_set(desc->options))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
|
|
struct xdp_desc *desc)
|
|
{
|
|
return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
|
|
xp_aligned_validate_desc(pool, desc);
|
|
}
|
|
|
|
static inline bool xskq_has_descs(struct xsk_queue *q)
|
|
{
|
|
return q->cached_cons != q->cached_prod;
|
|
}
|
|
|
|
static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
|
|
struct xdp_desc *d,
|
|
struct xsk_buff_pool *pool)
|
|
{
|
|
if (!xp_validate_desc(pool, d)) {
|
|
q->invalid_descs++;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool xskq_cons_read_desc(struct xsk_queue *q,
|
|
struct xdp_desc *desc,
|
|
struct xsk_buff_pool *pool)
|
|
{
|
|
if (q->cached_cons != q->cached_prod) {
|
|
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
|
|
u32 idx = q->cached_cons & q->ring_mask;
|
|
|
|
*desc = ring->desc[idx];
|
|
return xskq_cons_is_valid_desc(q, desc, pool);
|
|
}
|
|
|
|
q->queue_empty_descs++;
|
|
return false;
|
|
}
|
|
|
|
static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
|
|
{
|
|
q->cached_cons += cnt;
|
|
}
|
|
|
|
static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool,
|
|
struct xdp_desc *desc, struct parsed_desc *parsed)
|
|
{
|
|
parsed->valid = xskq_cons_is_valid_desc(q, desc, pool);
|
|
parsed->mb = xp_mb_desc(desc);
|
|
}
|
|
|
|
static inline
|
|
u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
|
|
u32 max)
|
|
{
|
|
u32 cached_cons = q->cached_cons, nb_entries = 0;
|
|
struct xdp_desc *descs = pool->tx_descs;
|
|
u32 total_descs = 0, nr_frags = 0;
|
|
|
|
/* track first entry, if stumble upon *any* invalid descriptor, rewind
|
|
* current packet that consists of frags and stop the processing
|
|
*/
|
|
while (cached_cons != q->cached_prod && nb_entries < max) {
|
|
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
|
|
u32 idx = cached_cons & q->ring_mask;
|
|
struct parsed_desc parsed;
|
|
|
|
descs[nb_entries] = ring->desc[idx];
|
|
cached_cons++;
|
|
parse_desc(q, pool, &descs[nb_entries], &parsed);
|
|
if (unlikely(!parsed.valid))
|
|
break;
|
|
|
|
if (likely(!parsed.mb)) {
|
|
total_descs += (nr_frags + 1);
|
|
nr_frags = 0;
|
|
} else {
|
|
nr_frags++;
|
|
if (nr_frags == pool->netdev->xdp_zc_max_segs) {
|
|
nr_frags = 0;
|
|
break;
|
|
}
|
|
}
|
|
nb_entries++;
|
|
}
|
|
|
|
cached_cons -= nr_frags;
|
|
/* Release valid plus any invalid entries */
|
|
xskq_cons_release_n(q, cached_cons - q->cached_cons);
|
|
return total_descs;
|
|
}
|
|
|
|
/* Functions for consumers */
|
|
|
|
static inline void __xskq_cons_release(struct xsk_queue *q)
|
|
{
|
|
smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
|
|
}
|
|
|
|
static inline void __xskq_cons_peek(struct xsk_queue *q)
|
|
{
|
|
/* Refresh the local pointer */
|
|
q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */
|
|
}
|
|
|
|
static inline void xskq_cons_get_entries(struct xsk_queue *q)
|
|
{
|
|
__xskq_cons_release(q);
|
|
__xskq_cons_peek(q);
|
|
}
|
|
|
|
static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
|
|
{
|
|
u32 entries = q->cached_prod - q->cached_cons;
|
|
|
|
if (entries >= max)
|
|
return max;
|
|
|
|
__xskq_cons_peek(q);
|
|
entries = q->cached_prod - q->cached_cons;
|
|
|
|
return entries >= max ? max : entries;
|
|
}
|
|
|
|
static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
|
|
{
|
|
return xskq_cons_nb_entries(q, cnt) >= cnt;
|
|
}
|
|
|
|
static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
|
|
{
|
|
if (q->cached_prod == q->cached_cons)
|
|
xskq_cons_get_entries(q);
|
|
return xskq_cons_read_addr_unchecked(q, addr);
|
|
}
|
|
|
|
static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
|
|
struct xdp_desc *desc,
|
|
struct xsk_buff_pool *pool)
|
|
{
|
|
if (q->cached_prod == q->cached_cons)
|
|
xskq_cons_get_entries(q);
|
|
return xskq_cons_read_desc(q, desc, pool);
|
|
}
|
|
|
|
/* To improve performance in the xskq_cons_release functions, only update local state here.
|
|
* Reflect this to global state when we get new entries from the ring in
|
|
* xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
|
|
*/
|
|
static inline void xskq_cons_release(struct xsk_queue *q)
|
|
{
|
|
q->cached_cons++;
|
|
}
|
|
|
|
static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt)
|
|
{
|
|
q->cached_cons -= cnt;
|
|
}
|
|
|
|
static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
|
|
{
|
|
/* No barriers needed since data is not accessed */
|
|
return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
|
|
}
|
|
|
|
/* Functions for producers */
|
|
|
|
static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
|
|
{
|
|
u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
|
|
|
|
if (free_entries >= max)
|
|
return max;
|
|
|
|
/* Refresh the local tail pointer */
|
|
q->cached_cons = READ_ONCE(q->ring->consumer);
|
|
free_entries = q->nentries - (q->cached_prod - q->cached_cons);
|
|
|
|
return free_entries >= max ? max : free_entries;
|
|
}
|
|
|
|
static inline bool xskq_prod_is_full(struct xsk_queue *q)
|
|
{
|
|
return xskq_prod_nb_free(q, 1) ? false : true;
|
|
}
|
|
|
|
static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt)
|
|
{
|
|
q->cached_prod -= cnt;
|
|
}
|
|
|
|
static inline int xskq_prod_reserve(struct xsk_queue *q)
|
|
{
|
|
if (xskq_prod_is_full(q))
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
q->cached_prod++;
|
|
return 0;
|
|
}
|
|
|
|
static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
|
|
if (xskq_prod_is_full(q))
|
|
return -ENOSPC;
|
|
|
|
/* A, matches D */
|
|
ring->desc[q->cached_prod++ & q->ring_mask] = addr;
|
|
return 0;
|
|
}
|
|
|
|
static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
|
|
u32 nb_entries)
|
|
{
|
|
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
|
|
u32 i, cached_prod;
|
|
|
|
/* A, matches D */
|
|
cached_prod = q->cached_prod;
|
|
for (i = 0; i < nb_entries; i++)
|
|
ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
|
|
q->cached_prod = cached_prod;
|
|
}
|
|
|
|
static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
|
|
u64 addr, u32 len, u32 flags)
|
|
{
|
|
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
|
|
u32 idx;
|
|
|
|
if (xskq_prod_is_full(q))
|
|
return -ENOBUFS;
|
|
|
|
/* A, matches D */
|
|
idx = q->cached_prod++ & q->ring_mask;
|
|
ring->desc[idx].addr = addr;
|
|
ring->desc[idx].len = len;
|
|
ring->desc[idx].options = flags;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
|
|
{
|
|
smp_store_release(&q->ring->producer, idx); /* B, matches C */
|
|
}
|
|
|
|
static inline void xskq_prod_submit(struct xsk_queue *q)
|
|
{
|
|
__xskq_prod_submit(q, q->cached_prod);
|
|
}
|
|
|
|
static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
|
|
{
|
|
__xskq_prod_submit(q, q->ring->producer + nb_entries);
|
|
}
|
|
|
|
static inline bool xskq_prod_is_empty(struct xsk_queue *q)
|
|
{
|
|
/* No barriers needed since data is not accessed */
|
|
return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
|
|
}
|
|
|
|
/* For both producers and consumers */
|
|
|
|
static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
|
|
{
|
|
return q ? q->invalid_descs : 0;
|
|
}
|
|
|
|
static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
|
|
{
|
|
return q ? q->queue_empty_descs : 0;
|
|
}
|
|
|
|
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
|
|
void xskq_destroy(struct xsk_queue *q_ops);
|
|
|
|
#endif /* _LINUX_XSK_QUEUE_H */
|