mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-25 21:24:08 +08:00
15ad7cdcfd
- move some file_operations structs into the .rodata section - move static strings from policy_types[] array into the .rodata section - fix generic seq_operations usages, so that those structs may be defined as "const" as well [akpm@osdl.org: couple of fixes] Signed-off-by: Helge Deller <deller@gmx.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
579 lines
15 KiB
C
579 lines
15 KiB
C
/*
|
|
* linux/kernel/profile.c
|
|
* Simple profiling. Manages a direct-mapped profile hit count buffer,
|
|
* with configurable resolution, support for restricting the cpus on
|
|
* which profiling is done, and switching between cpu time and
|
|
* schedule() calls via kernel command line parameters passed at boot.
|
|
*
|
|
* Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
|
|
* Red Hat, July 2004
|
|
* Consolidation of architecture support code for profiling,
|
|
* William Irwin, Oracle, July 2004
|
|
* Amortized hit count accounting via per-cpu open-addressed hashtables
|
|
* to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mutex.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/irq_regs.h>
|
|
|
|
struct profile_hit {
|
|
u32 pc, hits;
|
|
};
|
|
#define PROFILE_GRPSHIFT 3
|
|
#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
|
|
#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
|
|
#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
|
|
|
|
/* Oprofile timer tick hook */
|
|
int (*timer_hook)(struct pt_regs *) __read_mostly;
|
|
|
|
static atomic_t *prof_buffer;
|
|
static unsigned long prof_len, prof_shift;
|
|
int prof_on __read_mostly;
|
|
static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
|
|
#ifdef CONFIG_SMP
|
|
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
|
|
static DEFINE_PER_CPU(int, cpu_profile_flip);
|
|
static DEFINE_MUTEX(profile_flip_mutex);
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static int __init profile_setup(char * str)
|
|
{
|
|
static char __initdata schedstr[] = "schedule";
|
|
static char __initdata sleepstr[] = "sleep";
|
|
int par;
|
|
|
|
if (!strncmp(str, sleepstr, strlen(sleepstr))) {
|
|
prof_on = SLEEP_PROFILING;
|
|
if (str[strlen(sleepstr)] == ',')
|
|
str += strlen(sleepstr) + 1;
|
|
if (get_option(&str, &par))
|
|
prof_shift = par;
|
|
printk(KERN_INFO
|
|
"kernel sleep profiling enabled (shift: %ld)\n",
|
|
prof_shift);
|
|
} else if (!strncmp(str, sleepstr, strlen(sleepstr))) {
|
|
prof_on = SCHED_PROFILING;
|
|
if (str[strlen(schedstr)] == ',')
|
|
str += strlen(schedstr) + 1;
|
|
if (get_option(&str, &par))
|
|
prof_shift = par;
|
|
printk(KERN_INFO
|
|
"kernel schedule profiling enabled (shift: %ld)\n",
|
|
prof_shift);
|
|
} else if (get_option(&str, &par)) {
|
|
prof_shift = par;
|
|
prof_on = CPU_PROFILING;
|
|
printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
|
|
prof_shift);
|
|
}
|
|
return 1;
|
|
}
|
|
__setup("profile=", profile_setup);
|
|
|
|
|
|
void __init profile_init(void)
|
|
{
|
|
if (!prof_on)
|
|
return;
|
|
|
|
/* only text is profiled */
|
|
prof_len = (_etext - _stext) >> prof_shift;
|
|
prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
|
|
}
|
|
|
|
/* Profile event notifications */
|
|
|
|
#ifdef CONFIG_PROFILING
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
|
|
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
|
|
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
|
|
|
|
void profile_task_exit(struct task_struct * task)
|
|
{
|
|
blocking_notifier_call_chain(&task_exit_notifier, 0, task);
|
|
}
|
|
|
|
int profile_handoff_task(struct task_struct * task)
|
|
{
|
|
int ret;
|
|
ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
|
|
return (ret == NOTIFY_OK) ? 1 : 0;
|
|
}
|
|
|
|
void profile_munmap(unsigned long addr)
|
|
{
|
|
blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
|
|
}
|
|
|
|
int task_handoff_register(struct notifier_block * n)
|
|
{
|
|
return atomic_notifier_chain_register(&task_free_notifier, n);
|
|
}
|
|
|
|
int task_handoff_unregister(struct notifier_block * n)
|
|
{
|
|
return atomic_notifier_chain_unregister(&task_free_notifier, n);
|
|
}
|
|
|
|
int profile_event_register(enum profile_type type, struct notifier_block * n)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
switch (type) {
|
|
case PROFILE_TASK_EXIT:
|
|
err = blocking_notifier_chain_register(
|
|
&task_exit_notifier, n);
|
|
break;
|
|
case PROFILE_MUNMAP:
|
|
err = blocking_notifier_chain_register(
|
|
&munmap_notifier, n);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
int profile_event_unregister(enum profile_type type, struct notifier_block * n)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
switch (type) {
|
|
case PROFILE_TASK_EXIT:
|
|
err = blocking_notifier_chain_unregister(
|
|
&task_exit_notifier, n);
|
|
break;
|
|
case PROFILE_MUNMAP:
|
|
err = blocking_notifier_chain_unregister(
|
|
&munmap_notifier, n);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int register_timer_hook(int (*hook)(struct pt_regs *))
|
|
{
|
|
if (timer_hook)
|
|
return -EBUSY;
|
|
timer_hook = hook;
|
|
return 0;
|
|
}
|
|
|
|
void unregister_timer_hook(int (*hook)(struct pt_regs *))
|
|
{
|
|
WARN_ON(hook != timer_hook);
|
|
timer_hook = NULL;
|
|
/* make sure all CPUs see the NULL hook */
|
|
synchronize_sched(); /* Allow ongoing interrupts to complete. */
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(register_timer_hook);
|
|
EXPORT_SYMBOL_GPL(unregister_timer_hook);
|
|
EXPORT_SYMBOL_GPL(task_handoff_register);
|
|
EXPORT_SYMBOL_GPL(task_handoff_unregister);
|
|
|
|
#endif /* CONFIG_PROFILING */
|
|
|
|
EXPORT_SYMBOL_GPL(profile_event_register);
|
|
EXPORT_SYMBOL_GPL(profile_event_unregister);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Each cpu has a pair of open-addressed hashtables for pending
|
|
* profile hits. read_profile() IPI's all cpus to request them
|
|
* to flip buffers and flushes their contents to prof_buffer itself.
|
|
* Flip requests are serialized by the profile_flip_mutex. The sole
|
|
* use of having a second hashtable is for avoiding cacheline
|
|
* contention that would otherwise happen during flushes of pending
|
|
* profile hits required for the accuracy of reported profile hits
|
|
* and so resurrect the interrupt livelock issue.
|
|
*
|
|
* The open-addressed hashtables are indexed by profile buffer slot
|
|
* and hold the number of pending hits to that profile buffer slot on
|
|
* a cpu in an entry. When the hashtable overflows, all pending hits
|
|
* are accounted to their corresponding profile buffer slots with
|
|
* atomic_add() and the hashtable emptied. As numerous pending hits
|
|
* may be accounted to a profile buffer slot in a hashtable entry,
|
|
* this amortizes a number of atomic profile buffer increments likely
|
|
* to be far larger than the number of entries in the hashtable,
|
|
* particularly given that the number of distinct profile buffer
|
|
* positions to which hits are accounted during short intervals (e.g.
|
|
* several seconds) is usually very small. Exclusion from buffer
|
|
* flipping is provided by interrupt disablement (note that for
|
|
* SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
|
|
* process context).
|
|
* The hash function is meant to be lightweight as opposed to strong,
|
|
* and was vaguely inspired by ppc64 firmware-supported inverted
|
|
* pagetable hash functions, but uses a full hashtable full of finite
|
|
* collision chains, not just pairs of them.
|
|
*
|
|
* -- wli
|
|
*/
|
|
static void __profile_flip_buffers(void *unused)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
|
|
}
|
|
|
|
static void profile_flip_buffers(void)
|
|
{
|
|
int i, j, cpu;
|
|
|
|
mutex_lock(&profile_flip_mutex);
|
|
j = per_cpu(cpu_profile_flip, get_cpu());
|
|
put_cpu();
|
|
on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
|
|
for_each_online_cpu(cpu) {
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
|
if (!hits[i].hits) {
|
|
if (hits[i].pc)
|
|
hits[i].pc = 0;
|
|
continue;
|
|
}
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
|
hits[i].hits = hits[i].pc = 0;
|
|
}
|
|
}
|
|
mutex_unlock(&profile_flip_mutex);
|
|
}
|
|
|
|
static void profile_discard_flip_buffers(void)
|
|
{
|
|
int i, cpu;
|
|
|
|
mutex_lock(&profile_flip_mutex);
|
|
i = per_cpu(cpu_profile_flip, get_cpu());
|
|
put_cpu();
|
|
on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
|
|
for_each_online_cpu(cpu) {
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
|
|
memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
|
|
}
|
|
mutex_unlock(&profile_flip_mutex);
|
|
}
|
|
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
|
{
|
|
unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
|
|
int i, j, cpu;
|
|
struct profile_hit *hits;
|
|
|
|
if (prof_on != type || !prof_buffer)
|
|
return;
|
|
pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
|
|
i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
|
secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
|
cpu = get_cpu();
|
|
hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
|
|
if (!hits) {
|
|
put_cpu();
|
|
return;
|
|
}
|
|
/*
|
|
* We buffer the global profiler buffer into a per-CPU
|
|
* queue and thus reduce the number of global (and possibly
|
|
* NUMA-alien) accesses. The write-queue is self-coalescing:
|
|
*/
|
|
local_irq_save(flags);
|
|
do {
|
|
for (j = 0; j < PROFILE_GRPSZ; ++j) {
|
|
if (hits[i + j].pc == pc) {
|
|
hits[i + j].hits += nr_hits;
|
|
goto out;
|
|
} else if (!hits[i + j].hits) {
|
|
hits[i + j].pc = pc;
|
|
hits[i + j].hits = nr_hits;
|
|
goto out;
|
|
}
|
|
}
|
|
i = (i + secondary) & (NR_PROFILE_HIT - 1);
|
|
} while (i != primary);
|
|
|
|
/*
|
|
* Add the current hit(s) and flush the write-queue out
|
|
* to the global buffer:
|
|
*/
|
|
atomic_add(nr_hits, &prof_buffer[pc]);
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
|
hits[i].pc = hits[i].hits = 0;
|
|
}
|
|
out:
|
|
local_irq_restore(flags);
|
|
put_cpu();
|
|
}
|
|
|
|
static int __devinit profile_cpu_callback(struct notifier_block *info,
|
|
unsigned long action, void *__cpu)
|
|
{
|
|
int node, cpu = (unsigned long)__cpu;
|
|
struct page *page;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
node = cpu_to_node(cpu);
|
|
per_cpu(cpu_profile_flip, cpu) = 0;
|
|
if (!per_cpu(cpu_profile_hits, cpu)[1]) {
|
|
page = alloc_pages_node(node,
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
|
0);
|
|
if (!page)
|
|
return NOTIFY_BAD;
|
|
per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
|
|
}
|
|
if (!per_cpu(cpu_profile_hits, cpu)[0]) {
|
|
page = alloc_pages_node(node,
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
|
0);
|
|
if (!page)
|
|
goto out_free;
|
|
per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
|
|
}
|
|
break;
|
|
out_free:
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
|
__free_page(page);
|
|
return NOTIFY_BAD;
|
|
case CPU_ONLINE:
|
|
cpu_set(cpu, prof_cpu_mask);
|
|
break;
|
|
case CPU_UP_CANCELED:
|
|
case CPU_DEAD:
|
|
cpu_clear(cpu, prof_cpu_mask);
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
|
__free_page(page);
|
|
}
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
|
__free_page(page);
|
|
}
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
#else /* !CONFIG_SMP */
|
|
#define profile_flip_buffers() do { } while (0)
|
|
#define profile_discard_flip_buffers() do { } while (0)
|
|
#define profile_cpu_callback NULL
|
|
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
|
{
|
|
unsigned long pc;
|
|
|
|
if (prof_on != type || !prof_buffer)
|
|
return;
|
|
pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
|
|
atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
|
|
}
|
|
#endif /* !CONFIG_SMP */
|
|
|
|
void profile_tick(int type)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
|
|
if (type == CPU_PROFILING && timer_hook)
|
|
timer_hook(regs);
|
|
if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
|
|
profile_hit(type, (void *)profile_pc(regs));
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
#include <linux/proc_fs.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
|
|
int count, int *eof, void *data)
|
|
{
|
|
int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
|
|
if (count - len < 2)
|
|
return -EINVAL;
|
|
len += sprintf(page + len, "\n");
|
|
return len;
|
|
}
|
|
|
|
static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
|
|
unsigned long count, void *data)
|
|
{
|
|
cpumask_t *mask = (cpumask_t *)data;
|
|
unsigned long full_count = count, err;
|
|
cpumask_t new_value;
|
|
|
|
err = cpumask_parse_user(buffer, count, new_value);
|
|
if (err)
|
|
return err;
|
|
|
|
*mask = new_value;
|
|
return full_count;
|
|
}
|
|
|
|
void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
|
|
/* create /proc/irq/prof_cpu_mask */
|
|
if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
|
|
return;
|
|
entry->nlink = 1;
|
|
entry->data = (void *)&prof_cpu_mask;
|
|
entry->read_proc = prof_cpu_mask_read_proc;
|
|
entry->write_proc = prof_cpu_mask_write_proc;
|
|
}
|
|
|
|
/*
|
|
* This function accesses profiling information. The returned data is
|
|
* binary: the sampling step and the actual contents of the profile
|
|
* buffer. Use of the program readprofile is recommended in order to
|
|
* get meaningful info out of these data.
|
|
*/
|
|
static ssize_t
|
|
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
|
|
{
|
|
unsigned long p = *ppos;
|
|
ssize_t read;
|
|
char * pnt;
|
|
unsigned int sample_step = 1 << prof_shift;
|
|
|
|
profile_flip_buffers();
|
|
if (p >= (prof_len+1)*sizeof(unsigned int))
|
|
return 0;
|
|
if (count > (prof_len+1)*sizeof(unsigned int) - p)
|
|
count = (prof_len+1)*sizeof(unsigned int) - p;
|
|
read = 0;
|
|
|
|
while (p < sizeof(unsigned int) && count > 0) {
|
|
if (put_user(*((char *)(&sample_step)+p),buf))
|
|
return -EFAULT;
|
|
buf++; p++; count--; read++;
|
|
}
|
|
pnt = (char *)prof_buffer + p - sizeof(atomic_t);
|
|
if (copy_to_user(buf,(void *)pnt,count))
|
|
return -EFAULT;
|
|
read += count;
|
|
*ppos += read;
|
|
return read;
|
|
}
|
|
|
|
/*
|
|
* Writing to /proc/profile resets the counters
|
|
*
|
|
* Writing a 'profiling multiplier' value into it also re-sets the profiling
|
|
* interrupt frequency, on architectures that support this.
|
|
*/
|
|
static ssize_t write_profile(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
extern int setup_profiling_timer (unsigned int multiplier);
|
|
|
|
if (count == sizeof(int)) {
|
|
unsigned int multiplier;
|
|
|
|
if (copy_from_user(&multiplier, buf, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
if (setup_profiling_timer(multiplier))
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
profile_discard_flip_buffers();
|
|
memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations proc_profile_operations = {
|
|
.read = read_profile,
|
|
.write = write_profile,
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __init profile_nop(void *unused)
|
|
{
|
|
}
|
|
|
|
static int __init create_hash_tables(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
int node = cpu_to_node(cpu);
|
|
struct page *page;
|
|
|
|
page = alloc_pages_node(node,
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
|
0);
|
|
if (!page)
|
|
goto out_cleanup;
|
|
per_cpu(cpu_profile_hits, cpu)[1]
|
|
= (struct profile_hit *)page_address(page);
|
|
page = alloc_pages_node(node,
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
|
0);
|
|
if (!page)
|
|
goto out_cleanup;
|
|
per_cpu(cpu_profile_hits, cpu)[0]
|
|
= (struct profile_hit *)page_address(page);
|
|
}
|
|
return 0;
|
|
out_cleanup:
|
|
prof_on = 0;
|
|
smp_mb();
|
|
on_each_cpu(profile_nop, NULL, 0, 1);
|
|
for_each_online_cpu(cpu) {
|
|
struct page *page;
|
|
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
|
__free_page(page);
|
|
}
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
|
__free_page(page);
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
#else
|
|
#define create_hash_tables() ({ 0; })
|
|
#endif
|
|
|
|
static int __init create_proc_profile(void)
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
|
|
if (!prof_on)
|
|
return 0;
|
|
if (create_hash_tables())
|
|
return -1;
|
|
if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
|
|
return 0;
|
|
entry->proc_fops = &proc_profile_operations;
|
|
entry->size = (1+prof_len) * sizeof(atomic_t);
|
|
hotcpu_notifier(profile_cpu_callback, 0);
|
|
return 0;
|
|
}
|
|
module_init(create_proc_profile);
|
|
#endif /* CONFIG_PROC_FS */
|