linux/drivers/net/ethernet/intel/iavf/iavf_common.c
Jesse Brandeburg 37dc8fea86 iavf: clean up packet type lookup table
Remove the unused ptype struct value, which makes table init easier for
the zero entries, and use ranged initializer to remove a bunch of code
(works with gcc and clang). There is no significant functional change.

Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-06-18 09:04:44 -07:00

845 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */
#include "iavf_type.h"
#include "iavf_adminq.h"
#include "iavf_prototype.h"
#include <linux/avf/virtchnl.h>
/**
* iavf_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the mac type of the adapter based on the
* vendor ID and device ID stored in the hw structure.
**/
enum iavf_status iavf_set_mac_type(struct iavf_hw *hw)
{
enum iavf_status status = 0;
if (hw->vendor_id == PCI_VENDOR_ID_INTEL) {
switch (hw->device_id) {
case IAVF_DEV_ID_X722_VF:
hw->mac.type = IAVF_MAC_X722_VF;
break;
case IAVF_DEV_ID_VF:
case IAVF_DEV_ID_VF_HV:
case IAVF_DEV_ID_ADAPTIVE_VF:
hw->mac.type = IAVF_MAC_VF;
break;
default:
hw->mac.type = IAVF_MAC_GENERIC;
break;
}
} else {
status = IAVF_ERR_DEVICE_NOT_SUPPORTED;
}
hw_dbg(hw, "found mac: %d, returns: %d\n", hw->mac.type, status);
return status;
}
/**
* iavf_aq_str - convert AQ err code to a string
* @hw: pointer to the HW structure
* @aq_err: the AQ error code to convert
**/
const char *iavf_aq_str(struct iavf_hw *hw, enum iavf_admin_queue_err aq_err)
{
switch (aq_err) {
case IAVF_AQ_RC_OK:
return "OK";
case IAVF_AQ_RC_EPERM:
return "IAVF_AQ_RC_EPERM";
case IAVF_AQ_RC_ENOENT:
return "IAVF_AQ_RC_ENOENT";
case IAVF_AQ_RC_ESRCH:
return "IAVF_AQ_RC_ESRCH";
case IAVF_AQ_RC_EINTR:
return "IAVF_AQ_RC_EINTR";
case IAVF_AQ_RC_EIO:
return "IAVF_AQ_RC_EIO";
case IAVF_AQ_RC_ENXIO:
return "IAVF_AQ_RC_ENXIO";
case IAVF_AQ_RC_E2BIG:
return "IAVF_AQ_RC_E2BIG";
case IAVF_AQ_RC_EAGAIN:
return "IAVF_AQ_RC_EAGAIN";
case IAVF_AQ_RC_ENOMEM:
return "IAVF_AQ_RC_ENOMEM";
case IAVF_AQ_RC_EACCES:
return "IAVF_AQ_RC_EACCES";
case IAVF_AQ_RC_EFAULT:
return "IAVF_AQ_RC_EFAULT";
case IAVF_AQ_RC_EBUSY:
return "IAVF_AQ_RC_EBUSY";
case IAVF_AQ_RC_EEXIST:
return "IAVF_AQ_RC_EEXIST";
case IAVF_AQ_RC_EINVAL:
return "IAVF_AQ_RC_EINVAL";
case IAVF_AQ_RC_ENOTTY:
return "IAVF_AQ_RC_ENOTTY";
case IAVF_AQ_RC_ENOSPC:
return "IAVF_AQ_RC_ENOSPC";
case IAVF_AQ_RC_ENOSYS:
return "IAVF_AQ_RC_ENOSYS";
case IAVF_AQ_RC_ERANGE:
return "IAVF_AQ_RC_ERANGE";
case IAVF_AQ_RC_EFLUSHED:
return "IAVF_AQ_RC_EFLUSHED";
case IAVF_AQ_RC_BAD_ADDR:
return "IAVF_AQ_RC_BAD_ADDR";
case IAVF_AQ_RC_EMODE:
return "IAVF_AQ_RC_EMODE";
case IAVF_AQ_RC_EFBIG:
return "IAVF_AQ_RC_EFBIG";
}
snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err);
return hw->err_str;
}
/**
* iavf_stat_str - convert status err code to a string
* @hw: pointer to the HW structure
* @stat_err: the status error code to convert
**/
const char *iavf_stat_str(struct iavf_hw *hw, enum iavf_status stat_err)
{
switch (stat_err) {
case 0:
return "OK";
case IAVF_ERR_NVM:
return "IAVF_ERR_NVM";
case IAVF_ERR_NVM_CHECKSUM:
return "IAVF_ERR_NVM_CHECKSUM";
case IAVF_ERR_PHY:
return "IAVF_ERR_PHY";
case IAVF_ERR_CONFIG:
return "IAVF_ERR_CONFIG";
case IAVF_ERR_PARAM:
return "IAVF_ERR_PARAM";
case IAVF_ERR_MAC_TYPE:
return "IAVF_ERR_MAC_TYPE";
case IAVF_ERR_UNKNOWN_PHY:
return "IAVF_ERR_UNKNOWN_PHY";
case IAVF_ERR_LINK_SETUP:
return "IAVF_ERR_LINK_SETUP";
case IAVF_ERR_ADAPTER_STOPPED:
return "IAVF_ERR_ADAPTER_STOPPED";
case IAVF_ERR_INVALID_MAC_ADDR:
return "IAVF_ERR_INVALID_MAC_ADDR";
case IAVF_ERR_DEVICE_NOT_SUPPORTED:
return "IAVF_ERR_DEVICE_NOT_SUPPORTED";
case IAVF_ERR_MASTER_REQUESTS_PENDING:
return "IAVF_ERR_MASTER_REQUESTS_PENDING";
case IAVF_ERR_INVALID_LINK_SETTINGS:
return "IAVF_ERR_INVALID_LINK_SETTINGS";
case IAVF_ERR_AUTONEG_NOT_COMPLETE:
return "IAVF_ERR_AUTONEG_NOT_COMPLETE";
case IAVF_ERR_RESET_FAILED:
return "IAVF_ERR_RESET_FAILED";
case IAVF_ERR_SWFW_SYNC:
return "IAVF_ERR_SWFW_SYNC";
case IAVF_ERR_NO_AVAILABLE_VSI:
return "IAVF_ERR_NO_AVAILABLE_VSI";
case IAVF_ERR_NO_MEMORY:
return "IAVF_ERR_NO_MEMORY";
case IAVF_ERR_BAD_PTR:
return "IAVF_ERR_BAD_PTR";
case IAVF_ERR_RING_FULL:
return "IAVF_ERR_RING_FULL";
case IAVF_ERR_INVALID_PD_ID:
return "IAVF_ERR_INVALID_PD_ID";
case IAVF_ERR_INVALID_QP_ID:
return "IAVF_ERR_INVALID_QP_ID";
case IAVF_ERR_INVALID_CQ_ID:
return "IAVF_ERR_INVALID_CQ_ID";
case IAVF_ERR_INVALID_CEQ_ID:
return "IAVF_ERR_INVALID_CEQ_ID";
case IAVF_ERR_INVALID_AEQ_ID:
return "IAVF_ERR_INVALID_AEQ_ID";
case IAVF_ERR_INVALID_SIZE:
return "IAVF_ERR_INVALID_SIZE";
case IAVF_ERR_INVALID_ARP_INDEX:
return "IAVF_ERR_INVALID_ARP_INDEX";
case IAVF_ERR_INVALID_FPM_FUNC_ID:
return "IAVF_ERR_INVALID_FPM_FUNC_ID";
case IAVF_ERR_QP_INVALID_MSG_SIZE:
return "IAVF_ERR_QP_INVALID_MSG_SIZE";
case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
return "IAVF_ERR_QP_TOOMANY_WRS_POSTED";
case IAVF_ERR_INVALID_FRAG_COUNT:
return "IAVF_ERR_INVALID_FRAG_COUNT";
case IAVF_ERR_QUEUE_EMPTY:
return "IAVF_ERR_QUEUE_EMPTY";
case IAVF_ERR_INVALID_ALIGNMENT:
return "IAVF_ERR_INVALID_ALIGNMENT";
case IAVF_ERR_FLUSHED_QUEUE:
return "IAVF_ERR_FLUSHED_QUEUE";
case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
return "IAVF_ERR_INVALID_PUSH_PAGE_INDEX";
case IAVF_ERR_INVALID_IMM_DATA_SIZE:
return "IAVF_ERR_INVALID_IMM_DATA_SIZE";
case IAVF_ERR_TIMEOUT:
return "IAVF_ERR_TIMEOUT";
case IAVF_ERR_OPCODE_MISMATCH:
return "IAVF_ERR_OPCODE_MISMATCH";
case IAVF_ERR_CQP_COMPL_ERROR:
return "IAVF_ERR_CQP_COMPL_ERROR";
case IAVF_ERR_INVALID_VF_ID:
return "IAVF_ERR_INVALID_VF_ID";
case IAVF_ERR_INVALID_HMCFN_ID:
return "IAVF_ERR_INVALID_HMCFN_ID";
case IAVF_ERR_BACKING_PAGE_ERROR:
return "IAVF_ERR_BACKING_PAGE_ERROR";
case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
return "IAVF_ERR_NO_PBLCHUNKS_AVAILABLE";
case IAVF_ERR_INVALID_PBLE_INDEX:
return "IAVF_ERR_INVALID_PBLE_INDEX";
case IAVF_ERR_INVALID_SD_INDEX:
return "IAVF_ERR_INVALID_SD_INDEX";
case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
return "IAVF_ERR_INVALID_PAGE_DESC_INDEX";
case IAVF_ERR_INVALID_SD_TYPE:
return "IAVF_ERR_INVALID_SD_TYPE";
case IAVF_ERR_MEMCPY_FAILED:
return "IAVF_ERR_MEMCPY_FAILED";
case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
return "IAVF_ERR_INVALID_HMC_OBJ_INDEX";
case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
return "IAVF_ERR_INVALID_HMC_OBJ_COUNT";
case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
return "IAVF_ERR_INVALID_SRQ_ARM_LIMIT";
case IAVF_ERR_SRQ_ENABLED:
return "IAVF_ERR_SRQ_ENABLED";
case IAVF_ERR_ADMIN_QUEUE_ERROR:
return "IAVF_ERR_ADMIN_QUEUE_ERROR";
case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
return "IAVF_ERR_ADMIN_QUEUE_TIMEOUT";
case IAVF_ERR_BUF_TOO_SHORT:
return "IAVF_ERR_BUF_TOO_SHORT";
case IAVF_ERR_ADMIN_QUEUE_FULL:
return "IAVF_ERR_ADMIN_QUEUE_FULL";
case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
return "IAVF_ERR_ADMIN_QUEUE_NO_WORK";
case IAVF_ERR_BAD_IWARP_CQE:
return "IAVF_ERR_BAD_IWARP_CQE";
case IAVF_ERR_NVM_BLANK_MODE:
return "IAVF_ERR_NVM_BLANK_MODE";
case IAVF_ERR_NOT_IMPLEMENTED:
return "IAVF_ERR_NOT_IMPLEMENTED";
case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
return "IAVF_ERR_PE_DOORBELL_NOT_ENABLED";
case IAVF_ERR_DIAG_TEST_FAILED:
return "IAVF_ERR_DIAG_TEST_FAILED";
case IAVF_ERR_NOT_READY:
return "IAVF_ERR_NOT_READY";
case IAVF_NOT_SUPPORTED:
return "IAVF_NOT_SUPPORTED";
case IAVF_ERR_FIRMWARE_API_VERSION:
return "IAVF_ERR_FIRMWARE_API_VERSION";
case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
return "IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR";
}
snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err);
return hw->err_str;
}
/**
* iavf_debug_aq
* @hw: debug mask related to admin queue
* @mask: debug mask
* @desc: pointer to admin queue descriptor
* @buffer: pointer to command buffer
* @buf_len: max length of buffer
*
* Dumps debug log about adminq command with descriptor contents.
**/
void iavf_debug_aq(struct iavf_hw *hw, enum iavf_debug_mask mask, void *desc,
void *buffer, u16 buf_len)
{
struct iavf_aq_desc *aq_desc = (struct iavf_aq_desc *)desc;
u8 *buf = (u8 *)buffer;
if ((!(mask & hw->debug_mask)) || !desc)
return;
iavf_debug(hw, mask,
"AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
le16_to_cpu(aq_desc->opcode),
le16_to_cpu(aq_desc->flags),
le16_to_cpu(aq_desc->datalen),
le16_to_cpu(aq_desc->retval));
iavf_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
le32_to_cpu(aq_desc->cookie_high),
le32_to_cpu(aq_desc->cookie_low));
iavf_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n",
le32_to_cpu(aq_desc->params.internal.param0),
le32_to_cpu(aq_desc->params.internal.param1));
iavf_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n",
le32_to_cpu(aq_desc->params.external.addr_high),
le32_to_cpu(aq_desc->params.external.addr_low));
if (buffer && aq_desc->datalen) {
u16 len = le16_to_cpu(aq_desc->datalen);
iavf_debug(hw, mask, "AQ CMD Buffer:\n");
if (buf_len < len)
len = buf_len;
/* write the full 16-byte chunks */
if (hw->debug_mask & mask) {
char prefix[27];
snprintf(prefix, sizeof(prefix),
"iavf %02x:%02x.%x: \t0x",
hw->bus.bus_id,
hw->bus.device,
hw->bus.func);
print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET,
16, 1, buf, len, false);
}
}
}
/**
* iavf_check_asq_alive
* @hw: pointer to the hw struct
*
* Returns true if Queue is enabled else false.
**/
bool iavf_check_asq_alive(struct iavf_hw *hw)
{
if (hw->aq.asq.len)
return !!(rd32(hw, hw->aq.asq.len) &
IAVF_VF_ATQLEN1_ATQENABLE_MASK);
else
return false;
}
/**
* iavf_aq_queue_shutdown
* @hw: pointer to the hw struct
* @unloading: is the driver unloading itself
*
* Tell the Firmware that we're shutting down the AdminQ and whether
* or not the driver is unloading as well.
**/
enum iavf_status iavf_aq_queue_shutdown(struct iavf_hw *hw, bool unloading)
{
struct iavf_aq_desc desc;
struct iavf_aqc_queue_shutdown *cmd =
(struct iavf_aqc_queue_shutdown *)&desc.params.raw;
enum iavf_status status;
iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_queue_shutdown);
if (unloading)
cmd->driver_unloading = cpu_to_le32(IAVF_AQ_DRIVER_UNLOADING);
status = iavf_asq_send_command(hw, &desc, NULL, 0, NULL);
return status;
}
/**
* iavf_aq_get_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: vsi fw index
* @pf_lut: for PF table set true, for VSI table set false
* @lut: pointer to the lut buffer provided by the caller
* @lut_size: size of the lut buffer
* @set: set true to set the table, false to get the table
*
* Internal function to get or set RSS look up table
**/
static enum iavf_status iavf_aq_get_set_rss_lut(struct iavf_hw *hw,
u16 vsi_id, bool pf_lut,
u8 *lut, u16 lut_size,
bool set)
{
enum iavf_status status;
struct iavf_aq_desc desc;
struct iavf_aqc_get_set_rss_lut *cmd_resp =
(struct iavf_aqc_get_set_rss_lut *)&desc.params.raw;
if (set)
iavf_fill_default_direct_cmd_desc(&desc,
iavf_aqc_opc_set_rss_lut);
else
iavf_fill_default_direct_cmd_desc(&desc,
iavf_aqc_opc_get_rss_lut);
/* Indirect command */
desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
cmd_resp->vsi_id =
cpu_to_le16((u16)((vsi_id <<
IAVF_AQC_SET_RSS_LUT_VSI_ID_SHIFT) &
IAVF_AQC_SET_RSS_LUT_VSI_ID_MASK));
cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_LUT_VSI_VALID);
if (pf_lut)
cmd_resp->flags |= cpu_to_le16((u16)
((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_PF <<
IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
else
cmd_resp->flags |= cpu_to_le16((u16)
((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_VSI <<
IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) &
IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK));
status = iavf_asq_send_command(hw, &desc, lut, lut_size, NULL);
return status;
}
/**
* iavf_aq_get_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: vsi fw index
* @pf_lut: for PF table set true, for VSI table set false
* @lut: pointer to the lut buffer provided by the caller
* @lut_size: size of the lut buffer
*
* get the RSS lookup table, PF or VSI type
**/
enum iavf_status iavf_aq_get_rss_lut(struct iavf_hw *hw, u16 vsi_id,
bool pf_lut, u8 *lut, u16 lut_size)
{
return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size,
false);
}
/**
* iavf_aq_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: vsi fw index
* @pf_lut: for PF table set true, for VSI table set false
* @lut: pointer to the lut buffer provided by the caller
* @lut_size: size of the lut buffer
*
* set the RSS lookup table, PF or VSI type
**/
enum iavf_status iavf_aq_set_rss_lut(struct iavf_hw *hw, u16 vsi_id,
bool pf_lut, u8 *lut, u16 lut_size)
{
return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true);
}
/**
* iavf_aq_get_set_rss_key
* @hw: pointer to the hw struct
* @vsi_id: vsi fw index
* @key: pointer to key info struct
* @set: set true to set the key, false to get the key
*
* get the RSS key per VSI
**/
static enum
iavf_status iavf_aq_get_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
struct iavf_aqc_get_set_rss_key_data *key,
bool set)
{
enum iavf_status status;
struct iavf_aq_desc desc;
struct iavf_aqc_get_set_rss_key *cmd_resp =
(struct iavf_aqc_get_set_rss_key *)&desc.params.raw;
u16 key_size = sizeof(struct iavf_aqc_get_set_rss_key_data);
if (set)
iavf_fill_default_direct_cmd_desc(&desc,
iavf_aqc_opc_set_rss_key);
else
iavf_fill_default_direct_cmd_desc(&desc,
iavf_aqc_opc_get_rss_key);
/* Indirect command */
desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF);
desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD);
cmd_resp->vsi_id =
cpu_to_le16((u16)((vsi_id <<
IAVF_AQC_SET_RSS_KEY_VSI_ID_SHIFT) &
IAVF_AQC_SET_RSS_KEY_VSI_ID_MASK));
cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_KEY_VSI_VALID);
status = iavf_asq_send_command(hw, &desc, key, key_size, NULL);
return status;
}
/**
* iavf_aq_get_rss_key
* @hw: pointer to the hw struct
* @vsi_id: vsi fw index
* @key: pointer to key info struct
*
**/
enum iavf_status iavf_aq_get_rss_key(struct iavf_hw *hw, u16 vsi_id,
struct iavf_aqc_get_set_rss_key_data *key)
{
return iavf_aq_get_set_rss_key(hw, vsi_id, key, false);
}
/**
* iavf_aq_set_rss_key
* @hw: pointer to the hw struct
* @vsi_id: vsi fw index
* @key: pointer to key info struct
*
* set the RSS key per VSI
**/
enum iavf_status iavf_aq_set_rss_key(struct iavf_hw *hw, u16 vsi_id,
struct iavf_aqc_get_set_rss_key_data *key)
{
return iavf_aq_get_set_rss_key(hw, vsi_id, key, true);
}
/* The iavf_ptype_lookup table is used to convert from the 8-bit ptype in the
* hardware to a bit-field that can be used by SW to more easily determine the
* packet type.
*
* Macros are used to shorten the table lines and make this table human
* readable.
*
* We store the PTYPE in the top byte of the bit field - this is just so that
* we can check that the table doesn't have a row missing, as the index into
* the table should be the PTYPE.
*
* Typical work flow:
*
* IF NOT iavf_ptype_lookup[ptype].known
* THEN
* Packet is unknown
* ELSE IF iavf_ptype_lookup[ptype].outer_ip == IAVF_RX_PTYPE_OUTER_IP
* Use the rest of the fields to look at the tunnels, inner protocols, etc
* ELSE
* Use the enum iavf_rx_l2_ptype to decode the packet type
* ENDIF
*/
/* macro to make the table lines short, use explicit indexing with [PTYPE] */
#define IAVF_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\
[PTYPE] = { \
1, \
IAVF_RX_PTYPE_OUTER_##OUTER_IP, \
IAVF_RX_PTYPE_OUTER_##OUTER_IP_VER, \
IAVF_RX_PTYPE_##OUTER_FRAG, \
IAVF_RX_PTYPE_TUNNEL_##T, \
IAVF_RX_PTYPE_TUNNEL_END_##TE, \
IAVF_RX_PTYPE_##TEF, \
IAVF_RX_PTYPE_INNER_PROT_##I, \
IAVF_RX_PTYPE_PAYLOAD_LAYER_##PL }
#define IAVF_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
/* shorter macros makes the table fit but are terse */
#define IAVF_RX_PTYPE_NOF IAVF_RX_PTYPE_NOT_FRAG
#define IAVF_RX_PTYPE_FRG IAVF_RX_PTYPE_FRAG
#define IAVF_RX_PTYPE_INNER_PROT_TS IAVF_RX_PTYPE_INNER_PROT_TIMESYNC
/* Lookup table mapping the 8-bit HW PTYPE to the bit field for decoding */
struct iavf_rx_ptype_decoded iavf_ptype_lookup[BIT(8)] = {
/* L2 Packet types */
IAVF_PTT_UNUSED_ENTRY(0),
IAVF_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
IAVF_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2),
IAVF_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
IAVF_PTT_UNUSED_ENTRY(4),
IAVF_PTT_UNUSED_ENTRY(5),
IAVF_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
IAVF_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
IAVF_PTT_UNUSED_ENTRY(8),
IAVF_PTT_UNUSED_ENTRY(9),
IAVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2),
IAVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE),
IAVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3),
/* Non Tunneled IPv4 */
IAVF_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(25),
IAVF_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP, PAY4),
IAVF_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4),
IAVF_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4),
/* IPv4 --> IPv4 */
IAVF_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
IAVF_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
IAVF_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(32),
IAVF_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
IAVF_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
/* IPv4 --> IPv6 */
IAVF_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
IAVF_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
IAVF_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(39),
IAVF_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
IAVF_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT */
IAVF_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
/* IPv4 --> GRE/NAT --> IPv4 */
IAVF_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
IAVF_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
IAVF_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(47),
IAVF_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
IAVF_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT --> IPv6 */
IAVF_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
IAVF_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
IAVF_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(54),
IAVF_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
IAVF_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT --> MAC */
IAVF_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
/* IPv4 --> GRE/NAT --> MAC --> IPv4 */
IAVF_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
IAVF_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
IAVF_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(62),
IAVF_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
IAVF_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT -> MAC --> IPv6 */
IAVF_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
IAVF_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
IAVF_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(69),
IAVF_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
IAVF_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
/* IPv4 --> GRE/NAT --> MAC/VLAN */
IAVF_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
/* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */
IAVF_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
IAVF_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
IAVF_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(77),
IAVF_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
IAVF_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
/* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */
IAVF_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
IAVF_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
IAVF_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(84),
IAVF_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
IAVF_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
/* Non Tunneled IPv6 */
IAVF_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3),
IAVF_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP, PAY3),
IAVF_PTT_UNUSED_ENTRY(91),
IAVF_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP, PAY4),
IAVF_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4),
IAVF_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4),
/* IPv6 --> IPv4 */
IAVF_PTT(95, IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3),
IAVF_PTT(96, IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3),
IAVF_PTT(97, IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(98),
IAVF_PTT(99, IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP, PAY4),
IAVF_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> IPv6 */
IAVF_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3),
IAVF_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3),
IAVF_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(105),
IAVF_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP, PAY4),
IAVF_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT */
IAVF_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3),
/* IPv6 --> GRE/NAT -> IPv4 */
IAVF_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3),
IAVF_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3),
IAVF_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(113),
IAVF_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4),
IAVF_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> IPv6 */
IAVF_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3),
IAVF_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3),
IAVF_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(120),
IAVF_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4),
IAVF_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC */
IAVF_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3),
/* IPv6 --> GRE/NAT -> MAC -> IPv4 */
IAVF_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3),
IAVF_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3),
IAVF_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(128),
IAVF_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4),
IAVF_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC -> IPv6 */
IAVF_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3),
IAVF_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3),
IAVF_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(135),
IAVF_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4),
IAVF_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC/VLAN */
IAVF_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3),
/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */
IAVF_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3),
IAVF_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3),
IAVF_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(143),
IAVF_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4),
IAVF_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4),
IAVF_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4),
/* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */
IAVF_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3),
IAVF_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3),
IAVF_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4),
IAVF_PTT_UNUSED_ENTRY(150),
IAVF_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4),
IAVF_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4),
IAVF_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4),
/* unused entries */
[154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
/**
* iavf_aq_send_msg_to_pf
* @hw: pointer to the hardware structure
* @v_opcode: opcodes for VF-PF communication
* @v_retval: return error code
* @msg: pointer to the msg buffer
* @msglen: msg length
* @cmd_details: pointer to command details
*
* Send message to PF driver using admin queue. By default, this message
* is sent asynchronously, i.e. iavf_asq_send_command() does not wait for
* completion before returning.
**/
enum iavf_status iavf_aq_send_msg_to_pf(struct iavf_hw *hw,
enum virtchnl_ops v_opcode,
enum iavf_status v_retval,
u8 *msg, u16 msglen,
struct iavf_asq_cmd_details *cmd_details)
{
struct iavf_asq_cmd_details details;
struct iavf_aq_desc desc;
enum iavf_status status;
iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_send_msg_to_pf);
desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_SI);
desc.cookie_high = cpu_to_le32(v_opcode);
desc.cookie_low = cpu_to_le32(v_retval);
if (msglen) {
desc.flags |= cpu_to_le16((u16)(IAVF_AQ_FLAG_BUF
| IAVF_AQ_FLAG_RD));
if (msglen > IAVF_AQ_LARGE_BUF)
desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_LB);
desc.datalen = cpu_to_le16(msglen);
}
if (!cmd_details) {
memset(&details, 0, sizeof(details));
details.async = true;
cmd_details = &details;
}
status = iavf_asq_send_command(hw, &desc, msg, msglen, cmd_details);
return status;
}
/**
* iavf_vf_parse_hw_config
* @hw: pointer to the hardware structure
* @msg: pointer to the virtual channel VF resource structure
*
* Given a VF resource message from the PF, populate the hw struct
* with appropriate information.
**/
void iavf_vf_parse_hw_config(struct iavf_hw *hw,
struct virtchnl_vf_resource *msg)
{
struct virtchnl_vsi_resource *vsi_res;
int i;
vsi_res = &msg->vsi_res[0];
hw->dev_caps.num_vsis = msg->num_vsis;
hw->dev_caps.num_rx_qp = msg->num_queue_pairs;
hw->dev_caps.num_tx_qp = msg->num_queue_pairs;
hw->dev_caps.num_msix_vectors_vf = msg->max_vectors;
hw->dev_caps.dcb = msg->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_L2;
hw->dev_caps.fcoe = 0;
for (i = 0; i < msg->num_vsis; i++) {
if (vsi_res->vsi_type == VIRTCHNL_VSI_SRIOV) {
ether_addr_copy(hw->mac.perm_addr,
vsi_res->default_mac_addr);
ether_addr_copy(hw->mac.addr,
vsi_res->default_mac_addr);
}
vsi_res++;
}
}
/**
* iavf_vf_reset
* @hw: pointer to the hardware structure
*
* Send a VF_RESET message to the PF. Does not wait for response from PF
* as none will be forthcoming. Immediately after calling this function,
* the admin queue should be shut down and (optionally) reinitialized.
**/
enum iavf_status iavf_vf_reset(struct iavf_hw *hw)
{
return iavf_aq_send_msg_to_pf(hw, VIRTCHNL_OP_RESET_VF,
0, NULL, 0, NULL);
}