mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 07:14:36 +08:00
19b7e21c55
Lots of overlapping changes and parallel additions, stuff like that. Signed-off-by: David S. Miller <davem@davemloft.net>
1290 lines
36 KiB
C
1290 lines
36 KiB
C
/*
|
|
* Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
*/
|
|
#include <linux/dmapool.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/in.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <net/addrconf.h>
|
|
|
|
#include "rds_single_path.h"
|
|
#include "rds.h"
|
|
#include "ib.h"
|
|
#include "ib_mr.h"
|
|
|
|
/*
|
|
* Set the selected protocol version
|
|
*/
|
|
static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version)
|
|
{
|
|
conn->c_version = version;
|
|
}
|
|
|
|
/*
|
|
* Set up flow control
|
|
*/
|
|
static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
|
|
if (rds_ib_sysctl_flow_control && credits != 0) {
|
|
/* We're doing flow control */
|
|
ic->i_flowctl = 1;
|
|
rds_ib_send_add_credits(conn, credits);
|
|
} else {
|
|
ic->i_flowctl = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tune RNR behavior. Without flow control, we use a rather
|
|
* low timeout, but not the absolute minimum - this should
|
|
* be tunable.
|
|
*
|
|
* We already set the RNR retry count to 7 (which is the
|
|
* smallest infinite number :-) above.
|
|
* If flow control is off, we want to change this back to 0
|
|
* so that we learn quickly when our credit accounting is
|
|
* buggy.
|
|
*
|
|
* Caller passes in a qp_attr pointer - don't waste stack spacv
|
|
* by allocation this twice.
|
|
*/
|
|
static void
|
|
rds_ib_tune_rnr(struct rds_ib_connection *ic, struct ib_qp_attr *attr)
|
|
{
|
|
int ret;
|
|
|
|
attr->min_rnr_timer = IB_RNR_TIMER_000_32;
|
|
ret = ib_modify_qp(ic->i_cm_id->qp, attr, IB_QP_MIN_RNR_TIMER);
|
|
if (ret)
|
|
printk(KERN_NOTICE "ib_modify_qp(IB_QP_MIN_RNR_TIMER): err=%d\n", -ret);
|
|
}
|
|
|
|
/*
|
|
* Connection established.
|
|
* We get here for both outgoing and incoming connection.
|
|
*/
|
|
void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
const union rds_ib_conn_priv *dp = NULL;
|
|
struct ib_qp_attr qp_attr;
|
|
__be64 ack_seq = 0;
|
|
__be32 credit = 0;
|
|
u8 major = 0;
|
|
u8 minor = 0;
|
|
int err;
|
|
|
|
dp = event->param.conn.private_data;
|
|
if (conn->c_isv6) {
|
|
if (event->param.conn.private_data_len >=
|
|
sizeof(struct rds6_ib_connect_private)) {
|
|
major = dp->ricp_v6.dp_protocol_major;
|
|
minor = dp->ricp_v6.dp_protocol_minor;
|
|
credit = dp->ricp_v6.dp_credit;
|
|
/* dp structure start is not guaranteed to be 8 bytes
|
|
* aligned. Since dp_ack_seq is 64-bit extended load
|
|
* operations can be used so go through get_unaligned
|
|
* to avoid unaligned errors.
|
|
*/
|
|
ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq);
|
|
}
|
|
} else if (event->param.conn.private_data_len >=
|
|
sizeof(struct rds_ib_connect_private)) {
|
|
major = dp->ricp_v4.dp_protocol_major;
|
|
minor = dp->ricp_v4.dp_protocol_minor;
|
|
credit = dp->ricp_v4.dp_credit;
|
|
ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq);
|
|
}
|
|
|
|
/* make sure it isn't empty data */
|
|
if (major) {
|
|
rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor));
|
|
rds_ib_set_flow_control(conn, be32_to_cpu(credit));
|
|
}
|
|
|
|
if (conn->c_version < RDS_PROTOCOL_VERSION) {
|
|
if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) {
|
|
pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n",
|
|
&conn->c_laddr, &conn->c_faddr,
|
|
RDS_PROTOCOL_MAJOR(conn->c_version),
|
|
RDS_PROTOCOL_MINOR(conn->c_version));
|
|
rds_conn_destroy(conn);
|
|
return;
|
|
}
|
|
}
|
|
|
|
pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n",
|
|
ic->i_active_side ? "Active" : "Passive",
|
|
&conn->c_laddr, &conn->c_faddr, conn->c_tos,
|
|
RDS_PROTOCOL_MAJOR(conn->c_version),
|
|
RDS_PROTOCOL_MINOR(conn->c_version),
|
|
ic->i_flowctl ? ", flow control" : "");
|
|
|
|
/* receive sl from the peer */
|
|
ic->i_sl = ic->i_cm_id->route.path_rec->sl;
|
|
|
|
atomic_set(&ic->i_cq_quiesce, 0);
|
|
|
|
/* Init rings and fill recv. this needs to wait until protocol
|
|
* negotiation is complete, since ring layout is different
|
|
* from 3.1 to 4.1.
|
|
*/
|
|
rds_ib_send_init_ring(ic);
|
|
rds_ib_recv_init_ring(ic);
|
|
/* Post receive buffers - as a side effect, this will update
|
|
* the posted credit count. */
|
|
rds_ib_recv_refill(conn, 1, GFP_KERNEL);
|
|
|
|
/* Tune RNR behavior */
|
|
rds_ib_tune_rnr(ic, &qp_attr);
|
|
|
|
qp_attr.qp_state = IB_QPS_RTS;
|
|
err = ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE);
|
|
if (err)
|
|
printk(KERN_NOTICE "ib_modify_qp(IB_QP_STATE, RTS): err=%d\n", err);
|
|
|
|
/* update ib_device with this local ipaddr */
|
|
err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr);
|
|
if (err)
|
|
printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n",
|
|
err);
|
|
|
|
/* If the peer gave us the last packet it saw, process this as if
|
|
* we had received a regular ACK. */
|
|
if (dp) {
|
|
if (ack_seq)
|
|
rds_send_drop_acked(conn, be64_to_cpu(ack_seq),
|
|
NULL);
|
|
}
|
|
|
|
conn->c_proposed_version = conn->c_version;
|
|
rds_connect_complete(conn);
|
|
}
|
|
|
|
static void rds_ib_cm_fill_conn_param(struct rds_connection *conn,
|
|
struct rdma_conn_param *conn_param,
|
|
union rds_ib_conn_priv *dp,
|
|
u32 protocol_version,
|
|
u32 max_responder_resources,
|
|
u32 max_initiator_depth,
|
|
bool isv6)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
|
|
|
|
memset(conn_param, 0, sizeof(struct rdma_conn_param));
|
|
|
|
conn_param->responder_resources =
|
|
min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources);
|
|
conn_param->initiator_depth =
|
|
min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth);
|
|
conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7);
|
|
conn_param->rnr_retry_count = 7;
|
|
|
|
if (dp) {
|
|
memset(dp, 0, sizeof(*dp));
|
|
if (isv6) {
|
|
dp->ricp_v6.dp_saddr = conn->c_laddr;
|
|
dp->ricp_v6.dp_daddr = conn->c_faddr;
|
|
dp->ricp_v6.dp_protocol_major =
|
|
RDS_PROTOCOL_MAJOR(protocol_version);
|
|
dp->ricp_v6.dp_protocol_minor =
|
|
RDS_PROTOCOL_MINOR(protocol_version);
|
|
dp->ricp_v6.dp_protocol_minor_mask =
|
|
cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
|
|
dp->ricp_v6.dp_ack_seq =
|
|
cpu_to_be64(rds_ib_piggyb_ack(ic));
|
|
dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos;
|
|
|
|
conn_param->private_data = &dp->ricp_v6;
|
|
conn_param->private_data_len = sizeof(dp->ricp_v6);
|
|
} else {
|
|
dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3];
|
|
dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3];
|
|
dp->ricp_v4.dp_protocol_major =
|
|
RDS_PROTOCOL_MAJOR(protocol_version);
|
|
dp->ricp_v4.dp_protocol_minor =
|
|
RDS_PROTOCOL_MINOR(protocol_version);
|
|
dp->ricp_v4.dp_protocol_minor_mask =
|
|
cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
|
|
dp->ricp_v4.dp_ack_seq =
|
|
cpu_to_be64(rds_ib_piggyb_ack(ic));
|
|
dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos;
|
|
|
|
conn_param->private_data = &dp->ricp_v4;
|
|
conn_param->private_data_len = sizeof(dp->ricp_v4);
|
|
}
|
|
|
|
/* Advertise flow control */
|
|
if (ic->i_flowctl) {
|
|
unsigned int credits;
|
|
|
|
credits = IB_GET_POST_CREDITS
|
|
(atomic_read(&ic->i_credits));
|
|
if (isv6)
|
|
dp->ricp_v6.dp_credit = cpu_to_be32(credits);
|
|
else
|
|
dp->ricp_v4.dp_credit = cpu_to_be32(credits);
|
|
atomic_sub(IB_SET_POST_CREDITS(credits),
|
|
&ic->i_credits);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rds_ib_cq_event_handler(struct ib_event *event, void *data)
|
|
{
|
|
rdsdebug("event %u (%s) data %p\n",
|
|
event->event, ib_event_msg(event->event), data);
|
|
}
|
|
|
|
/* Plucking the oldest entry from the ring can be done concurrently with
|
|
* the thread refilling the ring. Each ring operation is protected by
|
|
* spinlocks and the transient state of refilling doesn't change the
|
|
* recording of which entry is oldest.
|
|
*
|
|
* This relies on IB only calling one cq comp_handler for each cq so that
|
|
* there will only be one caller of rds_recv_incoming() per RDS connection.
|
|
*/
|
|
static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context)
|
|
{
|
|
struct rds_connection *conn = context;
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
|
|
rdsdebug("conn %p cq %p\n", conn, cq);
|
|
|
|
rds_ib_stats_inc(s_ib_evt_handler_call);
|
|
|
|
tasklet_schedule(&ic->i_recv_tasklet);
|
|
}
|
|
|
|
static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq,
|
|
struct ib_wc *wcs)
|
|
{
|
|
int nr, i;
|
|
struct ib_wc *wc;
|
|
|
|
while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
|
|
for (i = 0; i < nr; i++) {
|
|
wc = wcs + i;
|
|
rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
|
|
(unsigned long long)wc->wr_id, wc->status,
|
|
wc->byte_len, be32_to_cpu(wc->ex.imm_data));
|
|
|
|
if (wc->wr_id <= ic->i_send_ring.w_nr ||
|
|
wc->wr_id == RDS_IB_ACK_WR_ID)
|
|
rds_ib_send_cqe_handler(ic, wc);
|
|
else
|
|
rds_ib_mr_cqe_handler(ic, wc);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rds_ib_tasklet_fn_send(unsigned long data)
|
|
{
|
|
struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
|
|
struct rds_connection *conn = ic->conn;
|
|
|
|
rds_ib_stats_inc(s_ib_tasklet_call);
|
|
|
|
/* if cq has been already reaped, ignore incoming cq event */
|
|
if (atomic_read(&ic->i_cq_quiesce))
|
|
return;
|
|
|
|
poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
|
|
ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
|
|
poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
|
|
|
|
if (rds_conn_up(conn) &&
|
|
(!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
|
|
test_bit(0, &conn->c_map_queued)))
|
|
rds_send_xmit(&ic->conn->c_path[0]);
|
|
}
|
|
|
|
static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq,
|
|
struct ib_wc *wcs,
|
|
struct rds_ib_ack_state *ack_state)
|
|
{
|
|
int nr, i;
|
|
struct ib_wc *wc;
|
|
|
|
while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
|
|
for (i = 0; i < nr; i++) {
|
|
wc = wcs + i;
|
|
rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
|
|
(unsigned long long)wc->wr_id, wc->status,
|
|
wc->byte_len, be32_to_cpu(wc->ex.imm_data));
|
|
|
|
rds_ib_recv_cqe_handler(ic, wc, ack_state);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rds_ib_tasklet_fn_recv(unsigned long data)
|
|
{
|
|
struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
|
|
struct rds_connection *conn = ic->conn;
|
|
struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
|
|
struct rds_ib_ack_state state;
|
|
|
|
if (!rds_ibdev)
|
|
rds_conn_drop(conn);
|
|
|
|
rds_ib_stats_inc(s_ib_tasklet_call);
|
|
|
|
/* if cq has been already reaped, ignore incoming cq event */
|
|
if (atomic_read(&ic->i_cq_quiesce))
|
|
return;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
|
|
ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
|
|
poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
|
|
|
|
if (state.ack_next_valid)
|
|
rds_ib_set_ack(ic, state.ack_next, state.ack_required);
|
|
if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
|
|
rds_send_drop_acked(conn, state.ack_recv, NULL);
|
|
ic->i_ack_recv = state.ack_recv;
|
|
}
|
|
|
|
if (rds_conn_up(conn))
|
|
rds_ib_attempt_ack(ic);
|
|
}
|
|
|
|
static void rds_ib_qp_event_handler(struct ib_event *event, void *data)
|
|
{
|
|
struct rds_connection *conn = data;
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
|
|
rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event,
|
|
ib_event_msg(event->event));
|
|
|
|
switch (event->event) {
|
|
case IB_EVENT_COMM_EST:
|
|
rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST);
|
|
break;
|
|
default:
|
|
rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n",
|
|
event->event, ib_event_msg(event->event),
|
|
&conn->c_laddr, &conn->c_faddr);
|
|
rds_conn_drop(conn);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context)
|
|
{
|
|
struct rds_connection *conn = context;
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
|
|
rdsdebug("conn %p cq %p\n", conn, cq);
|
|
|
|
rds_ib_stats_inc(s_ib_evt_handler_call);
|
|
|
|
tasklet_schedule(&ic->i_send_tasklet);
|
|
}
|
|
|
|
static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev)
|
|
{
|
|
int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1];
|
|
int index = rds_ibdev->dev->num_comp_vectors - 1;
|
|
int i;
|
|
|
|
for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) {
|
|
if (rds_ibdev->vector_load[i] < min) {
|
|
index = i;
|
|
min = rds_ibdev->vector_load[i];
|
|
}
|
|
}
|
|
|
|
rds_ibdev->vector_load[index]++;
|
|
return index;
|
|
}
|
|
|
|
static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index)
|
|
{
|
|
rds_ibdev->vector_load[index]--;
|
|
}
|
|
|
|
/* Allocate DMA coherent memory to be used to store struct rds_header for
|
|
* sending/receiving packets. The pointers to the DMA memory and the
|
|
* associated DMA addresses are stored in two arrays.
|
|
*
|
|
* @ibdev: the IB device
|
|
* @pool: the DMA memory pool
|
|
* @dma_addrs: pointer to the array for storing DMA addresses
|
|
* @num_hdrs: number of headers to allocate
|
|
*
|
|
* It returns the pointer to the array storing the DMA memory pointers. On
|
|
* error, NULL pointer is returned.
|
|
*/
|
|
struct rds_header **rds_dma_hdrs_alloc(struct ib_device *ibdev,
|
|
struct dma_pool *pool,
|
|
dma_addr_t **dma_addrs, u32 num_hdrs)
|
|
{
|
|
struct rds_header **hdrs;
|
|
dma_addr_t *hdr_daddrs;
|
|
u32 i;
|
|
|
|
hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL,
|
|
ibdev_to_node(ibdev));
|
|
if (!hdrs)
|
|
return NULL;
|
|
|
|
hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL,
|
|
ibdev_to_node(ibdev));
|
|
if (!hdr_daddrs) {
|
|
kvfree(hdrs);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < num_hdrs; i++) {
|
|
hdrs[i] = dma_pool_zalloc(pool, GFP_KERNEL, &hdr_daddrs[i]);
|
|
if (!hdrs[i]) {
|
|
rds_dma_hdrs_free(pool, hdrs, hdr_daddrs, i);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
*dma_addrs = hdr_daddrs;
|
|
return hdrs;
|
|
}
|
|
|
|
/* Free the DMA memory used to store struct rds_header.
|
|
*
|
|
* @pool: the DMA memory pool
|
|
* @hdrs: pointer to the array storing DMA memory pointers
|
|
* @dma_addrs: pointer to the array storing DMA addresses
|
|
* @num_hdars: number of headers to free.
|
|
*/
|
|
void rds_dma_hdrs_free(struct dma_pool *pool, struct rds_header **hdrs,
|
|
dma_addr_t *dma_addrs, u32 num_hdrs)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < num_hdrs; i++)
|
|
dma_pool_free(pool, hdrs[i], dma_addrs[i]);
|
|
kvfree(hdrs);
|
|
kvfree(dma_addrs);
|
|
}
|
|
|
|
/*
|
|
* This needs to be very careful to not leave IS_ERR pointers around for
|
|
* cleanup to trip over.
|
|
*/
|
|
static int rds_ib_setup_qp(struct rds_connection *conn)
|
|
{
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
struct ib_device *dev = ic->i_cm_id->device;
|
|
struct ib_qp_init_attr attr;
|
|
struct ib_cq_init_attr cq_attr = {};
|
|
struct rds_ib_device *rds_ibdev;
|
|
unsigned long max_wrs;
|
|
int ret, fr_queue_space;
|
|
struct dma_pool *pool;
|
|
|
|
/*
|
|
* It's normal to see a null device if an incoming connection races
|
|
* with device removal, so we don't print a warning.
|
|
*/
|
|
rds_ibdev = rds_ib_get_client_data(dev);
|
|
if (!rds_ibdev)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* The fr_queue_space is currently set to 512, to add extra space on
|
|
* completion queue and send queue. This extra space is used for FRMR
|
|
* registration and invalidation work requests
|
|
*/
|
|
fr_queue_space = (rds_ibdev->use_fastreg ? RDS_IB_DEFAULT_FR_WR : 0);
|
|
|
|
/* add the conn now so that connection establishment has the dev */
|
|
rds_ib_add_conn(rds_ibdev, conn);
|
|
|
|
max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ?
|
|
rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr;
|
|
if (ic->i_send_ring.w_nr != max_wrs)
|
|
rds_ib_ring_resize(&ic->i_send_ring, max_wrs);
|
|
|
|
max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ?
|
|
rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr;
|
|
if (ic->i_recv_ring.w_nr != max_wrs)
|
|
rds_ib_ring_resize(&ic->i_recv_ring, max_wrs);
|
|
|
|
/* Protection domain and memory range */
|
|
ic->i_pd = rds_ibdev->pd;
|
|
|
|
ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev);
|
|
cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1;
|
|
cq_attr.comp_vector = ic->i_scq_vector;
|
|
ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send,
|
|
rds_ib_cq_event_handler, conn,
|
|
&cq_attr);
|
|
if (IS_ERR(ic->i_send_cq)) {
|
|
ret = PTR_ERR(ic->i_send_cq);
|
|
ic->i_send_cq = NULL;
|
|
ibdev_put_vector(rds_ibdev, ic->i_scq_vector);
|
|
rdsdebug("ib_create_cq send failed: %d\n", ret);
|
|
goto rds_ibdev_out;
|
|
}
|
|
|
|
ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev);
|
|
cq_attr.cqe = ic->i_recv_ring.w_nr;
|
|
cq_attr.comp_vector = ic->i_rcq_vector;
|
|
ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv,
|
|
rds_ib_cq_event_handler, conn,
|
|
&cq_attr);
|
|
if (IS_ERR(ic->i_recv_cq)) {
|
|
ret = PTR_ERR(ic->i_recv_cq);
|
|
ic->i_recv_cq = NULL;
|
|
ibdev_put_vector(rds_ibdev, ic->i_rcq_vector);
|
|
rdsdebug("ib_create_cq recv failed: %d\n", ret);
|
|
goto send_cq_out;
|
|
}
|
|
|
|
ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
|
|
if (ret) {
|
|
rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
|
|
goto recv_cq_out;
|
|
}
|
|
|
|
ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
|
|
if (ret) {
|
|
rdsdebug("ib_req_notify_cq recv failed: %d\n", ret);
|
|
goto recv_cq_out;
|
|
}
|
|
|
|
/* XXX negotiate max send/recv with remote? */
|
|
memset(&attr, 0, sizeof(attr));
|
|
attr.event_handler = rds_ib_qp_event_handler;
|
|
attr.qp_context = conn;
|
|
/* + 1 to allow for the single ack message */
|
|
attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1;
|
|
attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1;
|
|
attr.cap.max_send_sge = rds_ibdev->max_sge;
|
|
attr.cap.max_recv_sge = RDS_IB_RECV_SGE;
|
|
attr.sq_sig_type = IB_SIGNAL_REQ_WR;
|
|
attr.qp_type = IB_QPT_RC;
|
|
attr.send_cq = ic->i_send_cq;
|
|
attr.recv_cq = ic->i_recv_cq;
|
|
|
|
/*
|
|
* XXX this can fail if max_*_wr is too large? Are we supposed
|
|
* to back off until we get a value that the hardware can support?
|
|
*/
|
|
ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr);
|
|
if (ret) {
|
|
rdsdebug("rdma_create_qp failed: %d\n", ret);
|
|
goto recv_cq_out;
|
|
}
|
|
|
|
pool = rds_ibdev->rid_hdrs_pool;
|
|
ic->i_send_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_send_hdrs_dma,
|
|
ic->i_send_ring.w_nr);
|
|
if (!ic->i_send_hdrs) {
|
|
ret = -ENOMEM;
|
|
rdsdebug("DMA send hdrs alloc failed\n");
|
|
goto qp_out;
|
|
}
|
|
|
|
ic->i_recv_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_recv_hdrs_dma,
|
|
ic->i_recv_ring.w_nr);
|
|
if (!ic->i_recv_hdrs) {
|
|
ret = -ENOMEM;
|
|
rdsdebug("DMA recv hdrs alloc failed\n");
|
|
goto send_hdrs_dma_out;
|
|
}
|
|
|
|
ic->i_ack = dma_pool_zalloc(pool, GFP_KERNEL,
|
|
&ic->i_ack_dma);
|
|
if (!ic->i_ack) {
|
|
ret = -ENOMEM;
|
|
rdsdebug("DMA ack header alloc failed\n");
|
|
goto recv_hdrs_dma_out;
|
|
}
|
|
|
|
ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work),
|
|
ic->i_send_ring.w_nr),
|
|
ibdev_to_node(dev));
|
|
if (!ic->i_sends) {
|
|
ret = -ENOMEM;
|
|
rdsdebug("send allocation failed\n");
|
|
goto ack_dma_out;
|
|
}
|
|
|
|
ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work),
|
|
ic->i_recv_ring.w_nr),
|
|
ibdev_to_node(dev));
|
|
if (!ic->i_recvs) {
|
|
ret = -ENOMEM;
|
|
rdsdebug("recv allocation failed\n");
|
|
goto sends_out;
|
|
}
|
|
|
|
rds_ib_recv_init_ack(ic);
|
|
|
|
rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd,
|
|
ic->i_send_cq, ic->i_recv_cq);
|
|
|
|
goto out;
|
|
|
|
sends_out:
|
|
vfree(ic->i_sends);
|
|
|
|
ack_dma_out:
|
|
dma_pool_free(pool, ic->i_ack, ic->i_ack_dma);
|
|
ic->i_ack = NULL;
|
|
|
|
recv_hdrs_dma_out:
|
|
rds_dma_hdrs_free(pool, ic->i_recv_hdrs, ic->i_recv_hdrs_dma,
|
|
ic->i_recv_ring.w_nr);
|
|
ic->i_recv_hdrs = NULL;
|
|
ic->i_recv_hdrs_dma = NULL;
|
|
|
|
send_hdrs_dma_out:
|
|
rds_dma_hdrs_free(pool, ic->i_send_hdrs, ic->i_send_hdrs_dma,
|
|
ic->i_send_ring.w_nr);
|
|
ic->i_send_hdrs = NULL;
|
|
ic->i_send_hdrs_dma = NULL;
|
|
|
|
qp_out:
|
|
rdma_destroy_qp(ic->i_cm_id);
|
|
recv_cq_out:
|
|
ib_destroy_cq(ic->i_recv_cq);
|
|
ic->i_recv_cq = NULL;
|
|
send_cq_out:
|
|
ib_destroy_cq(ic->i_send_cq);
|
|
ic->i_send_cq = NULL;
|
|
rds_ibdev_out:
|
|
rds_ib_remove_conn(rds_ibdev, conn);
|
|
out:
|
|
rds_ib_dev_put(rds_ibdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6)
|
|
{
|
|
const union rds_ib_conn_priv *dp = event->param.conn.private_data;
|
|
u8 data_len, major, minor;
|
|
u32 version = 0;
|
|
__be16 mask;
|
|
u16 common;
|
|
|
|
/*
|
|
* rdma_cm private data is odd - when there is any private data in the
|
|
* request, we will be given a pretty large buffer without telling us the
|
|
* original size. The only way to tell the difference is by looking at
|
|
* the contents, which are initialized to zero.
|
|
* If the protocol version fields aren't set, this is a connection attempt
|
|
* from an older version. This could could be 3.0 or 2.0 - we can't tell.
|
|
* We really should have changed this for OFED 1.3 :-(
|
|
*/
|
|
|
|
/* Be paranoid. RDS always has privdata */
|
|
if (!event->param.conn.private_data_len) {
|
|
printk(KERN_NOTICE "RDS incoming connection has no private data, "
|
|
"rejecting\n");
|
|
return 0;
|
|
}
|
|
|
|
if (isv6) {
|
|
data_len = sizeof(struct rds6_ib_connect_private);
|
|
major = dp->ricp_v6.dp_protocol_major;
|
|
minor = dp->ricp_v6.dp_protocol_minor;
|
|
mask = dp->ricp_v6.dp_protocol_minor_mask;
|
|
} else {
|
|
data_len = sizeof(struct rds_ib_connect_private);
|
|
major = dp->ricp_v4.dp_protocol_major;
|
|
minor = dp->ricp_v4.dp_protocol_minor;
|
|
mask = dp->ricp_v4.dp_protocol_minor_mask;
|
|
}
|
|
|
|
/* Even if len is crap *now* I still want to check it. -ASG */
|
|
if (event->param.conn.private_data_len < data_len || major == 0)
|
|
return RDS_PROTOCOL_4_0;
|
|
|
|
common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS;
|
|
if (major == 4 && common) {
|
|
version = RDS_PROTOCOL_4_0;
|
|
while ((common >>= 1) != 0)
|
|
version++;
|
|
} else if (RDS_PROTOCOL_COMPAT_VERSION ==
|
|
RDS_PROTOCOL(major, minor)) {
|
|
version = RDS_PROTOCOL_COMPAT_VERSION;
|
|
} else {
|
|
if (isv6)
|
|
printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n",
|
|
&dp->ricp_v6.dp_saddr, major, minor);
|
|
else
|
|
printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n",
|
|
&dp->ricp_v4.dp_saddr, major, minor);
|
|
}
|
|
return version;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
/* Given an IPv6 address, find the net_device which hosts that address and
|
|
* return its index. This is used by the rds_ib_cm_handle_connect() code to
|
|
* find the interface index of where an incoming request comes from when
|
|
* the request is using a link local address.
|
|
*
|
|
* Note one problem in this search. It is possible that two interfaces have
|
|
* the same link local address. Unfortunately, this cannot be solved unless
|
|
* the underlying layer gives us the interface which an incoming RDMA connect
|
|
* request comes from.
|
|
*/
|
|
static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr)
|
|
{
|
|
struct net_device *dev;
|
|
int idx = 0;
|
|
|
|
rcu_read_lock();
|
|
for_each_netdev_rcu(net, dev) {
|
|
if (ipv6_chk_addr(net, addr, dev, 1)) {
|
|
idx = dev->ifindex;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return idx;
|
|
}
|
|
#endif
|
|
|
|
int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id,
|
|
struct rdma_cm_event *event, bool isv6)
|
|
{
|
|
__be64 lguid = cm_id->route.path_rec->sgid.global.interface_id;
|
|
__be64 fguid = cm_id->route.path_rec->dgid.global.interface_id;
|
|
const struct rds_ib_conn_priv_cmn *dp_cmn;
|
|
struct rds_connection *conn = NULL;
|
|
struct rds_ib_connection *ic = NULL;
|
|
struct rdma_conn_param conn_param;
|
|
const union rds_ib_conn_priv *dp;
|
|
union rds_ib_conn_priv dp_rep;
|
|
struct in6_addr s_mapped_addr;
|
|
struct in6_addr d_mapped_addr;
|
|
const struct in6_addr *saddr6;
|
|
const struct in6_addr *daddr6;
|
|
int destroy = 1;
|
|
u32 ifindex = 0;
|
|
u32 version;
|
|
int err = 1;
|
|
|
|
/* Check whether the remote protocol version matches ours. */
|
|
version = rds_ib_protocol_compatible(event, isv6);
|
|
if (!version) {
|
|
err = RDS_RDMA_REJ_INCOMPAT;
|
|
goto out;
|
|
}
|
|
|
|
dp = event->param.conn.private_data;
|
|
if (isv6) {
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
dp_cmn = &dp->ricp_v6.dp_cmn;
|
|
saddr6 = &dp->ricp_v6.dp_saddr;
|
|
daddr6 = &dp->ricp_v6.dp_daddr;
|
|
/* If either address is link local, need to find the
|
|
* interface index in order to create a proper RDS
|
|
* connection.
|
|
*/
|
|
if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) {
|
|
/* Using init_net for now .. */
|
|
ifindex = __rds_find_ifindex(&init_net, daddr6);
|
|
/* No index found... Need to bail out. */
|
|
if (ifindex == 0) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
} else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) {
|
|
/* Use our address to find the correct index. */
|
|
ifindex = __rds_find_ifindex(&init_net, daddr6);
|
|
/* No index found... Need to bail out. */
|
|
if (ifindex == 0) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
}
|
|
#else
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
#endif
|
|
} else {
|
|
dp_cmn = &dp->ricp_v4.dp_cmn;
|
|
ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr);
|
|
ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr);
|
|
saddr6 = &s_mapped_addr;
|
|
daddr6 = &d_mapped_addr;
|
|
}
|
|
|
|
rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n",
|
|
saddr6, daddr6, RDS_PROTOCOL_MAJOR(version),
|
|
RDS_PROTOCOL_MINOR(version),
|
|
(unsigned long long)be64_to_cpu(lguid),
|
|
(unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss);
|
|
|
|
/* RDS/IB is not currently netns aware, thus init_net */
|
|
conn = rds_conn_create(&init_net, daddr6, saddr6,
|
|
&rds_ib_transport, dp_cmn->ricpc_dp_toss,
|
|
GFP_KERNEL, ifindex);
|
|
if (IS_ERR(conn)) {
|
|
rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn));
|
|
conn = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The connection request may occur while the
|
|
* previous connection exist, e.g. in case of failover.
|
|
* But as connections may be initiated simultaneously
|
|
* by both hosts, we have a random backoff mechanism -
|
|
* see the comment above rds_queue_reconnect()
|
|
*/
|
|
mutex_lock(&conn->c_cm_lock);
|
|
if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) {
|
|
if (rds_conn_state(conn) == RDS_CONN_UP) {
|
|
rdsdebug("incoming connect while connecting\n");
|
|
rds_conn_drop(conn);
|
|
rds_ib_stats_inc(s_ib_listen_closed_stale);
|
|
} else
|
|
if (rds_conn_state(conn) == RDS_CONN_CONNECTING) {
|
|
/* Wait and see - our connect may still be succeeding */
|
|
rds_ib_stats_inc(s_ib_connect_raced);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
ic = conn->c_transport_data;
|
|
|
|
rds_ib_set_protocol(conn, version);
|
|
rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit));
|
|
|
|
/* If the peer gave us the last packet it saw, process this as if
|
|
* we had received a regular ACK. */
|
|
if (dp_cmn->ricpc_ack_seq)
|
|
rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq),
|
|
NULL);
|
|
|
|
BUG_ON(cm_id->context);
|
|
BUG_ON(ic->i_cm_id);
|
|
|
|
ic->i_cm_id = cm_id;
|
|
cm_id->context = conn;
|
|
|
|
/* We got halfway through setting up the ib_connection, if we
|
|
* fail now, we have to take the long route out of this mess. */
|
|
destroy = 0;
|
|
|
|
err = rds_ib_setup_qp(conn);
|
|
if (err) {
|
|
rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err);
|
|
goto out;
|
|
}
|
|
|
|
rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version,
|
|
event->param.conn.responder_resources,
|
|
event->param.conn.initiator_depth, isv6);
|
|
|
|
/* rdma_accept() calls rdma_reject() internally if it fails */
|
|
if (rdma_accept(cm_id, &conn_param))
|
|
rds_ib_conn_error(conn, "rdma_accept failed\n");
|
|
|
|
out:
|
|
if (conn)
|
|
mutex_unlock(&conn->c_cm_lock);
|
|
if (err)
|
|
rdma_reject(cm_id, &err, sizeof(int));
|
|
return destroy;
|
|
}
|
|
|
|
|
|
int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6)
|
|
{
|
|
struct rds_connection *conn = cm_id->context;
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
struct rdma_conn_param conn_param;
|
|
union rds_ib_conn_priv dp;
|
|
int ret;
|
|
|
|
/* If the peer doesn't do protocol negotiation, we must
|
|
* default to RDSv3.0 */
|
|
rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1);
|
|
ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */
|
|
|
|
ret = rds_ib_setup_qp(conn);
|
|
if (ret) {
|
|
rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
rds_ib_cm_fill_conn_param(conn, &conn_param, &dp,
|
|
conn->c_proposed_version,
|
|
UINT_MAX, UINT_MAX, isv6);
|
|
ret = rdma_connect(cm_id, &conn_param);
|
|
if (ret)
|
|
rds_ib_conn_error(conn, "rdma_connect failed (%d)\n", ret);
|
|
|
|
out:
|
|
/* Beware - returning non-zero tells the rdma_cm to destroy
|
|
* the cm_id. We should certainly not do it as long as we still
|
|
* "own" the cm_id. */
|
|
if (ret) {
|
|
if (ic->i_cm_id == cm_id)
|
|
ret = 0;
|
|
}
|
|
ic->i_active_side = true;
|
|
return ret;
|
|
}
|
|
|
|
int rds_ib_conn_path_connect(struct rds_conn_path *cp)
|
|
{
|
|
struct rds_connection *conn = cp->cp_conn;
|
|
struct sockaddr_storage src, dest;
|
|
rdma_cm_event_handler handler;
|
|
struct rds_ib_connection *ic;
|
|
int ret;
|
|
|
|
ic = conn->c_transport_data;
|
|
|
|
/* XXX I wonder what affect the port space has */
|
|
/* delegate cm event handler to rdma_transport */
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (conn->c_isv6)
|
|
handler = rds6_rdma_cm_event_handler;
|
|
else
|
|
#endif
|
|
handler = rds_rdma_cm_event_handler;
|
|
ic->i_cm_id = rdma_create_id(&init_net, handler, conn,
|
|
RDMA_PS_TCP, IB_QPT_RC);
|
|
if (IS_ERR(ic->i_cm_id)) {
|
|
ret = PTR_ERR(ic->i_cm_id);
|
|
ic->i_cm_id = NULL;
|
|
rdsdebug("rdma_create_id() failed: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn);
|
|
|
|
if (ipv6_addr_v4mapped(&conn->c_faddr)) {
|
|
struct sockaddr_in *sin;
|
|
|
|
sin = (struct sockaddr_in *)&src;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3];
|
|
sin->sin_port = 0;
|
|
|
|
sin = (struct sockaddr_in *)&dest;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3];
|
|
sin->sin_port = htons(RDS_PORT);
|
|
} else {
|
|
struct sockaddr_in6 *sin6;
|
|
|
|
sin6 = (struct sockaddr_in6 *)&src;
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_addr = conn->c_laddr;
|
|
sin6->sin6_port = 0;
|
|
sin6->sin6_scope_id = conn->c_dev_if;
|
|
|
|
sin6 = (struct sockaddr_in6 *)&dest;
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_addr = conn->c_faddr;
|
|
sin6->sin6_port = htons(RDS_CM_PORT);
|
|
sin6->sin6_scope_id = conn->c_dev_if;
|
|
}
|
|
|
|
ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src,
|
|
(struct sockaddr *)&dest,
|
|
RDS_RDMA_RESOLVE_TIMEOUT_MS);
|
|
if (ret) {
|
|
rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id,
|
|
ret);
|
|
rdma_destroy_id(ic->i_cm_id);
|
|
ic->i_cm_id = NULL;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is so careful about only cleaning up resources that were built up
|
|
* so that it can be called at any point during startup. In fact it
|
|
* can be called multiple times for a given connection.
|
|
*/
|
|
void rds_ib_conn_path_shutdown(struct rds_conn_path *cp)
|
|
{
|
|
struct rds_connection *conn = cp->cp_conn;
|
|
struct rds_ib_connection *ic = conn->c_transport_data;
|
|
int err = 0;
|
|
|
|
rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id,
|
|
ic->i_pd, ic->i_send_cq, ic->i_recv_cq,
|
|
ic->i_cm_id ? ic->i_cm_id->qp : NULL);
|
|
|
|
if (ic->i_cm_id) {
|
|
rdsdebug("disconnecting cm %p\n", ic->i_cm_id);
|
|
err = rdma_disconnect(ic->i_cm_id);
|
|
if (err) {
|
|
/* Actually this may happen quite frequently, when
|
|
* an outgoing connect raced with an incoming connect.
|
|
*/
|
|
rdsdebug("failed to disconnect, cm: %p err %d\n",
|
|
ic->i_cm_id, err);
|
|
}
|
|
|
|
/* kick off "flush_worker" for all pools in order to reap
|
|
* all FRMR registrations that are still marked "FRMR_IS_INUSE"
|
|
*/
|
|
rds_ib_flush_mrs();
|
|
|
|
/*
|
|
* We want to wait for tx and rx completion to finish
|
|
* before we tear down the connection, but we have to be
|
|
* careful not to get stuck waiting on a send ring that
|
|
* only has unsignaled sends in it. We've shutdown new
|
|
* sends before getting here so by waiting for signaled
|
|
* sends to complete we're ensured that there will be no
|
|
* more tx processing.
|
|
*/
|
|
wait_event(rds_ib_ring_empty_wait,
|
|
rds_ib_ring_empty(&ic->i_recv_ring) &&
|
|
(atomic_read(&ic->i_signaled_sends) == 0) &&
|
|
(atomic_read(&ic->i_fastreg_inuse_count) == 0) &&
|
|
(atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR));
|
|
tasklet_kill(&ic->i_send_tasklet);
|
|
tasklet_kill(&ic->i_recv_tasklet);
|
|
|
|
atomic_set(&ic->i_cq_quiesce, 1);
|
|
|
|
/* first destroy the ib state that generates callbacks */
|
|
if (ic->i_cm_id->qp)
|
|
rdma_destroy_qp(ic->i_cm_id);
|
|
if (ic->i_send_cq) {
|
|
if (ic->rds_ibdev)
|
|
ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector);
|
|
ib_destroy_cq(ic->i_send_cq);
|
|
}
|
|
|
|
if (ic->i_recv_cq) {
|
|
if (ic->rds_ibdev)
|
|
ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector);
|
|
ib_destroy_cq(ic->i_recv_cq);
|
|
}
|
|
|
|
if (ic->rds_ibdev) {
|
|
struct dma_pool *pool;
|
|
|
|
pool = ic->rds_ibdev->rid_hdrs_pool;
|
|
|
|
/* then free the resources that ib callbacks use */
|
|
if (ic->i_send_hdrs) {
|
|
rds_dma_hdrs_free(pool, ic->i_send_hdrs,
|
|
ic->i_send_hdrs_dma,
|
|
ic->i_send_ring.w_nr);
|
|
ic->i_send_hdrs = NULL;
|
|
ic->i_send_hdrs_dma = NULL;
|
|
}
|
|
|
|
if (ic->i_recv_hdrs) {
|
|
rds_dma_hdrs_free(pool, ic->i_recv_hdrs,
|
|
ic->i_recv_hdrs_dma,
|
|
ic->i_recv_ring.w_nr);
|
|
ic->i_recv_hdrs = NULL;
|
|
ic->i_recv_hdrs_dma = NULL;
|
|
}
|
|
|
|
if (ic->i_ack) {
|
|
dma_pool_free(pool, ic->i_ack, ic->i_ack_dma);
|
|
ic->i_ack = NULL;
|
|
}
|
|
} else {
|
|
WARN_ON(ic->i_send_hdrs);
|
|
WARN_ON(ic->i_send_hdrs_dma);
|
|
WARN_ON(ic->i_recv_hdrs);
|
|
WARN_ON(ic->i_recv_hdrs_dma);
|
|
WARN_ON(ic->i_ack);
|
|
}
|
|
|
|
if (ic->i_sends)
|
|
rds_ib_send_clear_ring(ic);
|
|
if (ic->i_recvs)
|
|
rds_ib_recv_clear_ring(ic);
|
|
|
|
rdma_destroy_id(ic->i_cm_id);
|
|
|
|
/*
|
|
* Move connection back to the nodev list.
|
|
*/
|
|
if (ic->rds_ibdev)
|
|
rds_ib_remove_conn(ic->rds_ibdev, conn);
|
|
|
|
ic->i_cm_id = NULL;
|
|
ic->i_pd = NULL;
|
|
ic->i_send_cq = NULL;
|
|
ic->i_recv_cq = NULL;
|
|
}
|
|
BUG_ON(ic->rds_ibdev);
|
|
|
|
/* Clear pending transmit */
|
|
if (ic->i_data_op) {
|
|
struct rds_message *rm;
|
|
|
|
rm = container_of(ic->i_data_op, struct rds_message, data);
|
|
rds_message_put(rm);
|
|
ic->i_data_op = NULL;
|
|
}
|
|
|
|
/* Clear the ACK state */
|
|
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
|
|
#ifdef KERNEL_HAS_ATOMIC64
|
|
atomic64_set(&ic->i_ack_next, 0);
|
|
#else
|
|
ic->i_ack_next = 0;
|
|
#endif
|
|
ic->i_ack_recv = 0;
|
|
|
|
/* Clear flow control state */
|
|
ic->i_flowctl = 0;
|
|
atomic_set(&ic->i_credits, 0);
|
|
|
|
/* Re-init rings, but retain sizes. */
|
|
rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr);
|
|
rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr);
|
|
|
|
if (ic->i_ibinc) {
|
|
rds_inc_put(&ic->i_ibinc->ii_inc);
|
|
ic->i_ibinc = NULL;
|
|
}
|
|
|
|
vfree(ic->i_sends);
|
|
ic->i_sends = NULL;
|
|
vfree(ic->i_recvs);
|
|
ic->i_recvs = NULL;
|
|
ic->i_active_side = false;
|
|
}
|
|
|
|
int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp)
|
|
{
|
|
struct rds_ib_connection *ic;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/* XXX too lazy? */
|
|
ic = kzalloc(sizeof(struct rds_ib_connection), gfp);
|
|
if (!ic)
|
|
return -ENOMEM;
|
|
|
|
ret = rds_ib_recv_alloc_caches(ic, gfp);
|
|
if (ret) {
|
|
kfree(ic);
|
|
return ret;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&ic->ib_node);
|
|
tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send,
|
|
(unsigned long)ic);
|
|
tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv,
|
|
(unsigned long)ic);
|
|
mutex_init(&ic->i_recv_mutex);
|
|
#ifndef KERNEL_HAS_ATOMIC64
|
|
spin_lock_init(&ic->i_ack_lock);
|
|
#endif
|
|
atomic_set(&ic->i_signaled_sends, 0);
|
|
atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR);
|
|
|
|
/*
|
|
* rds_ib_conn_shutdown() waits for these to be emptied so they
|
|
* must be initialized before it can be called.
|
|
*/
|
|
rds_ib_ring_init(&ic->i_send_ring, 0);
|
|
rds_ib_ring_init(&ic->i_recv_ring, 0);
|
|
|
|
ic->conn = conn;
|
|
conn->c_transport_data = ic;
|
|
|
|
spin_lock_irqsave(&ib_nodev_conns_lock, flags);
|
|
list_add_tail(&ic->ib_node, &ib_nodev_conns);
|
|
spin_unlock_irqrestore(&ib_nodev_conns_lock, flags);
|
|
|
|
|
|
rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free a connection. Connection must be shut down and not set for reconnect.
|
|
*/
|
|
void rds_ib_conn_free(void *arg)
|
|
{
|
|
struct rds_ib_connection *ic = arg;
|
|
spinlock_t *lock_ptr;
|
|
|
|
rdsdebug("ic %p\n", ic);
|
|
|
|
/*
|
|
* Conn is either on a dev's list or on the nodev list.
|
|
* A race with shutdown() or connect() would cause problems
|
|
* (since rds_ibdev would change) but that should never happen.
|
|
*/
|
|
lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock;
|
|
|
|
spin_lock_irq(lock_ptr);
|
|
list_del(&ic->ib_node);
|
|
spin_unlock_irq(lock_ptr);
|
|
|
|
rds_ib_recv_free_caches(ic);
|
|
|
|
kfree(ic);
|
|
}
|
|
|
|
|
|
/*
|
|
* An error occurred on the connection
|
|
*/
|
|
void
|
|
__rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
rds_conn_drop(conn);
|
|
|
|
va_start(ap, fmt);
|
|
vprintk(fmt, ap);
|
|
va_end(ap);
|
|
}
|