linux/drivers/infiniband/core/addr.c
Johannes Berg fceb6435e8 netlink: pass extended ACK struct to parsing functions
Pass the new extended ACK reporting struct to all of the generic
netlink parsing functions. For now, pass NULL in almost all callers
(except for some in the core.)

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-13 13:58:22 -04:00

826 lines
20 KiB
C

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <net/arp.h>
#include <net/neighbour.h>
#include <net/route.h>
#include <net/netevent.h>
#include <net/addrconf.h>
#include <net/ip6_route.h>
#include <rdma/ib_addr.h>
#include <rdma/ib.h>
#include <rdma/rdma_netlink.h>
#include <net/netlink.h>
#include "core_priv.h"
struct addr_req {
struct list_head list;
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
struct rdma_dev_addr *addr;
struct rdma_addr_client *client;
void *context;
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context);
unsigned long timeout;
int status;
u32 seq;
};
static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
static void process_req(struct work_struct *work);
static DEFINE_MUTEX(lock);
static LIST_HEAD(req_list);
static DECLARE_DELAYED_WORK(work, process_req);
static struct workqueue_struct *addr_wq;
static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
.len = sizeof(struct rdma_nla_ls_gid)},
};
static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
{
struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
int ret;
if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
return false;
ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
nlmsg_len(nlh), ib_nl_addr_policy, NULL);
if (ret)
return false;
return true;
}
static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
{
const struct nlattr *head, *curr;
union ib_gid gid;
struct addr_req *req;
int len, rem;
int found = 0;
head = (const struct nlattr *)nlmsg_data(nlh);
len = nlmsg_len(nlh);
nla_for_each_attr(curr, head, len, rem) {
if (curr->nla_type == LS_NLA_TYPE_DGID)
memcpy(&gid, nla_data(curr), nla_len(curr));
}
mutex_lock(&lock);
list_for_each_entry(req, &req_list, list) {
if (nlh->nlmsg_seq != req->seq)
continue;
/* We set the DGID part, the rest was set earlier */
rdma_addr_set_dgid(req->addr, &gid);
req->status = 0;
found = 1;
break;
}
mutex_unlock(&lock);
if (!found)
pr_info("Couldn't find request waiting for DGID: %pI6\n",
&gid);
}
int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
struct netlink_callback *cb)
{
const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
!(NETLINK_CB(skb).sk) ||
!netlink_capable(skb, CAP_NET_ADMIN))
return -EPERM;
if (ib_nl_is_good_ip_resp(nlh))
ib_nl_process_good_ip_rsep(nlh);
return skb->len;
}
static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
const void *daddr,
u32 seq, u16 family)
{
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
struct rdma_ls_ip_resolve_header *header;
void *data;
size_t size;
int attrtype;
int len;
if (family == AF_INET) {
size = sizeof(struct in_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
} else {
size = sizeof(struct in6_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
}
len = nla_total_size(sizeof(size));
len += NLMSG_ALIGN(sizeof(*header));
skb = nlmsg_new(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
if (!data) {
nlmsg_free(skb);
return -ENODATA;
}
/* Construct the family header first */
header = (struct rdma_ls_ip_resolve_header *)
skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
header->ifindex = dev_addr->bound_dev_if;
nla_put(skb, attrtype, size, daddr);
/* Repair the nlmsg header length */
nlmsg_end(skb, nlh);
ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
/* Make the request retry, so when we get the response from userspace
* we will have something.
*/
return -ENODATA;
}
int rdma_addr_size(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return sizeof(struct sockaddr_in);
case AF_INET6:
return sizeof(struct sockaddr_in6);
case AF_IB:
return sizeof(struct sockaddr_ib);
default:
return 0;
}
}
EXPORT_SYMBOL(rdma_addr_size);
static struct rdma_addr_client self;
void rdma_addr_register_client(struct rdma_addr_client *client)
{
atomic_set(&client->refcount, 1);
init_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_register_client);
static inline void put_client(struct rdma_addr_client *client)
{
if (atomic_dec_and_test(&client->refcount))
complete(&client->comp);
}
void rdma_addr_unregister_client(struct rdma_addr_client *client)
{
put_client(client);
wait_for_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_unregister_client);
int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
const unsigned char *dst_dev_addr)
{
dev_addr->dev_type = dev->type;
memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
if (dst_dev_addr)
memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
dev_addr->bound_dev_if = dev->ifindex;
return 0;
}
EXPORT_SYMBOL(rdma_copy_addr);
int rdma_translate_ip(const struct sockaddr *addr,
struct rdma_dev_addr *dev_addr,
u16 *vlan_id)
{
struct net_device *dev;
int ret = -EADDRNOTAVAIL;
if (dev_addr->bound_dev_if) {
dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
if (!dev)
return -ENODEV;
ret = rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
return ret;
}
switch (addr->sa_family) {
case AF_INET:
dev = ip_dev_find(dev_addr->net,
((const struct sockaddr_in *)addr)->sin_addr.s_addr);
if (!dev)
return ret;
ret = rdma_copy_addr(dev_addr, dev, NULL);
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
dev_put(dev);
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
rcu_read_lock();
for_each_netdev_rcu(dev_addr->net, dev) {
if (ipv6_chk_addr(dev_addr->net,
&((const struct sockaddr_in6 *)addr)->sin6_addr,
dev, 1)) {
ret = rdma_copy_addr(dev_addr, dev, NULL);
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
break;
}
}
rcu_read_unlock();
break;
#endif
}
return ret;
}
EXPORT_SYMBOL(rdma_translate_ip);
static void set_timeout(unsigned long time)
{
unsigned long delay;
delay = time - jiffies;
if ((long)delay < 0)
delay = 0;
mod_delayed_work(addr_wq, &work, delay);
}
static void queue_req(struct addr_req *req)
{
struct addr_req *temp_req;
mutex_lock(&lock);
list_for_each_entry_reverse(temp_req, &req_list, list) {
if (time_after_eq(req->timeout, temp_req->timeout))
break;
}
list_add(&req->list, &temp_req->list);
if (req_list.next == &req->list)
set_timeout(req->timeout);
mutex_unlock(&lock);
}
static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const void *daddr, u32 seq, u16 family)
{
if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
return -EADDRNOTAVAIL;
/* We fill in what we can, the response will fill the rest */
rdma_copy_addr(dev_addr, dst->dev, NULL);
return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
}
static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const void *daddr)
{
struct neighbour *n;
int ret;
n = dst_neigh_lookup(dst, daddr);
rcu_read_lock();
if (!n || !(n->nud_state & NUD_VALID)) {
if (n)
neigh_event_send(n, NULL);
ret = -ENODATA;
} else {
ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
}
rcu_read_unlock();
if (n)
neigh_release(n);
return ret;
}
static bool has_gateway(struct dst_entry *dst, sa_family_t family)
{
struct rtable *rt;
struct rt6_info *rt6;
if (family == AF_INET) {
rt = container_of(dst, struct rtable, dst);
return rt->rt_uses_gateway;
}
rt6 = container_of(dst, struct rt6_info, dst);
return rt6->rt6i_flags & RTF_GATEWAY;
}
static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const struct sockaddr *dst_in, u32 seq)
{
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
const void *daddr = (dst_in->sa_family == AF_INET) ?
(const void *)&dst_in4->sin_addr.s_addr :
(const void *)&dst_in6->sin6_addr;
sa_family_t family = dst_in->sa_family;
/* Gateway + ARPHRD_INFINIBAND -> IB router */
if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
else
return dst_fetch_ha(dst, dev_addr, daddr);
}
static int addr4_resolve(struct sockaddr_in *src_in,
const struct sockaddr_in *dst_in,
struct rdma_dev_addr *addr,
struct rtable **prt)
{
__be32 src_ip = src_in->sin_addr.s_addr;
__be32 dst_ip = dst_in->sin_addr.s_addr;
struct rtable *rt;
struct flowi4 fl4;
int ret;
memset(&fl4, 0, sizeof(fl4));
fl4.daddr = dst_ip;
fl4.saddr = src_ip;
fl4.flowi4_oif = addr->bound_dev_if;
rt = ip_route_output_key(addr->net, &fl4);
if (IS_ERR(rt)) {
ret = PTR_ERR(rt);
goto out;
}
src_in->sin_family = AF_INET;
src_in->sin_addr.s_addr = fl4.saddr;
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV4;
addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
*prt = rt;
return 0;
out:
return ret;
}
#if IS_ENABLED(CONFIG_IPV6)
static int addr6_resolve(struct sockaddr_in6 *src_in,
const struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
struct flowi6 fl6;
struct dst_entry *dst;
struct rt6_info *rt;
int ret;
memset(&fl6, 0, sizeof fl6);
fl6.daddr = dst_in->sin6_addr;
fl6.saddr = src_in->sin6_addr;
fl6.flowi6_oif = addr->bound_dev_if;
dst = ip6_route_output(addr->net, NULL, &fl6);
if ((ret = dst->error))
goto put;
rt = (struct rt6_info *)dst;
if (ipv6_addr_any(&fl6.saddr)) {
ret = ipv6_dev_get_saddr(addr->net, ip6_dst_idev(dst)->dev,
&fl6.daddr, 0, &fl6.saddr);
if (ret)
goto put;
src_in->sin6_family = AF_INET6;
src_in->sin6_addr = fl6.saddr;
}
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt6i_flags & RTF_GATEWAY &&
ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV6;
addr->hoplimit = ip6_dst_hoplimit(dst);
*pdst = dst;
return 0;
put:
dst_release(dst);
return ret;
}
#else
static int addr6_resolve(struct sockaddr_in6 *src_in,
const struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
return -EADDRNOTAVAIL;
}
#endif
static int addr_resolve_neigh(struct dst_entry *dst,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
u32 seq)
{
if (dst->dev->flags & IFF_LOOPBACK) {
int ret;
ret = rdma_translate_ip(dst_in, addr, NULL);
if (!ret)
memcpy(addr->dst_dev_addr, addr->src_dev_addr,
MAX_ADDR_LEN);
return ret;
}
/* If the device doesn't do ARP internally */
if (!(dst->dev->flags & IFF_NOARP))
return fetch_ha(dst, addr, dst_in, seq);
return rdma_copy_addr(addr, dst->dev, NULL);
}
static int addr_resolve(struct sockaddr *src_in,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
bool resolve_neigh,
u32 seq)
{
struct net_device *ndev;
struct dst_entry *dst;
int ret;
if (src_in->sa_family == AF_INET) {
struct rtable *rt = NULL;
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
ret = addr4_resolve((struct sockaddr_in *)src_in,
dst_in4, addr, &rt);
if (ret)
return ret;
if (resolve_neigh)
ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
ndev = rt->dst.dev;
dev_hold(ndev);
ip_rt_put(rt);
} else {
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
ret = addr6_resolve((struct sockaddr_in6 *)src_in,
dst_in6, addr,
&dst);
if (ret)
return ret;
if (resolve_neigh)
ret = addr_resolve_neigh(dst, dst_in, addr, seq);
ndev = dst->dev;
dev_hold(ndev);
dst_release(dst);
}
addr->bound_dev_if = ndev->ifindex;
addr->net = dev_net(ndev);
dev_put(ndev);
return ret;
}
static void process_req(struct work_struct *work)
{
struct addr_req *req, *temp_req;
struct sockaddr *src_in, *dst_in;
struct list_head done_list;
INIT_LIST_HEAD(&done_list);
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->status == -ENODATA) {
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr,
true, req->seq);
if (req->status && time_after_eq(jiffies, req->timeout))
req->status = -ETIMEDOUT;
else if (req->status == -ENODATA)
continue;
}
list_move_tail(&req->list, &done_list);
}
if (!list_empty(&req_list)) {
req = list_entry(req_list.next, struct addr_req, list);
set_timeout(req->timeout);
}
mutex_unlock(&lock);
list_for_each_entry_safe(req, temp_req, &done_list, list) {
list_del(&req->list);
req->callback(req->status, (struct sockaddr *) &req->src_addr,
req->addr, req->context);
put_client(req->client);
kfree(req);
}
}
int rdma_resolve_ip(struct rdma_addr_client *client,
struct sockaddr *src_addr, struct sockaddr *dst_addr,
struct rdma_dev_addr *addr, int timeout_ms,
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context),
void *context)
{
struct sockaddr *src_in, *dst_in;
struct addr_req *req;
int ret = 0;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family) {
ret = -EINVAL;
goto err;
}
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
req->addr = addr;
req->callback = callback;
req->context = context;
req->client = client;
atomic_inc(&client->refcount);
req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
switch (req->status) {
case 0:
req->timeout = jiffies;
queue_req(req);
break;
case -ENODATA:
req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
queue_req(req);
break;
default:
ret = req->status;
atomic_dec(&client->refcount);
goto err;
}
return ret;
err:
kfree(req);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_ip);
int rdma_resolve_ip_route(struct sockaddr *src_addr,
const struct sockaddr *dst_addr,
struct rdma_dev_addr *addr)
{
struct sockaddr_storage ssrc_addr = {};
struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family)
return -EINVAL;
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
return addr_resolve(src_in, dst_addr, addr, false, 0);
}
EXPORT_SYMBOL(rdma_resolve_ip_route);
void rdma_addr_cancel(struct rdma_dev_addr *addr)
{
struct addr_req *req, *temp_req;
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->addr == addr) {
req->status = -ECANCELED;
req->timeout = jiffies;
list_move(&req->list, &req_list);
set_timeout(req->timeout);
break;
}
}
mutex_unlock(&lock);
}
EXPORT_SYMBOL(rdma_addr_cancel);
struct resolve_cb_context {
struct rdma_dev_addr *addr;
struct completion comp;
int status;
};
static void resolve_cb(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context)
{
if (!status)
memcpy(((struct resolve_cb_context *)context)->addr,
addr, sizeof(struct rdma_dev_addr));
((struct resolve_cb_context *)context)->status = status;
complete(&((struct resolve_cb_context *)context)->comp);
}
int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
const union ib_gid *dgid,
u8 *dmac, u16 *vlan_id, int *if_index,
int *hoplimit)
{
int ret = 0;
struct rdma_dev_addr dev_addr;
struct resolve_cb_context ctx;
struct net_device *dev;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} sgid_addr, dgid_addr;
rdma_gid2ip(&sgid_addr._sockaddr, sgid);
rdma_gid2ip(&dgid_addr._sockaddr, dgid);
memset(&dev_addr, 0, sizeof(dev_addr));
if (if_index)
dev_addr.bound_dev_if = *if_index;
dev_addr.net = &init_net;
ctx.addr = &dev_addr;
init_completion(&ctx.comp);
ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
&dev_addr, 1000, resolve_cb, &ctx);
if (ret)
return ret;
wait_for_completion(&ctx.comp);
ret = ctx.status;
if (ret)
return ret;
memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
if (!dev)
return -ENODEV;
if (if_index)
*if_index = dev_addr.bound_dev_if;
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
if (hoplimit)
*hoplimit = dev_addr.hoplimit;
dev_put(dev);
return ret;
}
EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
{
int ret = 0;
struct rdma_dev_addr dev_addr;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} gid_addr;
rdma_gid2ip(&gid_addr._sockaddr, sgid);
memset(&dev_addr, 0, sizeof(dev_addr));
dev_addr.net = &init_net;
ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
if (ret)
return ret;
memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
return ret;
}
EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
static int netevent_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
if (event == NETEVENT_NEIGH_UPDATE) {
struct neighbour *neigh = ctx;
if (neigh->nud_state & NUD_VALID) {
set_timeout(jiffies);
}
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = netevent_callback
};
int addr_init(void)
{
addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
if (!addr_wq)
return -ENOMEM;
register_netevent_notifier(&nb);
rdma_addr_register_client(&self);
return 0;
}
void addr_cleanup(void)
{
rdma_addr_unregister_client(&self);
unregister_netevent_notifier(&nb);
destroy_workqueue(addr_wq);
}