linux/drivers/net/ethernet/intel/ice/ice_switch.c
Anirudh Venkataramanan d76a60ba7a ice: Add support for VLANs and offloads
This patch adds support for VLANs. When a VLAN is created a switch filter
is added to direct the VLAN traffic to the corresponding VSI. When a VLAN
is deleted, the filter is deleted as well.

This patch also adds support for the following hardware offloads.
    1) VLAN tag insertion/stripping
    2) Receive Side Scaling (RSS)
    3) Tx checksum and TCP segmentation
    4) Rx checksum

Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-03-26 11:54:49 -07:00

1807 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice_switch.h"
#define ICE_ETH_DA_OFFSET 0
#define ICE_ETH_ETHTYPE_OFFSET 12
#define ICE_ETH_VLAN_TCI_OFFSET 14
#define ICE_MAX_VLAN_ID 0xFFF
/* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
* struct to configure any switch filter rules.
* {DA (6 bytes), SA(6 bytes),
* Ether type (2 bytes for header without VLAN tag) OR
* VLAN tag (4 bytes for header with VLAN tag) }
*
* Word on Hardcoded values
* byte 0 = 0x2: to identify it as locally administered DA MAC
* byte 6 = 0x2: to identify it as locally administered SA MAC
* byte 12 = 0x81 & byte 13 = 0x00:
* In case of VLAN filter first two bytes defines ether type (0x8100)
* and remaining two bytes are placeholder for programming a given VLAN id
* In case of Ether type filter it is treated as header without VLAN tag
* and byte 12 and 13 is used to program a given Ether type instead
*/
#define DUMMY_ETH_HDR_LEN 16
static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
0x2, 0, 0, 0, 0, 0,
0x81, 0, 0, 0};
#define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \
(sizeof(struct ice_aqc_sw_rules_elem) - \
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
sizeof(struct ice_sw_rule_lkup_rx_tx) + DUMMY_ETH_HDR_LEN - 1)
#define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \
(sizeof(struct ice_aqc_sw_rules_elem) - \
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
sizeof(struct ice_sw_rule_lkup_rx_tx) - 1)
#define ICE_SW_RULE_LG_ACT_SIZE(n) \
(sizeof(struct ice_aqc_sw_rules_elem) - \
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
sizeof(struct ice_sw_rule_lg_act) - \
sizeof(((struct ice_sw_rule_lg_act *)0)->act) + \
((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act)))
#define ICE_SW_RULE_VSI_LIST_SIZE(n) \
(sizeof(struct ice_aqc_sw_rules_elem) - \
sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
sizeof(struct ice_sw_rule_vsi_list) - \
sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi) + \
((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi)))
/**
* ice_aq_alloc_free_res - command to allocate/free resources
* @hw: pointer to the hw struct
* @num_entries: number of resource entries in buffer
* @buf: Indirect buffer to hold data parameters and response
* @buf_size: size of buffer for indirect commands
* @opc: pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Helper function to allocate/free resources using the admin queue commands
*/
static enum ice_status
ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_alloc_free_res_cmd *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.sw_res_ctrl;
if (!buf)
return ICE_ERR_PARAM;
if (buf_size < (num_entries * sizeof(buf->elem[0])))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->num_entries = cpu_to_le16(num_entries);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_aq_get_sw_cfg - get switch configuration
* @hw: pointer to the hardware structure
* @buf: pointer to the result buffer
* @buf_size: length of the buffer available for response
* @req_desc: pointer to requested descriptor
* @num_elems: pointer to number of elements
* @cd: pointer to command details structure or NULL
*
* Get switch configuration (0x0200) to be placed in 'buff'.
* This admin command returns information such as initial VSI/port number
* and switch ID it belongs to.
*
* NOTE: *req_desc is both an input/output parameter.
* The caller of this function first calls this function with *request_desc set
* to 0. If the response from f/w has *req_desc set to 0, all the switch
* configuration information has been returned; if non-zero (meaning not all
* the information was returned), the caller should call this function again
* with *req_desc set to the previous value returned by f/w to get the
* next block of switch configuration information.
*
* *num_elems is output only parameter. This reflects the number of elements
* in response buffer. The caller of this function to use *num_elems while
* parsing the response buffer.
*/
static enum ice_status
ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp *buf,
u16 buf_size, u16 *req_desc, u16 *num_elems,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_sw_cfg *cmd;
enum ice_status status;
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
cmd = &desc.params.get_sw_conf;
cmd->element = cpu_to_le16(*req_desc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status) {
*req_desc = le16_to_cpu(cmd->element);
*num_elems = le16_to_cpu(cmd->num_elems);
}
return status;
}
/**
* ice_aq_add_vsi
* @hw: pointer to the hw struct
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Add a VSI context to the hardware (0x0210)
*/
enum ice_status
ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *res;
struct ice_aqc_add_get_update_free_vsi *cmd;
enum ice_status status;
struct ice_aq_desc desc;
cmd = &desc.params.vsi_cmd;
res = (struct ice_aqc_add_update_free_vsi_resp *)&desc.params.raw;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
if (!vsi_ctx->alloc_from_pool)
cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
ICE_AQ_VSI_IS_VALID);
cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cd);
if (!status) {
vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
}
return status;
}
/**
* ice_aq_update_vsi
* @hw: pointer to the hw struct
* @vsi_ctx: pointer to a VSI context struct
* @cd: pointer to command details structure or NULL
*
* Update VSI context in the hardware (0x0211)
*/
enum ice_status
ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *resp;
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
resp = (struct ice_aqc_add_update_free_vsi_resp *)&desc.params.raw;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
sizeof(vsi_ctx->info), cd);
if (!status) {
vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
}
return status;
}
/**
* ice_aq_free_vsi
* @hw: pointer to the hw struct
* @vsi_ctx: pointer to a VSI context struct
* @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
* @cd: pointer to command details structure or NULL
*
* Get VSI context info from hardware (0x0213)
*/
enum ice_status
ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
bool keep_vsi_alloc, struct ice_sq_cd *cd)
{
struct ice_aqc_add_update_free_vsi_resp *resp;
struct ice_aqc_add_get_update_free_vsi *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.vsi_cmd;
resp = (struct ice_aqc_add_update_free_vsi_resp *)&desc.params.raw;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
if (keep_vsi_alloc)
cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
}
return status;
}
/**
* ice_aq_alloc_free_vsi_list
* @hw: pointer to the hw struct
* @vsi_list_id: VSI list id returned or used for lookup
* @lkup_type: switch rule filter lookup type
* @opc: switch rules population command type - pass in the command opcode
*
* allocates or free a VSI list resource
*/
static enum ice_status
ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
enum ice_sw_lkup_type lkup_type,
enum ice_adminq_opc opc)
{
struct ice_aqc_alloc_free_res_elem *sw_buf;
struct ice_aqc_res_elem *vsi_ele;
enum ice_status status;
u16 buf_len;
buf_len = sizeof(*sw_buf);
sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
if (!sw_buf)
return ICE_ERR_NO_MEMORY;
sw_buf->num_elems = cpu_to_le16(1);
if (lkup_type == ICE_SW_LKUP_MAC ||
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
lkup_type == ICE_SW_LKUP_PROMISC ||
lkup_type == ICE_SW_LKUP_PROMISC_VLAN) {
sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
} else if (lkup_type == ICE_SW_LKUP_VLAN) {
sw_buf->res_type =
cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
} else {
status = ICE_ERR_PARAM;
goto ice_aq_alloc_free_vsi_list_exit;
}
if (opc == ice_aqc_opc_free_res)
sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
if (status)
goto ice_aq_alloc_free_vsi_list_exit;
if (opc == ice_aqc_opc_alloc_res) {
vsi_ele = &sw_buf->elem[0];
*vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
}
ice_aq_alloc_free_vsi_list_exit:
devm_kfree(ice_hw_to_dev(hw), sw_buf);
return status;
}
/**
* ice_aq_sw_rules - add/update/remove switch rules
* @hw: pointer to the hw struct
* @rule_list: pointer to switch rule population list
* @rule_list_sz: total size of the rule list in bytes
* @num_rules: number of switch rules in the rule_list
* @opc: switch rules population command type - pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
*/
static enum ice_status
ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
if (opc != ice_aqc_opc_add_sw_rules &&
opc != ice_aqc_opc_update_sw_rules &&
opc != ice_aqc_opc_remove_sw_rules)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
desc.params.sw_rules.num_rules_fltr_entry_index =
cpu_to_le16(num_rules);
return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
}
/* ice_init_port_info - Initialize port_info with switch configuration data
* @pi: pointer to port_info
* @vsi_port_num: VSI number or port number
* @type: Type of switch element (port or VSI)
* @swid: switch ID of the switch the element is attached to
* @pf_vf_num: PF or VF number
* @is_vf: true if the element is a VF, false otherwise
*/
static void
ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
u16 swid, u16 pf_vf_num, bool is_vf)
{
switch (type) {
case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
pi->sw_id = swid;
pi->pf_vf_num = pf_vf_num;
pi->is_vf = is_vf;
pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
break;
default:
ice_debug(pi->hw, ICE_DBG_SW,
"incorrect VSI/port type received\n");
break;
}
}
/* ice_get_initial_sw_cfg - Get initial port and default VSI data
* @hw: pointer to the hardware structure
*/
enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
{
struct ice_aqc_get_sw_cfg_resp *rbuf;
enum ice_status status;
u16 req_desc = 0;
u16 num_elems;
u16 i;
rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN,
GFP_KERNEL);
if (!rbuf)
return ICE_ERR_NO_MEMORY;
/* Multiple calls to ice_aq_get_sw_cfg may be required
* to get all the switch configuration information. The need
* for additional calls is indicated by ice_aq_get_sw_cfg
* writing a non-zero value in req_desc
*/
do {
status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
&req_desc, &num_elems, NULL);
if (status)
break;
for (i = 0; i < num_elems; i++) {
struct ice_aqc_get_sw_cfg_resp_elem *ele;
u16 pf_vf_num, swid, vsi_port_num;
bool is_vf = false;
u8 type;
ele = rbuf[i].elements;
vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
swid = le16_to_cpu(ele->swid);
if (le16_to_cpu(ele->pf_vf_num) &
ICE_AQC_GET_SW_CONF_RESP_IS_VF)
is_vf = true;
type = le16_to_cpu(ele->vsi_port_num) >>
ICE_AQC_GET_SW_CONF_RESP_TYPE_S;
if (type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
/* FW VSI is not needed. Just continue. */
continue;
}
ice_init_port_info(hw->port_info, vsi_port_num,
type, swid, pf_vf_num, is_vf);
}
} while (req_desc && !status);
devm_kfree(ice_hw_to_dev(hw), (void *)rbuf);
return status;
}
/**
* ice_fill_sw_info - Helper function to populate lb_en and lan_en
* @hw: pointer to the hardware structure
* @f_info: filter info structure to fill/update
*
* This helper function populates the lb_en and lan_en elements of the provided
* ice_fltr_info struct using the switch's type and characteristics of the
* switch rule being configured.
*/
static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *f_info)
{
f_info->lb_en = false;
f_info->lan_en = false;
if ((f_info->flag & ICE_FLTR_TX) &&
(f_info->fltr_act == ICE_FWD_TO_VSI ||
f_info->fltr_act == ICE_FWD_TO_VSI_LIST ||
f_info->fltr_act == ICE_FWD_TO_Q ||
f_info->fltr_act == ICE_FWD_TO_QGRP)) {
f_info->lb_en = true;
if (!(hw->evb_veb && f_info->lkup_type == ICE_SW_LKUP_MAC &&
is_unicast_ether_addr(f_info->l_data.mac.mac_addr)))
f_info->lan_en = true;
}
}
/**
* ice_fill_sw_rule - Helper function to fill switch rule structure
* @hw: pointer to the hardware structure
* @f_info: entry containing packet forwarding information
* @s_rule: switch rule structure to be filled in based on mac_entry
* @opc: switch rules population command type - pass in the command opcode
*/
static void
ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc)
{
u16 vlan_id = ICE_MAX_VLAN_ID + 1;
u8 eth_hdr[DUMMY_ETH_HDR_LEN];
void *daddr = NULL;
u32 act = 0;
__be16 *off;
if (opc == ice_aqc_opc_remove_sw_rules) {
s_rule->pdata.lkup_tx_rx.act = 0;
s_rule->pdata.lkup_tx_rx.index =
cpu_to_le16(f_info->fltr_rule_id);
s_rule->pdata.lkup_tx_rx.hdr_len = 0;
return;
}
/* initialize the ether header with a dummy header */
memcpy(eth_hdr, dummy_eth_header, sizeof(dummy_eth_header));
ice_fill_sw_info(hw, f_info);
switch (f_info->fltr_act) {
case ICE_FWD_TO_VSI:
act |= (f_info->fwd_id.vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
ICE_SINGLE_ACT_VSI_ID_M;
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_VSI_LIST:
act |= ICE_SINGLE_ACT_VSI_LIST;
act |= (f_info->fwd_id.vsi_list_id <<
ICE_SINGLE_ACT_VSI_LIST_ID_S) &
ICE_SINGLE_ACT_VSI_LIST_ID_M;
if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
act |= ICE_SINGLE_ACT_VSI_FORWARDING |
ICE_SINGLE_ACT_VALID_BIT;
break;
case ICE_FWD_TO_Q:
act |= ICE_SINGLE_ACT_TO_Q;
act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
ICE_SINGLE_ACT_Q_INDEX_M;
break;
case ICE_FWD_TO_QGRP:
act |= ICE_SINGLE_ACT_TO_Q;
act |= (f_info->qgrp_size << ICE_SINGLE_ACT_Q_REGION_S) &
ICE_SINGLE_ACT_Q_REGION_M;
break;
case ICE_DROP_PACKET:
act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP;
break;
default:
return;
}
if (f_info->lb_en)
act |= ICE_SINGLE_ACT_LB_ENABLE;
if (f_info->lan_en)
act |= ICE_SINGLE_ACT_LAN_ENABLE;
switch (f_info->lkup_type) {
case ICE_SW_LKUP_MAC:
daddr = f_info->l_data.mac.mac_addr;
break;
case ICE_SW_LKUP_VLAN:
vlan_id = f_info->l_data.vlan.vlan_id;
if (f_info->fltr_act == ICE_FWD_TO_VSI ||
f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
act |= ICE_SINGLE_ACT_PRUNE;
act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
}
break;
case ICE_SW_LKUP_ETHERTYPE_MAC:
daddr = f_info->l_data.ethertype_mac.mac_addr;
/* fall-through */
case ICE_SW_LKUP_ETHERTYPE:
off = (__be16 *)&eth_hdr[ICE_ETH_ETHTYPE_OFFSET];
*off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
break;
case ICE_SW_LKUP_MAC_VLAN:
daddr = f_info->l_data.mac_vlan.mac_addr;
vlan_id = f_info->l_data.mac_vlan.vlan_id;
break;
case ICE_SW_LKUP_PROMISC_VLAN:
vlan_id = f_info->l_data.mac_vlan.vlan_id;
/* fall-through */
case ICE_SW_LKUP_PROMISC:
daddr = f_info->l_data.mac_vlan.mac_addr;
break;
default:
break;
}
s_rule->type = (f_info->flag & ICE_FLTR_RX) ?
cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
/* Recipe set depending on lookup type */
s_rule->pdata.lkup_tx_rx.recipe_id = cpu_to_le16(f_info->lkup_type);
s_rule->pdata.lkup_tx_rx.src = cpu_to_le16(f_info->src);
s_rule->pdata.lkup_tx_rx.act = cpu_to_le32(act);
if (daddr)
ether_addr_copy(&eth_hdr[ICE_ETH_DA_OFFSET], daddr);
if (!(vlan_id > ICE_MAX_VLAN_ID)) {
off = (__be16 *)&eth_hdr[ICE_ETH_VLAN_TCI_OFFSET];
*off = cpu_to_be16(vlan_id);
}
/* Create the switch rule with the final dummy Ethernet header */
if (opc != ice_aqc_opc_update_sw_rules)
s_rule->pdata.lkup_tx_rx.hdr_len = cpu_to_le16(sizeof(eth_hdr));
memcpy(s_rule->pdata.lkup_tx_rx.hdr, eth_hdr, sizeof(eth_hdr));
}
/**
* ice_add_marker_act
* @hw: pointer to the hardware structure
* @m_ent: the management entry for which sw marker needs to be added
* @sw_marker: sw marker to tag the Rx descriptor with
* @l_id: large action resource id
*
* Create a large action to hold software marker and update the switch rule
* entry pointed by m_ent with newly created large action
*/
static enum ice_status
ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
u16 sw_marker, u16 l_id)
{
struct ice_aqc_sw_rules_elem *lg_act, *rx_tx;
/* For software marker we need 3 large actions
* 1. FWD action: FWD TO VSI or VSI LIST
* 2. GENERIC VALUE action to hold the profile id
* 3. GENERIC VALUE action to hold the software marker id
*/
const u16 num_lg_acts = 3;
enum ice_status status;
u16 lg_act_size;
u16 rules_size;
u16 vsi_info;
u32 act;
if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
/* Create two back-to-back switch rules and submit them to the HW using
* one memory buffer:
* 1. Large Action
* 2. Look up tx rx
*/
lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts);
rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
if (!lg_act)
return ICE_ERR_NO_MEMORY;
rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
/* Fill in the first switch rule i.e. large action */
lg_act->type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
lg_act->pdata.lg_act.index = cpu_to_le16(l_id);
lg_act->pdata.lg_act.size = cpu_to_le16(num_lg_acts);
/* First action VSI forwarding or VSI list forwarding depending on how
* many VSIs
*/
vsi_info = (m_ent->vsi_count > 1) ?
m_ent->fltr_info.fwd_id.vsi_list_id :
m_ent->fltr_info.fwd_id.vsi_id;
act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
act |= (vsi_info << ICE_LG_ACT_VSI_LIST_ID_S) &
ICE_LG_ACT_VSI_LIST_ID_M;
if (m_ent->vsi_count > 1)
act |= ICE_LG_ACT_VSI_LIST;
lg_act->pdata.lg_act.act[0] = cpu_to_le32(act);
/* Second action descriptor type */
act = ICE_LG_ACT_GENERIC;
act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
lg_act->pdata.lg_act.act[1] = cpu_to_le32(act);
act = (7 << ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_VALUE_M;
/* Third action Marker value */
act |= ICE_LG_ACT_GENERIC;
act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
ICE_LG_ACT_GENERIC_VALUE_M;
act |= (0 << ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_VALUE_M;
lg_act->pdata.lg_act.act[2] = cpu_to_le32(act);
/* call the fill switch rule to fill the lookup tx rx structure */
ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
ice_aqc_opc_update_sw_rules);
/* Update the action to point to the large action id */
rx_tx->pdata.lkup_tx_rx.act =
cpu_to_le32(ICE_SINGLE_ACT_PTR |
((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
ICE_SINGLE_ACT_PTR_VAL_M));
/* Use the filter rule id of the previously created rule with single
* act. Once the update happens, hardware will treat this as large
* action
*/
rx_tx->pdata.lkup_tx_rx.index =
cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
ice_aqc_opc_update_sw_rules, NULL);
if (!status) {
m_ent->lg_act_idx = l_id;
m_ent->sw_marker_id = sw_marker;
}
devm_kfree(ice_hw_to_dev(hw), lg_act);
return status;
}
/**
* ice_create_vsi_list_map
* @hw: pointer to the hardware structure
* @vsi_array: array of VSIs to form a VSI list
* @num_vsi: num VSI in the array
* @vsi_list_id: VSI list id generated as part of allocate resource
*
* Helper function to create a new entry of VSI list id to VSI mapping
* using the given VSI list id
*/
static struct ice_vsi_list_map_info *
ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_array, u16 num_vsi,
u16 vsi_list_id)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_vsi_list_map_info *v_map;
int i;
v_map = devm_kcalloc(ice_hw_to_dev(hw), 1, sizeof(*v_map), GFP_KERNEL);
if (!v_map)
return NULL;
v_map->vsi_list_id = vsi_list_id;
for (i = 0; i < num_vsi; i++)
set_bit(vsi_array[i], v_map->vsi_map);
list_add(&v_map->list_entry, &sw->vsi_list_map_head);
return v_map;
}
/**
* ice_update_vsi_list_rule
* @hw: pointer to the hardware structure
* @vsi_array: array of VSIs to form a VSI list
* @num_vsi: num VSI in the array
* @vsi_list_id: VSI list id generated as part of allocate resource
* @remove: Boolean value to indicate if this is a remove action
* @opc: switch rules population command type - pass in the command opcode
* @lkup_type: lookup type of the filter
*
* Call AQ command to add a new switch rule or update existing switch rule
* using the given VSI list id
*/
static enum ice_status
ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_array, u16 num_vsi,
u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
enum ice_sw_lkup_type lkup_type)
{
struct ice_aqc_sw_rules_elem *s_rule;
enum ice_status status;
u16 s_rule_size;
u16 type;
int i;
if (!num_vsi)
return ICE_ERR_PARAM;
if (lkup_type == ICE_SW_LKUP_MAC ||
lkup_type == ICE_SW_LKUP_MAC_VLAN ||
lkup_type == ICE_SW_LKUP_ETHERTYPE ||
lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
lkup_type == ICE_SW_LKUP_PROMISC ||
lkup_type == ICE_SW_LKUP_PROMISC_VLAN)
type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
ICE_AQC_SW_RULES_T_VSI_LIST_SET;
else if (lkup_type == ICE_SW_LKUP_VLAN)
type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
else
return ICE_ERR_PARAM;
s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi);
s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
for (i = 0; i < num_vsi; i++)
s_rule->pdata.vsi_list.vsi[i] = cpu_to_le16(vsi_array[i]);
s_rule->type = cpu_to_le16(type);
s_rule->pdata.vsi_list.number_vsi = cpu_to_le16(num_vsi);
s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id);
status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
devm_kfree(ice_hw_to_dev(hw), s_rule);
return status;
}
/**
* ice_create_vsi_list_rule - Creates and populates a VSI list rule
* @hw: pointer to the hw struct
* @vsi_array: array of VSIs to form a VSI list
* @num_vsi: number of VSIs in the array
* @vsi_list_id: stores the ID of the VSI list to be created
* @lkup_type: switch rule filter's lookup type
*/
static enum ice_status
ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_array, u16 num_vsi,
u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
{
enum ice_status status;
int i;
for (i = 0; i < num_vsi; i++)
if (vsi_array[i] >= ICE_MAX_VSI)
return ICE_ERR_OUT_OF_RANGE;
status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
ice_aqc_opc_alloc_res);
if (status)
return status;
/* Update the newly created VSI list to include the specified VSIs */
return ice_update_vsi_list_rule(hw, vsi_array, num_vsi, *vsi_list_id,
false, ice_aqc_opc_add_sw_rules,
lkup_type);
}
/**
* ice_create_pkt_fwd_rule
* @hw: pointer to the hardware structure
* @f_entry: entry containing packet forwarding information
*
* Create switch rule with given filter information and add an entry
* to the corresponding filter management list to track this switch rule
* and VSI mapping
*/
static enum ice_status
ice_create_pkt_fwd_rule(struct ice_hw *hw,
struct ice_fltr_list_entry *f_entry)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *fm_entry;
struct ice_aqc_sw_rules_elem *s_rule;
enum ice_sw_lkup_type l_type;
enum ice_status status;
s_rule = devm_kzalloc(ice_hw_to_dev(hw),
ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
GFP_KERNEL);
if (!fm_entry) {
status = ICE_ERR_NO_MEMORY;
goto ice_create_pkt_fwd_rule_exit;
}
fm_entry->fltr_info = f_entry->fltr_info;
/* Initialize all the fields for the management entry */
fm_entry->vsi_count = 1;
fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
ice_aqc_opc_add_sw_rules);
status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
ice_aqc_opc_add_sw_rules, NULL);
if (status) {
devm_kfree(ice_hw_to_dev(hw), fm_entry);
goto ice_create_pkt_fwd_rule_exit;
}
f_entry->fltr_info.fltr_rule_id =
le16_to_cpu(s_rule->pdata.lkup_tx_rx.index);
fm_entry->fltr_info.fltr_rule_id =
le16_to_cpu(s_rule->pdata.lkup_tx_rx.index);
/* The book keeping entries will get removed when base driver
* calls remove filter AQ command
*/
l_type = fm_entry->fltr_info.lkup_type;
if (l_type == ICE_SW_LKUP_MAC) {
mutex_lock(&sw->mac_list_lock);
list_add(&fm_entry->list_entry, &sw->mac_list_head);
mutex_unlock(&sw->mac_list_lock);
} else if (l_type == ICE_SW_LKUP_VLAN) {
mutex_lock(&sw->vlan_list_lock);
list_add(&fm_entry->list_entry, &sw->vlan_list_head);
mutex_unlock(&sw->vlan_list_lock);
} else if (l_type == ICE_SW_LKUP_ETHERTYPE ||
l_type == ICE_SW_LKUP_ETHERTYPE_MAC) {
mutex_lock(&sw->eth_m_list_lock);
list_add(&fm_entry->list_entry, &sw->eth_m_list_head);
mutex_unlock(&sw->eth_m_list_lock);
} else if (l_type == ICE_SW_LKUP_PROMISC ||
l_type == ICE_SW_LKUP_PROMISC_VLAN) {
mutex_lock(&sw->promisc_list_lock);
list_add(&fm_entry->list_entry, &sw->promisc_list_head);
mutex_unlock(&sw->promisc_list_lock);
} else if (fm_entry->fltr_info.lkup_type == ICE_SW_LKUP_MAC_VLAN) {
mutex_lock(&sw->mac_vlan_list_lock);
list_add(&fm_entry->list_entry, &sw->mac_vlan_list_head);
mutex_unlock(&sw->mac_vlan_list_lock);
} else {
status = ICE_ERR_NOT_IMPL;
}
ice_create_pkt_fwd_rule_exit:
devm_kfree(ice_hw_to_dev(hw), s_rule);
return status;
}
/**
* ice_update_pkt_fwd_rule
* @hw: pointer to the hardware structure
* @rule_id: rule of previously created switch rule to update
* @vsi_list_id: VSI list id to be updated with
* @f_info: ice_fltr_info to pull other information for switch rule
*
* Call AQ command to update a previously created switch rule with a
* VSI list id
*/
static enum ice_status
ice_update_pkt_fwd_rule(struct ice_hw *hw, u16 rule_id, u16 vsi_list_id,
struct ice_fltr_info f_info)
{
struct ice_aqc_sw_rules_elem *s_rule;
struct ice_fltr_info tmp_fltr;
enum ice_status status;
s_rule = devm_kzalloc(ice_hw_to_dev(hw),
ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
tmp_fltr = f_info;
tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
ice_fill_sw_rule(hw, &tmp_fltr, s_rule,
ice_aqc_opc_update_sw_rules);
s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(rule_id);
/* Update switch rule with new rule set to forward VSI list */
status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
ice_aqc_opc_update_sw_rules, NULL);
devm_kfree(ice_hw_to_dev(hw), s_rule);
return status;
}
/**
* ice_handle_vsi_list_mgmt
* @hw: pointer to the hardware structure
* @m_entry: pointer to current filter management list entry
* @cur_fltr: filter information from the book keeping entry
* @new_fltr: filter information with the new VSI to be added
*
* Call AQ command to add or update previously created VSI list with new VSI.
*
* Helper function to do book keeping associated with adding filter information
* The algorithm to do the booking keeping is described below :
* When a VSI needs to subscribe to a given filter( MAC/VLAN/Ethtype etc.)
* if only one VSI has been added till now
* Allocate a new VSI list and add two VSIs
* to this list using switch rule command
* Update the previously created switch rule with the
* newly created VSI list id
* if a VSI list was previously created
* Add the new VSI to the previously created VSI list set
* using the update switch rule command
*/
static enum ice_status
ice_handle_vsi_list_mgmt(struct ice_hw *hw,
struct ice_fltr_mgmt_list_entry *m_entry,
struct ice_fltr_info *cur_fltr,
struct ice_fltr_info *new_fltr)
{
enum ice_status status = 0;
u16 vsi_list_id = 0;
if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
return ICE_ERR_NOT_IMPL;
if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
(cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
return ICE_ERR_NOT_IMPL;
if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
/* Only one entry existed in the mapping and it was not already
* a part of a VSI list. So, create a VSI list with the old and
* new VSIs.
*/
u16 vsi_id_arr[2];
u16 fltr_rule;
/* A rule already exists with the new VSI being added */
if (cur_fltr->fwd_id.vsi_id == new_fltr->fwd_id.vsi_id)
return ICE_ERR_ALREADY_EXISTS;
vsi_id_arr[0] = cur_fltr->fwd_id.vsi_id;
vsi_id_arr[1] = new_fltr->fwd_id.vsi_id;
status = ice_create_vsi_list_rule(hw, &vsi_id_arr[0], 2,
&vsi_list_id,
new_fltr->lkup_type);
if (status)
return status;
fltr_rule = cur_fltr->fltr_rule_id;
/* Update the previous switch rule of "MAC forward to VSI" to
* "MAC fwd to VSI list"
*/
status = ice_update_pkt_fwd_rule(hw, fltr_rule, vsi_list_id,
*new_fltr);
if (status)
return status;
cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
m_entry->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_id_arr[0], 2,
vsi_list_id);
/* If this entry was large action then the large action needs
* to be updated to point to FWD to VSI list
*/
if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
status =
ice_add_marker_act(hw, m_entry,
m_entry->sw_marker_id,
m_entry->lg_act_idx);
} else {
u16 vsi_id = new_fltr->fwd_id.vsi_id;
enum ice_adminq_opc opcode;
/* A rule already exists with the new VSI being added */
if (test_bit(vsi_id, m_entry->vsi_list_info->vsi_map))
return 0;
/* Update the previously created VSI list set with
* the new VSI id passed in
*/
vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
opcode = ice_aqc_opc_update_sw_rules;
status = ice_update_vsi_list_rule(hw, &vsi_id, 1, vsi_list_id,
false, opcode,
new_fltr->lkup_type);
/* update VSI list mapping info with new VSI id */
if (!status)
set_bit(vsi_id, m_entry->vsi_list_info->vsi_map);
}
if (!status)
m_entry->vsi_count++;
return status;
}
/**
* ice_find_mac_entry
* @hw: pointer to the hardware structure
* @mac_addr: MAC address to search for
*
* Helper function to search for a MAC entry using a given MAC address
* Returns pointer to the entry if found.
*/
static struct ice_fltr_mgmt_list_entry *
ice_find_mac_entry(struct ice_hw *hw, u8 *mac_addr)
{
struct ice_fltr_mgmt_list_entry *m_list_itr, *mac_ret = NULL;
struct ice_switch_info *sw = hw->switch_info;
mutex_lock(&sw->mac_list_lock);
list_for_each_entry(m_list_itr, &sw->mac_list_head, list_entry) {
u8 *buf = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
if (ether_addr_equal(buf, mac_addr)) {
mac_ret = m_list_itr;
break;
}
}
mutex_unlock(&sw->mac_list_lock);
return mac_ret;
}
/**
* ice_add_shared_mac - Add one MAC shared filter rule
* @hw: pointer to the hardware structure
* @f_entry: structure containing MAC forwarding information
*
* Adds or updates the book keeping list for the MAC addresses
*/
static enum ice_status
ice_add_shared_mac(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_info *new_fltr, *cur_fltr;
struct ice_fltr_mgmt_list_entry *m_entry;
new_fltr = &f_entry->fltr_info;
m_entry = ice_find_mac_entry(hw, &new_fltr->l_data.mac.mac_addr[0]);
if (!m_entry)
return ice_create_pkt_fwd_rule(hw, f_entry);
cur_fltr = &m_entry->fltr_info;
return ice_handle_vsi_list_mgmt(hw, m_entry, cur_fltr, new_fltr);
}
/**
* ice_add_mac - Add a MAC address based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
*
* IMPORTANT: When the ucast_shared flag is set to false and m_list has
* multiple unicast addresses, the function assumes that all the
* addresses are unique in a given add_mac call. It doesn't
* check for duplicates in this case, removing duplicates from a given
* list should be taken care of in the caller of this function.
*/
enum ice_status
ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
{
struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
struct ice_fltr_list_entry *m_list_itr;
u16 elem_sent, total_elem_left;
enum ice_status status = 0;
u16 num_unicast = 0;
u16 s_rule_size;
if (!m_list || !hw)
return ICE_ERR_PARAM;
list_for_each_entry(m_list_itr, m_list, list_entry) {
u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
return ICE_ERR_PARAM;
if (is_zero_ether_addr(add))
return ICE_ERR_PARAM;
if (is_unicast_ether_addr(add) && !hw->ucast_shared) {
/* Don't overwrite the unicast address */
if (ice_find_mac_entry(hw, add))
return ICE_ERR_ALREADY_EXISTS;
num_unicast++;
} else if (is_multicast_ether_addr(add) ||
(is_unicast_ether_addr(add) && hw->ucast_shared)) {
status = ice_add_shared_mac(hw, m_list_itr);
if (status) {
m_list_itr->status = ICE_FLTR_STATUS_FW_FAIL;
return status;
}
m_list_itr->status = ICE_FLTR_STATUS_FW_SUCCESS;
}
}
/* Exit if no suitable entries were found for adding bulk switch rule */
if (!num_unicast)
return 0;
/* Allocate switch rule buffer for the bulk update for unicast */
s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size,
GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
r_iter = s_rule;
list_for_each_entry(m_list_itr, m_list, list_entry) {
struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
u8 *addr = &f_info->l_data.mac.mac_addr[0];
if (is_unicast_ether_addr(addr)) {
ice_fill_sw_rule(hw, &m_list_itr->fltr_info,
r_iter, ice_aqc_opc_add_sw_rules);
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + s_rule_size);
}
}
/* Call AQ bulk switch rule update for all unicast addresses */
r_iter = s_rule;
/* Call AQ switch rule in AQ_MAX chunk */
for (total_elem_left = num_unicast; total_elem_left > 0;
total_elem_left -= elem_sent) {
struct ice_aqc_sw_rules_elem *entry = r_iter;
elem_sent = min(total_elem_left,
(u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size));
status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
elem_sent, ice_aqc_opc_add_sw_rules,
NULL);
if (status)
goto ice_add_mac_exit;
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + (elem_sent * s_rule_size));
}
/* Fill up rule id based on the value returned from FW */
r_iter = s_rule;
list_for_each_entry(m_list_itr, m_list, list_entry) {
struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
u8 *addr = &f_info->l_data.mac.mac_addr[0];
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *fm_entry;
if (is_unicast_ether_addr(addr)) {
f_info->fltr_rule_id =
le16_to_cpu(r_iter->pdata.lkup_tx_rx.index);
f_info->fltr_act = ICE_FWD_TO_VSI;
/* Create an entry to track this MAC address */
fm_entry = devm_kzalloc(ice_hw_to_dev(hw),
sizeof(*fm_entry), GFP_KERNEL);
if (!fm_entry) {
status = ICE_ERR_NO_MEMORY;
goto ice_add_mac_exit;
}
fm_entry->fltr_info = *f_info;
fm_entry->vsi_count = 1;
/* The book keeping entries will get removed when
* base driver calls remove filter AQ command
*/
mutex_lock(&sw->mac_list_lock);
list_add(&fm_entry->list_entry, &sw->mac_list_head);
mutex_unlock(&sw->mac_list_lock);
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + s_rule_size);
}
}
ice_add_mac_exit:
devm_kfree(ice_hw_to_dev(hw), s_rule);
return status;
}
/**
* ice_find_vlan_entry
* @hw: pointer to the hardware structure
* @vlan_id: VLAN id to search for
*
* Helper function to search for a VLAN entry using a given VLAN id
* Returns pointer to the entry if found.
*/
static struct ice_fltr_mgmt_list_entry *
ice_find_vlan_entry(struct ice_hw *hw, u16 vlan_id)
{
struct ice_fltr_mgmt_list_entry *vlan_list_itr, *vlan_ret = NULL;
struct ice_switch_info *sw = hw->switch_info;
mutex_lock(&sw->vlan_list_lock);
list_for_each_entry(vlan_list_itr, &sw->vlan_list_head, list_entry)
if (vlan_list_itr->fltr_info.l_data.vlan.vlan_id == vlan_id) {
vlan_ret = vlan_list_itr;
break;
}
mutex_unlock(&sw->vlan_list_lock);
return vlan_ret;
}
/**
* ice_add_vlan_internal - Add one VLAN based filter rule
* @hw: pointer to the hardware structure
* @f_entry: filter entry containing one VLAN information
*/
static enum ice_status
ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_info *new_fltr, *cur_fltr;
struct ice_fltr_mgmt_list_entry *v_list_itr;
u16 vlan_id;
new_fltr = &f_entry->fltr_info;
/* VLAN id should only be 12 bits */
if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
return ICE_ERR_PARAM;
vlan_id = new_fltr->l_data.vlan.vlan_id;
v_list_itr = ice_find_vlan_entry(hw, vlan_id);
if (!v_list_itr) {
u16 vsi_id = ICE_VSI_INVAL_ID;
enum ice_status status;
u16 vsi_list_id = 0;
if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
enum ice_sw_lkup_type lkup_type = new_fltr->lkup_type;
/* All VLAN pruning rules use a VSI list.
* Convert the action to forwarding to a VSI list.
*/
vsi_id = new_fltr->fwd_id.vsi_id;
status = ice_create_vsi_list_rule(hw, &vsi_id, 1,
&vsi_list_id,
lkup_type);
if (status)
return status;
new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
new_fltr->fwd_id.vsi_list_id = vsi_list_id;
}
status = ice_create_pkt_fwd_rule(hw, f_entry);
if (!status && vsi_id != ICE_VSI_INVAL_ID) {
v_list_itr = ice_find_vlan_entry(hw, vlan_id);
if (!v_list_itr)
return ICE_ERR_DOES_NOT_EXIST;
v_list_itr->vsi_list_info =
ice_create_vsi_list_map(hw, &vsi_id, 1,
vsi_list_id);
}
return status;
}
cur_fltr = &v_list_itr->fltr_info;
return ice_handle_vsi_list_mgmt(hw, v_list_itr, cur_fltr, new_fltr);
}
/**
* ice_add_vlan - Add VLAN based filter rule
* @hw: pointer to the hardware structure
* @v_list: list of VLAN entries and forwarding information
*/
enum ice_status
ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
{
struct ice_fltr_list_entry *v_list_itr;
if (!v_list || !hw)
return ICE_ERR_PARAM;
list_for_each_entry(v_list_itr, v_list, list_entry) {
enum ice_status status;
if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
return ICE_ERR_PARAM;
status = ice_add_vlan_internal(hw, v_list_itr);
if (status) {
v_list_itr->status = ICE_FLTR_STATUS_FW_FAIL;
return status;
}
v_list_itr->status = ICE_FLTR_STATUS_FW_SUCCESS;
}
return 0;
}
/**
* ice_remove_vsi_list_rule
* @hw: pointer to the hardware structure
* @vsi_list_id: VSI list id generated as part of allocate resource
* @lkup_type: switch rule filter lookup type
*/
static enum ice_status
ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
enum ice_sw_lkup_type lkup_type)
{
struct ice_aqc_sw_rules_elem *s_rule;
enum ice_status status;
u16 s_rule_size;
s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0);
s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
s_rule->type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id);
/* FW expects number of VSIs in vsi_list resource to be 0 for clear
* command. Since memory is zero'ed out during initialization, it's not
* necessary to explicitly initialize the variable to 0.
*/
status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1,
ice_aqc_opc_remove_sw_rules, NULL);
if (!status)
/* Free the vsi_list resource that we allocated */
status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
ice_aqc_opc_free_res);
devm_kfree(ice_hw_to_dev(hw), s_rule);
return status;
}
/**
* ice_handle_rem_vsi_list_mgmt
* @hw: pointer to the hardware structure
* @vsi_id: ID of the VSI to remove
* @fm_list_itr: filter management entry for which the VSI list management
* needs to be done
*/
static enum ice_status
ice_handle_rem_vsi_list_mgmt(struct ice_hw *hw, u16 vsi_id,
struct ice_fltr_mgmt_list_entry *fm_list_itr)
{
struct ice_switch_info *sw = hw->switch_info;
enum ice_status status = 0;
enum ice_sw_lkup_type lkup_type;
bool is_last_elem = true;
bool conv_list = false;
bool del_list = false;
u16 vsi_list_id;
lkup_type = fm_list_itr->fltr_info.lkup_type;
vsi_list_id = fm_list_itr->fltr_info.fwd_id.vsi_list_id;
if (fm_list_itr->vsi_count > 1) {
status = ice_update_vsi_list_rule(hw, &vsi_id, 1, vsi_list_id,
true,
ice_aqc_opc_update_sw_rules,
lkup_type);
if (status)
return status;
fm_list_itr->vsi_count--;
is_last_elem = false;
clear_bit(vsi_id, fm_list_itr->vsi_list_info->vsi_map);
}
/* For non-VLAN rules that forward packets to a VSI list, convert them
* to forwarding packets to a VSI if there is only one VSI left in the
* list. Unused lists are then removed.
* VLAN rules need to use VSI lists even with only one VSI.
*/
if (fm_list_itr->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST) {
if (lkup_type == ICE_SW_LKUP_VLAN) {
del_list = is_last_elem;
} else if (fm_list_itr->vsi_count == 1) {
conv_list = true;
del_list = true;
}
}
if (del_list) {
/* Remove the VSI list since it is no longer used */
struct ice_vsi_list_map_info *vsi_list_info =
fm_list_itr->vsi_list_info;
status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
if (status)
return status;
if (conv_list) {
u16 rem_vsi_id;
rem_vsi_id = find_first_bit(vsi_list_info->vsi_map,
ICE_MAX_VSI);
/* Error out when the expected last element is not in
* the VSI list map
*/
if (rem_vsi_id == ICE_MAX_VSI)
return ICE_ERR_OUT_OF_RANGE;
/* Change the list entry action from VSI_LIST to VSI */
fm_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
fm_list_itr->fltr_info.fwd_id.vsi_id = rem_vsi_id;
}
list_del(&vsi_list_info->list_entry);
devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
fm_list_itr->vsi_list_info = NULL;
}
if (conv_list) {
/* Convert the rule's forward action to forwarding packets to
* a VSI
*/
struct ice_aqc_sw_rules_elem *s_rule;
s_rule = devm_kzalloc(ice_hw_to_dev(hw),
ICE_SW_RULE_RX_TX_ETH_HDR_SIZE,
GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
ice_fill_sw_rule(hw, &fm_list_itr->fltr_info, s_rule,
ice_aqc_opc_update_sw_rules);
s_rule->pdata.lkup_tx_rx.index =
cpu_to_le16(fm_list_itr->fltr_info.fltr_rule_id);
status = ice_aq_sw_rules(hw, s_rule,
ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
ice_aqc_opc_update_sw_rules, NULL);
devm_kfree(ice_hw_to_dev(hw), s_rule);
if (status)
return status;
}
if (is_last_elem) {
/* Remove the lookup rule */
struct ice_aqc_sw_rules_elem *s_rule;
s_rule = devm_kzalloc(ice_hw_to_dev(hw),
ICE_SW_RULE_RX_TX_NO_HDR_SIZE,
GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
ice_fill_sw_rule(hw, &fm_list_itr->fltr_info, s_rule,
ice_aqc_opc_remove_sw_rules);
status = ice_aq_sw_rules(hw, s_rule,
ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1,
ice_aqc_opc_remove_sw_rules, NULL);
if (status)
return status;
/* Remove a book keeping entry from the MAC address list */
mutex_lock(&sw->mac_list_lock);
list_del(&fm_list_itr->list_entry);
mutex_unlock(&sw->mac_list_lock);
devm_kfree(ice_hw_to_dev(hw), fm_list_itr);
devm_kfree(ice_hw_to_dev(hw), s_rule);
}
return status;
}
/**
* ice_remove_mac_entry
* @hw: pointer to the hardware structure
* @f_entry: structure containing MAC forwarding information
*/
static enum ice_status
ice_remove_mac_entry(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_mgmt_list_entry *m_entry;
u16 vsi_id;
u8 *add;
add = &f_entry->fltr_info.l_data.mac.mac_addr[0];
m_entry = ice_find_mac_entry(hw, add);
if (!m_entry)
return ICE_ERR_PARAM;
vsi_id = f_entry->fltr_info.fwd_id.vsi_id;
return ice_handle_rem_vsi_list_mgmt(hw, vsi_id, m_entry);
}
/**
* ice_remove_mac - remove a MAC address based filter rule
* @hw: pointer to the hardware structure
* @m_list: list of MAC addresses and forwarding information
*
* This function removes either a MAC filter rule or a specific VSI from a
* VSI list for a multicast MAC address.
*
* Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
* ice_add_mac. Caller should be aware that this call will only work if all
* the entries passed into m_list were added previously. It will not attempt to
* do a partial remove of entries that were found.
*/
enum ice_status
ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
{
struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
u8 s_rule_size = ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *m_entry;
struct ice_fltr_list_entry *m_list_itr;
u16 elem_sent, total_elem_left;
enum ice_status status = 0;
u16 num_unicast = 0;
if (!m_list)
return ICE_ERR_PARAM;
list_for_each_entry(m_list_itr, m_list, list_entry) {
u8 *addr = m_list_itr->fltr_info.l_data.mac.mac_addr;
if (is_unicast_ether_addr(addr) && !hw->ucast_shared)
num_unicast++;
else if (is_multicast_ether_addr(addr) ||
(is_unicast_ether_addr(addr) && hw->ucast_shared))
ice_remove_mac_entry(hw, m_list_itr);
}
/* Exit if no unicast addresses found. Multicast switch rules
* were added individually
*/
if (!num_unicast)
return 0;
/* Allocate switch rule buffer for the bulk update for unicast */
s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size,
GFP_KERNEL);
if (!s_rule)
return ICE_ERR_NO_MEMORY;
r_iter = s_rule;
list_for_each_entry(m_list_itr, m_list, list_entry) {
u8 *addr = m_list_itr->fltr_info.l_data.mac.mac_addr;
if (is_unicast_ether_addr(addr)) {
m_entry = ice_find_mac_entry(hw, addr);
if (!m_entry) {
status = ICE_ERR_DOES_NOT_EXIST;
goto ice_remove_mac_exit;
}
ice_fill_sw_rule(hw, &m_entry->fltr_info,
r_iter, ice_aqc_opc_remove_sw_rules);
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + s_rule_size);
}
}
/* Call AQ bulk switch rule update for all unicast addresses */
r_iter = s_rule;
/* Call AQ switch rule in AQ_MAX chunk */
for (total_elem_left = num_unicast; total_elem_left > 0;
total_elem_left -= elem_sent) {
struct ice_aqc_sw_rules_elem *entry = r_iter;
elem_sent = min(total_elem_left,
(u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size));
status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
elem_sent, ice_aqc_opc_remove_sw_rules,
NULL);
if (status)
break;
r_iter = (struct ice_aqc_sw_rules_elem *)
((u8 *)r_iter + s_rule_size);
}
list_for_each_entry(m_list_itr, m_list, list_entry) {
u8 *addr = m_list_itr->fltr_info.l_data.mac.mac_addr;
if (is_unicast_ether_addr(addr)) {
m_entry = ice_find_mac_entry(hw, addr);
if (!m_entry)
return ICE_ERR_OUT_OF_RANGE;
mutex_lock(&sw->mac_list_lock);
list_del(&m_entry->list_entry);
mutex_unlock(&sw->mac_list_lock);
devm_kfree(ice_hw_to_dev(hw), m_entry);
}
}
ice_remove_mac_exit:
devm_kfree(ice_hw_to_dev(hw), s_rule);
return status;
}
/**
* ice_remove_vlan_internal - Remove one VLAN based filter rule
* @hw: pointer to the hardware structure
* @f_entry: filter entry containing one VLAN information
*/
static enum ice_status
ice_remove_vlan_internal(struct ice_hw *hw,
struct ice_fltr_list_entry *f_entry)
{
struct ice_fltr_info *new_fltr;
struct ice_fltr_mgmt_list_entry *v_list_elem;
u16 vsi_id;
new_fltr = &f_entry->fltr_info;
v_list_elem = ice_find_vlan_entry(hw, new_fltr->l_data.vlan.vlan_id);
if (!v_list_elem)
return ICE_ERR_PARAM;
vsi_id = f_entry->fltr_info.fwd_id.vsi_id;
return ice_handle_rem_vsi_list_mgmt(hw, vsi_id, v_list_elem);
}
/**
* ice_remove_vlan - Remove VLAN based filter rule
* @hw: pointer to the hardware structure
* @v_list: list of VLAN entries and forwarding information
*/
enum ice_status
ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
{
struct ice_fltr_list_entry *v_list_itr;
enum ice_status status = 0;
if (!v_list || !hw)
return ICE_ERR_PARAM;
list_for_each_entry(v_list_itr, v_list, list_entry) {
status = ice_remove_vlan_internal(hw, v_list_itr);
if (status) {
v_list_itr->status = ICE_FLTR_STATUS_FW_FAIL;
return status;
}
v_list_itr->status = ICE_FLTR_STATUS_FW_SUCCESS;
}
return status;
}
/**
* ice_add_to_vsi_fltr_list - Add VSI filters to the list
* @hw: pointer to the hardware structure
* @vsi_id: ID of VSI to remove filters from
* @lkup_list_head: pointer to the list that has certain lookup type filters
* @vsi_list_head: pointer to the list pertaining to VSI with vsi_id
*/
static enum ice_status
ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_id,
struct list_head *lkup_list_head,
struct list_head *vsi_list_head)
{
struct ice_fltr_mgmt_list_entry *fm_entry;
/* check to make sure VSI id is valid and within boundary */
if (vsi_id >=
(sizeof(fm_entry->vsi_list_info->vsi_map) * BITS_PER_BYTE - 1))
return ICE_ERR_PARAM;
list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
struct ice_fltr_info *fi;
fi = &fm_entry->fltr_info;
if ((fi->fltr_act == ICE_FWD_TO_VSI &&
fi->fwd_id.vsi_id == vsi_id) ||
(fi->fltr_act == ICE_FWD_TO_VSI_LIST &&
(test_bit(vsi_id, fm_entry->vsi_list_info->vsi_map)))) {
struct ice_fltr_list_entry *tmp;
/* this memory is freed up in the caller function
* ice_remove_vsi_lkup_fltr() once filters for
* this VSI are removed
*/
tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp),
GFP_KERNEL);
if (!tmp)
return ICE_ERR_NO_MEMORY;
memcpy(&tmp->fltr_info, fi, sizeof(*fi));
/* Expected below fields to be set to ICE_FWD_TO_VSI and
* the particular VSI id since we are only removing this
* one VSI
*/
if (fi->fltr_act == ICE_FWD_TO_VSI_LIST) {
tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
tmp->fltr_info.fwd_id.vsi_id = vsi_id;
}
list_add(&tmp->list_entry, vsi_list_head);
}
}
return 0;
}
/**
* ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
* @hw: pointer to the hardware structure
* @vsi_id: ID of VSI to remove filters from
* @lkup: switch rule filter lookup type
*/
static void
ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_id,
enum ice_sw_lkup_type lkup)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_list_entry *fm_entry;
struct list_head remove_list_head;
struct ice_fltr_list_entry *tmp;
enum ice_status status;
INIT_LIST_HEAD(&remove_list_head);
switch (lkup) {
case ICE_SW_LKUP_MAC:
mutex_lock(&sw->mac_list_lock);
status = ice_add_to_vsi_fltr_list(hw, vsi_id,
&sw->mac_list_head,
&remove_list_head);
mutex_unlock(&sw->mac_list_lock);
if (!status) {
ice_remove_mac(hw, &remove_list_head);
goto free_fltr_list;
}
break;
case ICE_SW_LKUP_VLAN:
mutex_lock(&sw->vlan_list_lock);
status = ice_add_to_vsi_fltr_list(hw, vsi_id,
&sw->vlan_list_head,
&remove_list_head);
mutex_unlock(&sw->vlan_list_lock);
if (!status) {
ice_remove_vlan(hw, &remove_list_head);
goto free_fltr_list;
}
break;
case ICE_SW_LKUP_MAC_VLAN:
case ICE_SW_LKUP_ETHERTYPE:
case ICE_SW_LKUP_ETHERTYPE_MAC:
case ICE_SW_LKUP_PROMISC:
case ICE_SW_LKUP_PROMISC_VLAN:
case ICE_SW_LKUP_DFLT:
ice_debug(hw, ICE_DBG_SW,
"Remove filters for this lookup type hasn't been implemented yet\n");
break;
}
return;
free_fltr_list:
list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
list_del(&fm_entry->list_entry);
devm_kfree(ice_hw_to_dev(hw), fm_entry);
}
}
/**
* ice_remove_vsi_fltr - Remove all filters for a VSI
* @hw: pointer to the hardware structure
* @vsi_id: ID of VSI to remove filters from
*/
void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_id)
{
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_MAC);
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_MAC_VLAN);
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_PROMISC);
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_VLAN);
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_DFLT);
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_ETHERTYPE);
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_ETHERTYPE_MAC);
ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_PROMISC_VLAN);
}