mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-08 14:54:23 +08:00
d5c88131db
When a writer thread executes a chain of log intent items, the AG header buffer locks will cycle during a transaction roll to get from one intent item to the next in a chain. Although scrub takes all AG header buffer locks, this isn't sufficient to guard against scrub checking an AG while that writer thread is in the middle of finishing a chain because there's no higher level locking primitive guarding allocation groups. When there's a collision, cross-referencing between data structures (e.g. rmapbt and refcountbt) yields false corruption events; if repair is running, this results in incorrect repairs, which is catastrophic. Fix this by adding to the perag structure the count of active intents and make scrub wait until it has both AG header buffer locks and the intent counter reaches zero. One quirk of the drain code is that deferred bmap updates also bump and drop the intent counter. A fundamental decision made during the design phase of the reverse mapping feature is that updates to the rmapbt records are always made by the same code that updates the primary metadata. In other words, callers of bmapi functions expect that the bmapi functions will queue deferred rmap updates. Some parts of the reflink code queue deferred refcount (CUI) and bmap (BUI) updates in the same head transaction, but the deferred work manager completely finishes the CUI before the BUI work is started. As a result, the CUI drops the intent count long before the deferred rmap (RUI) update even has a chance to bump the intent count. The only way to keep the intent count elevated between the CUI and RUI is for the BUI to bump the counter until the RUI has been created. A second quirk of the intent drain code is that deferred work items must increment the intent counter as soon as the work item is added to the transaction. When a BUI completes and queues an RUI, the RUI must increment the counter before the BUI decrements it. The only way to accomplish this is to require that the counter be bumped as soon as the deferred work item is created in memory. In the next patches we'll improve on this facility, but this patch provides the basic functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
742 lines
20 KiB
C
742 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2016 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_refcount_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_refcount.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_log_recover.h"
|
|
#include "xfs_ag.h"
|
|
|
|
struct kmem_cache *xfs_cui_cache;
|
|
struct kmem_cache *xfs_cud_cache;
|
|
|
|
static const struct xfs_item_ops xfs_cui_item_ops;
|
|
|
|
static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_cui_log_item, cui_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_cui_item_free(
|
|
struct xfs_cui_log_item *cuip)
|
|
{
|
|
kmem_free(cuip->cui_item.li_lv_shadow);
|
|
if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
|
|
kmem_free(cuip);
|
|
else
|
|
kmem_cache_free(xfs_cui_cache, cuip);
|
|
}
|
|
|
|
/*
|
|
* Freeing the CUI requires that we remove it from the AIL if it has already
|
|
* been placed there. However, the CUI may not yet have been placed in the AIL
|
|
* when called by xfs_cui_release() from CUD processing due to the ordering of
|
|
* committed vs unpin operations in bulk insert operations. Hence the reference
|
|
* count to ensure only the last caller frees the CUI.
|
|
*/
|
|
STATIC void
|
|
xfs_cui_release(
|
|
struct xfs_cui_log_item *cuip)
|
|
{
|
|
ASSERT(atomic_read(&cuip->cui_refcount) > 0);
|
|
if (!atomic_dec_and_test(&cuip->cui_refcount))
|
|
return;
|
|
|
|
xfs_trans_ail_delete(&cuip->cui_item, 0);
|
|
xfs_cui_item_free(cuip);
|
|
}
|
|
|
|
|
|
STATIC void
|
|
xfs_cui_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
|
|
|
|
*nvecs += 1;
|
|
*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given cui log item. We use only 1 iovec, and we point that
|
|
* at the cui_log_format structure embedded in the cui item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the cui item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_cui_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(atomic_read(&cuip->cui_next_extent) ==
|
|
cuip->cui_format.cui_nextents);
|
|
|
|
cuip->cui_format.cui_type = XFS_LI_CUI;
|
|
cuip->cui_format.cui_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
|
|
xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
|
|
}
|
|
|
|
/*
|
|
* The unpin operation is the last place an CUI is manipulated in the log. It is
|
|
* either inserted in the AIL or aborted in the event of a log I/O error. In
|
|
* either case, the CUI transaction has been successfully committed to make it
|
|
* this far. Therefore, we expect whoever committed the CUI to either construct
|
|
* and commit the CUD or drop the CUD's reference in the event of error. Simply
|
|
* drop the log's CUI reference now that the log is done with it.
|
|
*/
|
|
STATIC void
|
|
xfs_cui_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
|
|
|
|
xfs_cui_release(cuip);
|
|
}
|
|
|
|
/*
|
|
* The CUI has been either committed or aborted if the transaction has been
|
|
* cancelled. If the transaction was cancelled, an CUD isn't going to be
|
|
* constructed and thus we free the CUI here directly.
|
|
*/
|
|
STATIC void
|
|
xfs_cui_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_cui_release(CUI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize an cui item with the given number of extents.
|
|
*/
|
|
STATIC struct xfs_cui_log_item *
|
|
xfs_cui_init(
|
|
struct xfs_mount *mp,
|
|
uint nextents)
|
|
|
|
{
|
|
struct xfs_cui_log_item *cuip;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
|
|
cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
|
|
0);
|
|
else
|
|
cuip = kmem_cache_zalloc(xfs_cui_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
|
|
cuip->cui_format.cui_nextents = nextents;
|
|
cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
|
|
atomic_set(&cuip->cui_next_extent, 0);
|
|
atomic_set(&cuip->cui_refcount, 2);
|
|
|
|
return cuip;
|
|
}
|
|
|
|
static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_cud_log_item, cud_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_cud_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
*nvecs += 1;
|
|
*nbytes += sizeof(struct xfs_cud_log_format);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given cud log item. We use only 1 iovec, and we point that
|
|
* at the cud_log_format structure embedded in the cud item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the cud item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_cud_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
cudp->cud_format.cud_type = XFS_LI_CUD;
|
|
cudp->cud_format.cud_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
|
|
sizeof(struct xfs_cud_log_format));
|
|
}
|
|
|
|
/*
|
|
* The CUD is either committed or aborted if the transaction is cancelled. If
|
|
* the transaction is cancelled, drop our reference to the CUI and free the
|
|
* CUD.
|
|
*/
|
|
STATIC void
|
|
xfs_cud_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
|
|
|
|
xfs_cui_release(cudp->cud_cuip);
|
|
kmem_free(cudp->cud_item.li_lv_shadow);
|
|
kmem_cache_free(xfs_cud_cache, cudp);
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_cud_item_intent(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
return &CUD_ITEM(lip)->cud_cuip->cui_item;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_cud_item_ops = {
|
|
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
|
|
XFS_ITEM_INTENT_DONE,
|
|
.iop_size = xfs_cud_item_size,
|
|
.iop_format = xfs_cud_item_format,
|
|
.iop_release = xfs_cud_item_release,
|
|
.iop_intent = xfs_cud_item_intent,
|
|
};
|
|
|
|
static struct xfs_cud_log_item *
|
|
xfs_trans_get_cud(
|
|
struct xfs_trans *tp,
|
|
struct xfs_cui_log_item *cuip)
|
|
{
|
|
struct xfs_cud_log_item *cudp;
|
|
|
|
cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL);
|
|
xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
|
|
&xfs_cud_item_ops);
|
|
cudp->cud_cuip = cuip;
|
|
cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
|
|
|
|
xfs_trans_add_item(tp, &cudp->cud_item);
|
|
return cudp;
|
|
}
|
|
|
|
/*
|
|
* Finish an refcount update and log it to the CUD. Note that the
|
|
* transaction is marked dirty regardless of whether the refcount
|
|
* update succeeds or fails to support the CUI/CUD lifecycle rules.
|
|
*/
|
|
static int
|
|
xfs_trans_log_finish_refcount_update(
|
|
struct xfs_trans *tp,
|
|
struct xfs_cud_log_item *cudp,
|
|
struct xfs_refcount_intent *ri,
|
|
struct xfs_btree_cur **pcur)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_refcount_finish_one(tp, ri, pcur);
|
|
|
|
/*
|
|
* Mark the transaction dirty, even on error. This ensures the
|
|
* transaction is aborted, which:
|
|
*
|
|
* 1.) releases the CUI and frees the CUD
|
|
* 2.) shuts down the filesystem
|
|
*/
|
|
tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
|
|
set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Sort refcount intents by AG. */
|
|
static int
|
|
xfs_refcount_update_diff_items(
|
|
void *priv,
|
|
const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct xfs_refcount_intent *ra;
|
|
struct xfs_refcount_intent *rb;
|
|
|
|
ra = container_of(a, struct xfs_refcount_intent, ri_list);
|
|
rb = container_of(b, struct xfs_refcount_intent, ri_list);
|
|
|
|
return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
|
|
}
|
|
|
|
/* Set the phys extent flags for this reverse mapping. */
|
|
static void
|
|
xfs_trans_set_refcount_flags(
|
|
struct xfs_phys_extent *pmap,
|
|
enum xfs_refcount_intent_type type)
|
|
{
|
|
pmap->pe_flags = 0;
|
|
switch (type) {
|
|
case XFS_REFCOUNT_INCREASE:
|
|
case XFS_REFCOUNT_DECREASE:
|
|
case XFS_REFCOUNT_ALLOC_COW:
|
|
case XFS_REFCOUNT_FREE_COW:
|
|
pmap->pe_flags |= type;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
|
|
/* Log refcount updates in the intent item. */
|
|
STATIC void
|
|
xfs_refcount_update_log_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_cui_log_item *cuip,
|
|
struct xfs_refcount_intent *ri)
|
|
{
|
|
uint next_extent;
|
|
struct xfs_phys_extent *pmap;
|
|
|
|
tp->t_flags |= XFS_TRANS_DIRTY;
|
|
set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
|
|
|
|
/*
|
|
* atomic_inc_return gives us the value after the increment;
|
|
* we want to use it as an array index so we need to subtract 1 from
|
|
* it.
|
|
*/
|
|
next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
|
|
ASSERT(next_extent < cuip->cui_format.cui_nextents);
|
|
pmap = &cuip->cui_format.cui_extents[next_extent];
|
|
pmap->pe_startblock = ri->ri_startblock;
|
|
pmap->pe_len = ri->ri_blockcount;
|
|
xfs_trans_set_refcount_flags(pmap, ri->ri_type);
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_refcount_update_create_intent(
|
|
struct xfs_trans *tp,
|
|
struct list_head *items,
|
|
unsigned int count,
|
|
bool sort)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count);
|
|
struct xfs_refcount_intent *ri;
|
|
|
|
ASSERT(count > 0);
|
|
|
|
xfs_trans_add_item(tp, &cuip->cui_item);
|
|
if (sort)
|
|
list_sort(mp, items, xfs_refcount_update_diff_items);
|
|
list_for_each_entry(ri, items, ri_list)
|
|
xfs_refcount_update_log_item(tp, cuip, ri);
|
|
return &cuip->cui_item;
|
|
}
|
|
|
|
/* Get an CUD so we can process all the deferred refcount updates. */
|
|
static struct xfs_log_item *
|
|
xfs_refcount_update_create_done(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *intent,
|
|
unsigned int count)
|
|
{
|
|
return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item;
|
|
}
|
|
|
|
/* Take a passive ref to the AG containing the space we're refcounting. */
|
|
void
|
|
xfs_refcount_update_get_group(
|
|
struct xfs_mount *mp,
|
|
struct xfs_refcount_intent *ri)
|
|
{
|
|
xfs_agnumber_t agno;
|
|
|
|
agno = XFS_FSB_TO_AGNO(mp, ri->ri_startblock);
|
|
ri->ri_pag = xfs_perag_intent_get(mp, agno);
|
|
}
|
|
|
|
/* Release a passive AG ref after finishing refcounting work. */
|
|
static inline void
|
|
xfs_refcount_update_put_group(
|
|
struct xfs_refcount_intent *ri)
|
|
{
|
|
xfs_perag_intent_put(ri->ri_pag);
|
|
}
|
|
|
|
/* Process a deferred refcount update. */
|
|
STATIC int
|
|
xfs_refcount_update_finish_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *done,
|
|
struct list_head *item,
|
|
struct xfs_btree_cur **state)
|
|
{
|
|
struct xfs_refcount_intent *ri;
|
|
int error;
|
|
|
|
ri = container_of(item, struct xfs_refcount_intent, ri_list);
|
|
error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), ri,
|
|
state);
|
|
|
|
/* Did we run out of reservation? Requeue what we didn't finish. */
|
|
if (!error && ri->ri_blockcount > 0) {
|
|
ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE ||
|
|
ri->ri_type == XFS_REFCOUNT_DECREASE);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
xfs_refcount_update_put_group(ri);
|
|
kmem_cache_free(xfs_refcount_intent_cache, ri);
|
|
return error;
|
|
}
|
|
|
|
/* Abort all pending CUIs. */
|
|
STATIC void
|
|
xfs_refcount_update_abort_intent(
|
|
struct xfs_log_item *intent)
|
|
{
|
|
xfs_cui_release(CUI_ITEM(intent));
|
|
}
|
|
|
|
/* Cancel a deferred refcount update. */
|
|
STATIC void
|
|
xfs_refcount_update_cancel_item(
|
|
struct list_head *item)
|
|
{
|
|
struct xfs_refcount_intent *ri;
|
|
|
|
ri = container_of(item, struct xfs_refcount_intent, ri_list);
|
|
|
|
xfs_refcount_update_put_group(ri);
|
|
kmem_cache_free(xfs_refcount_intent_cache, ri);
|
|
}
|
|
|
|
const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
|
|
.max_items = XFS_CUI_MAX_FAST_EXTENTS,
|
|
.create_intent = xfs_refcount_update_create_intent,
|
|
.abort_intent = xfs_refcount_update_abort_intent,
|
|
.create_done = xfs_refcount_update_create_done,
|
|
.finish_item = xfs_refcount_update_finish_item,
|
|
.finish_cleanup = xfs_refcount_finish_one_cleanup,
|
|
.cancel_item = xfs_refcount_update_cancel_item,
|
|
};
|
|
|
|
/* Is this recovered CUI ok? */
|
|
static inline bool
|
|
xfs_cui_validate_phys(
|
|
struct xfs_mount *mp,
|
|
struct xfs_phys_extent *pmap)
|
|
{
|
|
if (!xfs_has_reflink(mp))
|
|
return false;
|
|
|
|
if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)
|
|
return false;
|
|
|
|
switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
|
|
case XFS_REFCOUNT_INCREASE:
|
|
case XFS_REFCOUNT_DECREASE:
|
|
case XFS_REFCOUNT_ALLOC_COW:
|
|
case XFS_REFCOUNT_FREE_COW:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len);
|
|
}
|
|
|
|
/*
|
|
* Process a refcount update intent item that was recovered from the log.
|
|
* We need to update the refcountbt.
|
|
*/
|
|
STATIC int
|
|
xfs_cui_item_recover(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *capture_list)
|
|
{
|
|
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
|
|
struct xfs_cud_log_item *cudp;
|
|
struct xfs_trans *tp;
|
|
struct xfs_btree_cur *rcur = NULL;
|
|
struct xfs_mount *mp = lip->li_log->l_mp;
|
|
unsigned int refc_type;
|
|
bool requeue_only = false;
|
|
int i;
|
|
int error = 0;
|
|
|
|
/*
|
|
* First check the validity of the extents described by the
|
|
* CUI. If any are bad, then assume that all are bad and
|
|
* just toss the CUI.
|
|
*/
|
|
for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
|
|
if (!xfs_cui_validate_phys(mp,
|
|
&cuip->cui_format.cui_extents[i])) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
&cuip->cui_format,
|
|
sizeof(cuip->cui_format));
|
|
return -EFSCORRUPTED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Under normal operation, refcount updates are deferred, so we
|
|
* wouldn't be adding them directly to a transaction. All
|
|
* refcount updates manage reservation usage internally and
|
|
* dynamically by deferring work that won't fit in the
|
|
* transaction. Normally, any work that needs to be deferred
|
|
* gets attached to the same defer_ops that scheduled the
|
|
* refcount update. However, we're in log recovery here, so we
|
|
* use the passed in defer_ops and to finish up any work that
|
|
* doesn't fit. We need to reserve enough blocks to handle a
|
|
* full btree split on either end of the refcount range.
|
|
*/
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
|
|
mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
cudp = xfs_trans_get_cud(tp, cuip);
|
|
|
|
for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
|
|
struct xfs_refcount_intent fake = { };
|
|
struct xfs_phys_extent *pmap;
|
|
|
|
pmap = &cuip->cui_format.cui_extents[i];
|
|
refc_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
|
|
switch (refc_type) {
|
|
case XFS_REFCOUNT_INCREASE:
|
|
case XFS_REFCOUNT_DECREASE:
|
|
case XFS_REFCOUNT_ALLOC_COW:
|
|
case XFS_REFCOUNT_FREE_COW:
|
|
fake.ri_type = refc_type;
|
|
break;
|
|
default:
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
&cuip->cui_format,
|
|
sizeof(cuip->cui_format));
|
|
error = -EFSCORRUPTED;
|
|
goto abort_error;
|
|
}
|
|
|
|
fake.ri_startblock = pmap->pe_startblock;
|
|
fake.ri_blockcount = pmap->pe_len;
|
|
|
|
if (!requeue_only) {
|
|
xfs_refcount_update_get_group(mp, &fake);
|
|
error = xfs_trans_log_finish_refcount_update(tp, cudp,
|
|
&fake, &rcur);
|
|
xfs_refcount_update_put_group(&fake);
|
|
}
|
|
if (error == -EFSCORRUPTED)
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
&cuip->cui_format,
|
|
sizeof(cuip->cui_format));
|
|
if (error)
|
|
goto abort_error;
|
|
|
|
/* Requeue what we didn't finish. */
|
|
if (fake.ri_blockcount > 0) {
|
|
struct xfs_bmbt_irec irec = {
|
|
.br_startblock = fake.ri_startblock,
|
|
.br_blockcount = fake.ri_blockcount,
|
|
};
|
|
|
|
switch (fake.ri_type) {
|
|
case XFS_REFCOUNT_INCREASE:
|
|
xfs_refcount_increase_extent(tp, &irec);
|
|
break;
|
|
case XFS_REFCOUNT_DECREASE:
|
|
xfs_refcount_decrease_extent(tp, &irec);
|
|
break;
|
|
case XFS_REFCOUNT_ALLOC_COW:
|
|
xfs_refcount_alloc_cow_extent(tp,
|
|
irec.br_startblock,
|
|
irec.br_blockcount);
|
|
break;
|
|
case XFS_REFCOUNT_FREE_COW:
|
|
xfs_refcount_free_cow_extent(tp,
|
|
irec.br_startblock,
|
|
irec.br_blockcount);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
requeue_only = true;
|
|
}
|
|
}
|
|
|
|
xfs_refcount_finish_one_cleanup(tp, rcur, error);
|
|
return xfs_defer_ops_capture_and_commit(tp, capture_list);
|
|
|
|
abort_error:
|
|
xfs_refcount_finish_one_cleanup(tp, rcur, error);
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_cui_item_match(
|
|
struct xfs_log_item *lip,
|
|
uint64_t intent_id)
|
|
{
|
|
return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
|
|
}
|
|
|
|
/* Relog an intent item to push the log tail forward. */
|
|
static struct xfs_log_item *
|
|
xfs_cui_item_relog(
|
|
struct xfs_log_item *intent,
|
|
struct xfs_trans *tp)
|
|
{
|
|
struct xfs_cud_log_item *cudp;
|
|
struct xfs_cui_log_item *cuip;
|
|
struct xfs_phys_extent *pmap;
|
|
unsigned int count;
|
|
|
|
count = CUI_ITEM(intent)->cui_format.cui_nextents;
|
|
pmap = CUI_ITEM(intent)->cui_format.cui_extents;
|
|
|
|
tp->t_flags |= XFS_TRANS_DIRTY;
|
|
cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent));
|
|
set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
|
|
|
|
cuip = xfs_cui_init(tp->t_mountp, count);
|
|
memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap));
|
|
atomic_set(&cuip->cui_next_extent, count);
|
|
xfs_trans_add_item(tp, &cuip->cui_item);
|
|
set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
|
|
return &cuip->cui_item;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_cui_item_ops = {
|
|
.flags = XFS_ITEM_INTENT,
|
|
.iop_size = xfs_cui_item_size,
|
|
.iop_format = xfs_cui_item_format,
|
|
.iop_unpin = xfs_cui_item_unpin,
|
|
.iop_release = xfs_cui_item_release,
|
|
.iop_recover = xfs_cui_item_recover,
|
|
.iop_match = xfs_cui_item_match,
|
|
.iop_relog = xfs_cui_item_relog,
|
|
};
|
|
|
|
static inline void
|
|
xfs_cui_copy_format(
|
|
struct xfs_cui_log_format *dst,
|
|
const struct xfs_cui_log_format *src)
|
|
{
|
|
unsigned int i;
|
|
|
|
memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents));
|
|
|
|
for (i = 0; i < src->cui_nextents; i++)
|
|
memcpy(&dst->cui_extents[i], &src->cui_extents[i],
|
|
sizeof(struct xfs_phys_extent));
|
|
}
|
|
|
|
/*
|
|
* This routine is called to create an in-core extent refcount update
|
|
* item from the cui format structure which was logged on disk.
|
|
* It allocates an in-core cui, copies the extents from the format
|
|
* structure into it, and adds the cui to the AIL with the given
|
|
* LSN.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_cui_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_cui_log_item *cuip;
|
|
struct xfs_cui_log_format *cui_formatp;
|
|
size_t len;
|
|
|
|
cui_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents);
|
|
if (item->ri_buf[0].i_len != len) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
|
|
xfs_cui_copy_format(&cuip->cui_format, cui_formatp);
|
|
atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
|
|
/*
|
|
* Insert the intent into the AIL directly and drop one reference so
|
|
* that finishing or canceling the work will drop the other.
|
|
*/
|
|
xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn);
|
|
xfs_cui_release(cuip);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_cui_item_ops = {
|
|
.item_type = XFS_LI_CUI,
|
|
.commit_pass2 = xlog_recover_cui_commit_pass2,
|
|
};
|
|
|
|
/*
|
|
* This routine is called when an CUD format structure is found in a committed
|
|
* transaction in the log. Its purpose is to cancel the corresponding CUI if it
|
|
* was still in the log. To do this it searches the AIL for the CUI with an id
|
|
* equal to that in the CUD format structure. If we find it we drop the CUD
|
|
* reference, which removes the CUI from the AIL and frees it.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_cud_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_cud_log_format *cud_formatp;
|
|
|
|
cud_formatp = item->ri_buf[0].i_addr;
|
|
if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_cud_item_ops = {
|
|
.item_type = XFS_LI_CUD,
|
|
.commit_pass2 = xlog_recover_cud_commit_pass2,
|
|
};
|