mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 12:28:41 +08:00
2459e56fd8
Add new extension to support setting an immutable-priority-list of potential placements, at creation time. If we use the normal gem_create or gem_create_ext without the extensions/placements then we still get the old behaviour with only placing the object in system memory. v2(Daniel & Jason): - Add a bunch of kernel-doc - Simplify design for placements extension Testcase: igt/gem_create/create-ext-placement-sanity-check Testcase: igt/gem_create/create-ext-placement-each Testcase: igt/gem_create/create-ext-placement-all Signed-off-by: Matthew Auld <matthew.auld@intel.com> Signed-off-by: CQ Tang <cq.tang@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: Lionel Landwerlin <lionel.g.landwerlin@linux.intel.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Kenneth Graunke <kenneth@whitecape.org> Cc: Jason Ekstrand <jason@jlekstrand.net> Cc: Dave Airlie <airlied@gmail.com> Cc: dri-devel@lists.freedesktop.org Cc: mesa-dev@lists.freedesktop.org Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Link: https://patchwork.freedesktop.org/patch/msgid/20210429103056.407067-6-matthew.auld@intel.com
2710 lines
87 KiB
C
2710 lines
87 KiB
C
/*
|
|
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#ifndef _UAPI_I915_DRM_H_
|
|
#define _UAPI_I915_DRM_H_
|
|
|
|
#include "drm.h"
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* Please note that modifications to all structs defined here are
|
|
* subject to backwards-compatibility constraints.
|
|
*/
|
|
|
|
/**
|
|
* DOC: uevents generated by i915 on it's device node
|
|
*
|
|
* I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
|
|
* event from the gpu l3 cache. Additional information supplied is ROW,
|
|
* BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
|
|
* track of these events and if a specific cache-line seems to have a
|
|
* persistent error remap it with the l3 remapping tool supplied in
|
|
* intel-gpu-tools. The value supplied with the event is always 1.
|
|
*
|
|
* I915_ERROR_UEVENT - Generated upon error detection, currently only via
|
|
* hangcheck. The error detection event is a good indicator of when things
|
|
* began to go badly. The value supplied with the event is a 1 upon error
|
|
* detection, and a 0 upon reset completion, signifying no more error
|
|
* exists. NOTE: Disabling hangcheck or reset via module parameter will
|
|
* cause the related events to not be seen.
|
|
*
|
|
* I915_RESET_UEVENT - Event is generated just before an attempt to reset the
|
|
* GPU. The value supplied with the event is always 1. NOTE: Disable
|
|
* reset via module parameter will cause this event to not be seen.
|
|
*/
|
|
#define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR"
|
|
#define I915_ERROR_UEVENT "ERROR"
|
|
#define I915_RESET_UEVENT "RESET"
|
|
|
|
/**
|
|
* struct i915_user_extension - Base class for defining a chain of extensions
|
|
*
|
|
* Many interfaces need to grow over time. In most cases we can simply
|
|
* extend the struct and have userspace pass in more data. Another option,
|
|
* as demonstrated by Vulkan's approach to providing extensions for forward
|
|
* and backward compatibility, is to use a list of optional structs to
|
|
* provide those extra details.
|
|
*
|
|
* The key advantage to using an extension chain is that it allows us to
|
|
* redefine the interface more easily than an ever growing struct of
|
|
* increasing complexity, and for large parts of that interface to be
|
|
* entirely optional. The downside is more pointer chasing; chasing across
|
|
* the __user boundary with pointers encapsulated inside u64.
|
|
*
|
|
* Example chaining:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct i915_user_extension ext3 {
|
|
* .next_extension = 0, // end
|
|
* .name = ...,
|
|
* };
|
|
* struct i915_user_extension ext2 {
|
|
* .next_extension = (uintptr_t)&ext3,
|
|
* .name = ...,
|
|
* };
|
|
* struct i915_user_extension ext1 {
|
|
* .next_extension = (uintptr_t)&ext2,
|
|
* .name = ...,
|
|
* };
|
|
*
|
|
* Typically the struct i915_user_extension would be embedded in some uAPI
|
|
* struct, and in this case we would feed it the head of the chain(i.e ext1),
|
|
* which would then apply all of the above extensions.
|
|
*
|
|
*/
|
|
struct i915_user_extension {
|
|
/**
|
|
* @next_extension:
|
|
*
|
|
* Pointer to the next struct i915_user_extension, or zero if the end.
|
|
*/
|
|
__u64 next_extension;
|
|
/**
|
|
* @name: Name of the extension.
|
|
*
|
|
* Note that the name here is just some integer.
|
|
*
|
|
* Also note that the name space for this is not global for the whole
|
|
* driver, but rather its scope/meaning is limited to the specific piece
|
|
* of uAPI which has embedded the struct i915_user_extension.
|
|
*/
|
|
__u32 name;
|
|
/**
|
|
* @flags: MBZ
|
|
*
|
|
* All undefined bits must be zero.
|
|
*/
|
|
__u32 flags;
|
|
/**
|
|
* @rsvd: MBZ
|
|
*
|
|
* Reserved for future use; must be zero.
|
|
*/
|
|
__u32 rsvd[4];
|
|
};
|
|
|
|
/*
|
|
* MOCS indexes used for GPU surfaces, defining the cacheability of the
|
|
* surface data and the coherency for this data wrt. CPU vs. GPU accesses.
|
|
*/
|
|
enum i915_mocs_table_index {
|
|
/*
|
|
* Not cached anywhere, coherency between CPU and GPU accesses is
|
|
* guaranteed.
|
|
*/
|
|
I915_MOCS_UNCACHED,
|
|
/*
|
|
* Cacheability and coherency controlled by the kernel automatically
|
|
* based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
|
|
* usage of the surface (used for display scanout or not).
|
|
*/
|
|
I915_MOCS_PTE,
|
|
/*
|
|
* Cached in all GPU caches available on the platform.
|
|
* Coherency between CPU and GPU accesses to the surface is not
|
|
* guaranteed without extra synchronization.
|
|
*/
|
|
I915_MOCS_CACHED,
|
|
};
|
|
|
|
/*
|
|
* Different engines serve different roles, and there may be more than one
|
|
* engine serving each role. enum drm_i915_gem_engine_class provides a
|
|
* classification of the role of the engine, which may be used when requesting
|
|
* operations to be performed on a certain subset of engines, or for providing
|
|
* information about that group.
|
|
*/
|
|
enum drm_i915_gem_engine_class {
|
|
I915_ENGINE_CLASS_RENDER = 0,
|
|
I915_ENGINE_CLASS_COPY = 1,
|
|
I915_ENGINE_CLASS_VIDEO = 2,
|
|
I915_ENGINE_CLASS_VIDEO_ENHANCE = 3,
|
|
|
|
/* should be kept compact */
|
|
|
|
I915_ENGINE_CLASS_INVALID = -1
|
|
};
|
|
|
|
/*
|
|
* There may be more than one engine fulfilling any role within the system.
|
|
* Each engine of a class is given a unique instance number and therefore
|
|
* any engine can be specified by its class:instance tuplet. APIs that allow
|
|
* access to any engine in the system will use struct i915_engine_class_instance
|
|
* for this identification.
|
|
*/
|
|
struct i915_engine_class_instance {
|
|
__u16 engine_class; /* see enum drm_i915_gem_engine_class */
|
|
__u16 engine_instance;
|
|
#define I915_ENGINE_CLASS_INVALID_NONE -1
|
|
#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
|
|
};
|
|
|
|
/**
|
|
* DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
|
|
*
|
|
*/
|
|
|
|
enum drm_i915_pmu_engine_sample {
|
|
I915_SAMPLE_BUSY = 0,
|
|
I915_SAMPLE_WAIT = 1,
|
|
I915_SAMPLE_SEMA = 2
|
|
};
|
|
|
|
#define I915_PMU_SAMPLE_BITS (4)
|
|
#define I915_PMU_SAMPLE_MASK (0xf)
|
|
#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
|
|
#define I915_PMU_CLASS_SHIFT \
|
|
(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
|
|
|
|
#define __I915_PMU_ENGINE(class, instance, sample) \
|
|
((class) << I915_PMU_CLASS_SHIFT | \
|
|
(instance) << I915_PMU_SAMPLE_BITS | \
|
|
(sample))
|
|
|
|
#define I915_PMU_ENGINE_BUSY(class, instance) \
|
|
__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
|
|
|
|
#define I915_PMU_ENGINE_WAIT(class, instance) \
|
|
__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
|
|
|
|
#define I915_PMU_ENGINE_SEMA(class, instance) \
|
|
__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
|
|
|
|
#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
|
|
|
|
#define I915_PMU_ACTUAL_FREQUENCY __I915_PMU_OTHER(0)
|
|
#define I915_PMU_REQUESTED_FREQUENCY __I915_PMU_OTHER(1)
|
|
#define I915_PMU_INTERRUPTS __I915_PMU_OTHER(2)
|
|
#define I915_PMU_RC6_RESIDENCY __I915_PMU_OTHER(3)
|
|
#define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4)
|
|
|
|
#define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
|
|
|
|
/* Each region is a minimum of 16k, and there are at most 255 of them.
|
|
*/
|
|
#define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
|
|
* of chars for next/prev indices */
|
|
#define I915_LOG_MIN_TEX_REGION_SIZE 14
|
|
|
|
typedef struct _drm_i915_init {
|
|
enum {
|
|
I915_INIT_DMA = 0x01,
|
|
I915_CLEANUP_DMA = 0x02,
|
|
I915_RESUME_DMA = 0x03
|
|
} func;
|
|
unsigned int mmio_offset;
|
|
int sarea_priv_offset;
|
|
unsigned int ring_start;
|
|
unsigned int ring_end;
|
|
unsigned int ring_size;
|
|
unsigned int front_offset;
|
|
unsigned int back_offset;
|
|
unsigned int depth_offset;
|
|
unsigned int w;
|
|
unsigned int h;
|
|
unsigned int pitch;
|
|
unsigned int pitch_bits;
|
|
unsigned int back_pitch;
|
|
unsigned int depth_pitch;
|
|
unsigned int cpp;
|
|
unsigned int chipset;
|
|
} drm_i915_init_t;
|
|
|
|
typedef struct _drm_i915_sarea {
|
|
struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
|
|
int last_upload; /* last time texture was uploaded */
|
|
int last_enqueue; /* last time a buffer was enqueued */
|
|
int last_dispatch; /* age of the most recently dispatched buffer */
|
|
int ctxOwner; /* last context to upload state */
|
|
int texAge;
|
|
int pf_enabled; /* is pageflipping allowed? */
|
|
int pf_active;
|
|
int pf_current_page; /* which buffer is being displayed? */
|
|
int perf_boxes; /* performance boxes to be displayed */
|
|
int width, height; /* screen size in pixels */
|
|
|
|
drm_handle_t front_handle;
|
|
int front_offset;
|
|
int front_size;
|
|
|
|
drm_handle_t back_handle;
|
|
int back_offset;
|
|
int back_size;
|
|
|
|
drm_handle_t depth_handle;
|
|
int depth_offset;
|
|
int depth_size;
|
|
|
|
drm_handle_t tex_handle;
|
|
int tex_offset;
|
|
int tex_size;
|
|
int log_tex_granularity;
|
|
int pitch;
|
|
int rotation; /* 0, 90, 180 or 270 */
|
|
int rotated_offset;
|
|
int rotated_size;
|
|
int rotated_pitch;
|
|
int virtualX, virtualY;
|
|
|
|
unsigned int front_tiled;
|
|
unsigned int back_tiled;
|
|
unsigned int depth_tiled;
|
|
unsigned int rotated_tiled;
|
|
unsigned int rotated2_tiled;
|
|
|
|
int pipeA_x;
|
|
int pipeA_y;
|
|
int pipeA_w;
|
|
int pipeA_h;
|
|
int pipeB_x;
|
|
int pipeB_y;
|
|
int pipeB_w;
|
|
int pipeB_h;
|
|
|
|
/* fill out some space for old userspace triple buffer */
|
|
drm_handle_t unused_handle;
|
|
__u32 unused1, unused2, unused3;
|
|
|
|
/* buffer object handles for static buffers. May change
|
|
* over the lifetime of the client.
|
|
*/
|
|
__u32 front_bo_handle;
|
|
__u32 back_bo_handle;
|
|
__u32 unused_bo_handle;
|
|
__u32 depth_bo_handle;
|
|
|
|
} drm_i915_sarea_t;
|
|
|
|
/* due to userspace building against these headers we need some compat here */
|
|
#define planeA_x pipeA_x
|
|
#define planeA_y pipeA_y
|
|
#define planeA_w pipeA_w
|
|
#define planeA_h pipeA_h
|
|
#define planeB_x pipeB_x
|
|
#define planeB_y pipeB_y
|
|
#define planeB_w pipeB_w
|
|
#define planeB_h pipeB_h
|
|
|
|
/* Flags for perf_boxes
|
|
*/
|
|
#define I915_BOX_RING_EMPTY 0x1
|
|
#define I915_BOX_FLIP 0x2
|
|
#define I915_BOX_WAIT 0x4
|
|
#define I915_BOX_TEXTURE_LOAD 0x8
|
|
#define I915_BOX_LOST_CONTEXT 0x10
|
|
|
|
/*
|
|
* i915 specific ioctls.
|
|
*
|
|
* The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
|
|
* [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
|
|
* against DRM_COMMAND_BASE and should be between [0x0, 0x60).
|
|
*/
|
|
#define DRM_I915_INIT 0x00
|
|
#define DRM_I915_FLUSH 0x01
|
|
#define DRM_I915_FLIP 0x02
|
|
#define DRM_I915_BATCHBUFFER 0x03
|
|
#define DRM_I915_IRQ_EMIT 0x04
|
|
#define DRM_I915_IRQ_WAIT 0x05
|
|
#define DRM_I915_GETPARAM 0x06
|
|
#define DRM_I915_SETPARAM 0x07
|
|
#define DRM_I915_ALLOC 0x08
|
|
#define DRM_I915_FREE 0x09
|
|
#define DRM_I915_INIT_HEAP 0x0a
|
|
#define DRM_I915_CMDBUFFER 0x0b
|
|
#define DRM_I915_DESTROY_HEAP 0x0c
|
|
#define DRM_I915_SET_VBLANK_PIPE 0x0d
|
|
#define DRM_I915_GET_VBLANK_PIPE 0x0e
|
|
#define DRM_I915_VBLANK_SWAP 0x0f
|
|
#define DRM_I915_HWS_ADDR 0x11
|
|
#define DRM_I915_GEM_INIT 0x13
|
|
#define DRM_I915_GEM_EXECBUFFER 0x14
|
|
#define DRM_I915_GEM_PIN 0x15
|
|
#define DRM_I915_GEM_UNPIN 0x16
|
|
#define DRM_I915_GEM_BUSY 0x17
|
|
#define DRM_I915_GEM_THROTTLE 0x18
|
|
#define DRM_I915_GEM_ENTERVT 0x19
|
|
#define DRM_I915_GEM_LEAVEVT 0x1a
|
|
#define DRM_I915_GEM_CREATE 0x1b
|
|
#define DRM_I915_GEM_PREAD 0x1c
|
|
#define DRM_I915_GEM_PWRITE 0x1d
|
|
#define DRM_I915_GEM_MMAP 0x1e
|
|
#define DRM_I915_GEM_SET_DOMAIN 0x1f
|
|
#define DRM_I915_GEM_SW_FINISH 0x20
|
|
#define DRM_I915_GEM_SET_TILING 0x21
|
|
#define DRM_I915_GEM_GET_TILING 0x22
|
|
#define DRM_I915_GEM_GET_APERTURE 0x23
|
|
#define DRM_I915_GEM_MMAP_GTT 0x24
|
|
#define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25
|
|
#define DRM_I915_GEM_MADVISE 0x26
|
|
#define DRM_I915_OVERLAY_PUT_IMAGE 0x27
|
|
#define DRM_I915_OVERLAY_ATTRS 0x28
|
|
#define DRM_I915_GEM_EXECBUFFER2 0x29
|
|
#define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2
|
|
#define DRM_I915_GET_SPRITE_COLORKEY 0x2a
|
|
#define DRM_I915_SET_SPRITE_COLORKEY 0x2b
|
|
#define DRM_I915_GEM_WAIT 0x2c
|
|
#define DRM_I915_GEM_CONTEXT_CREATE 0x2d
|
|
#define DRM_I915_GEM_CONTEXT_DESTROY 0x2e
|
|
#define DRM_I915_GEM_SET_CACHING 0x2f
|
|
#define DRM_I915_GEM_GET_CACHING 0x30
|
|
#define DRM_I915_REG_READ 0x31
|
|
#define DRM_I915_GET_RESET_STATS 0x32
|
|
#define DRM_I915_GEM_USERPTR 0x33
|
|
#define DRM_I915_GEM_CONTEXT_GETPARAM 0x34
|
|
#define DRM_I915_GEM_CONTEXT_SETPARAM 0x35
|
|
#define DRM_I915_PERF_OPEN 0x36
|
|
#define DRM_I915_PERF_ADD_CONFIG 0x37
|
|
#define DRM_I915_PERF_REMOVE_CONFIG 0x38
|
|
#define DRM_I915_QUERY 0x39
|
|
#define DRM_I915_GEM_VM_CREATE 0x3a
|
|
#define DRM_I915_GEM_VM_DESTROY 0x3b
|
|
#define DRM_I915_GEM_CREATE_EXT 0x3c
|
|
/* Must be kept compact -- no holes */
|
|
|
|
#define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
|
|
#define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
|
|
#define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
|
|
#define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
|
|
#define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
|
|
#define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
|
|
#define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
|
|
#define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
|
|
#define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
|
|
#define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
|
|
#define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
|
|
#define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
|
|
#define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
|
|
#define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
|
|
#define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
|
|
#define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
|
|
#define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
|
|
#define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
|
|
#define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
|
|
#define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
|
|
#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
|
|
#define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
|
|
#define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
|
|
#define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
|
|
#define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
|
|
#define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
|
|
#define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
|
|
#define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
|
|
#define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
|
|
#define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
|
|
#define DRM_IOCTL_I915_GEM_CREATE_EXT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
|
|
#define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
|
|
#define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
|
|
#define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
|
|
#define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
|
|
#define DRM_IOCTL_I915_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
|
|
#define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
|
|
#define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
|
|
#define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
|
|
#define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
|
|
#define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
|
|
#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
|
|
#define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
|
|
#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
|
|
#define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
|
|
#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
|
|
#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
|
|
#define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
|
|
#define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
|
|
#define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
|
|
#define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
|
|
#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
|
|
#define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
|
|
#define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
|
|
#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
|
|
#define DRM_IOCTL_I915_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
|
|
#define DRM_IOCTL_I915_GEM_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
|
|
#define DRM_IOCTL_I915_GEM_VM_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
|
|
|
|
/* Allow drivers to submit batchbuffers directly to hardware, relying
|
|
* on the security mechanisms provided by hardware.
|
|
*/
|
|
typedef struct drm_i915_batchbuffer {
|
|
int start; /* agp offset */
|
|
int used; /* nr bytes in use */
|
|
int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
|
|
int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
|
|
int num_cliprects; /* mulitpass with multiple cliprects? */
|
|
struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
|
|
} drm_i915_batchbuffer_t;
|
|
|
|
/* As above, but pass a pointer to userspace buffer which can be
|
|
* validated by the kernel prior to sending to hardware.
|
|
*/
|
|
typedef struct _drm_i915_cmdbuffer {
|
|
char __user *buf; /* pointer to userspace command buffer */
|
|
int sz; /* nr bytes in buf */
|
|
int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
|
|
int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
|
|
int num_cliprects; /* mulitpass with multiple cliprects? */
|
|
struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
|
|
} drm_i915_cmdbuffer_t;
|
|
|
|
/* Userspace can request & wait on irq's:
|
|
*/
|
|
typedef struct drm_i915_irq_emit {
|
|
int __user *irq_seq;
|
|
} drm_i915_irq_emit_t;
|
|
|
|
typedef struct drm_i915_irq_wait {
|
|
int irq_seq;
|
|
} drm_i915_irq_wait_t;
|
|
|
|
/*
|
|
* Different modes of per-process Graphics Translation Table,
|
|
* see I915_PARAM_HAS_ALIASING_PPGTT
|
|
*/
|
|
#define I915_GEM_PPGTT_NONE 0
|
|
#define I915_GEM_PPGTT_ALIASING 1
|
|
#define I915_GEM_PPGTT_FULL 2
|
|
|
|
/* Ioctl to query kernel params:
|
|
*/
|
|
#define I915_PARAM_IRQ_ACTIVE 1
|
|
#define I915_PARAM_ALLOW_BATCHBUFFER 2
|
|
#define I915_PARAM_LAST_DISPATCH 3
|
|
#define I915_PARAM_CHIPSET_ID 4
|
|
#define I915_PARAM_HAS_GEM 5
|
|
#define I915_PARAM_NUM_FENCES_AVAIL 6
|
|
#define I915_PARAM_HAS_OVERLAY 7
|
|
#define I915_PARAM_HAS_PAGEFLIPPING 8
|
|
#define I915_PARAM_HAS_EXECBUF2 9
|
|
#define I915_PARAM_HAS_BSD 10
|
|
#define I915_PARAM_HAS_BLT 11
|
|
#define I915_PARAM_HAS_RELAXED_FENCING 12
|
|
#define I915_PARAM_HAS_COHERENT_RINGS 13
|
|
#define I915_PARAM_HAS_EXEC_CONSTANTS 14
|
|
#define I915_PARAM_HAS_RELAXED_DELTA 15
|
|
#define I915_PARAM_HAS_GEN7_SOL_RESET 16
|
|
#define I915_PARAM_HAS_LLC 17
|
|
#define I915_PARAM_HAS_ALIASING_PPGTT 18
|
|
#define I915_PARAM_HAS_WAIT_TIMEOUT 19
|
|
#define I915_PARAM_HAS_SEMAPHORES 20
|
|
#define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21
|
|
#define I915_PARAM_HAS_VEBOX 22
|
|
#define I915_PARAM_HAS_SECURE_BATCHES 23
|
|
#define I915_PARAM_HAS_PINNED_BATCHES 24
|
|
#define I915_PARAM_HAS_EXEC_NO_RELOC 25
|
|
#define I915_PARAM_HAS_EXEC_HANDLE_LUT 26
|
|
#define I915_PARAM_HAS_WT 27
|
|
#define I915_PARAM_CMD_PARSER_VERSION 28
|
|
#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
|
|
#define I915_PARAM_MMAP_VERSION 30
|
|
#define I915_PARAM_HAS_BSD2 31
|
|
#define I915_PARAM_REVISION 32
|
|
#define I915_PARAM_SUBSLICE_TOTAL 33
|
|
#define I915_PARAM_EU_TOTAL 34
|
|
#define I915_PARAM_HAS_GPU_RESET 35
|
|
#define I915_PARAM_HAS_RESOURCE_STREAMER 36
|
|
#define I915_PARAM_HAS_EXEC_SOFTPIN 37
|
|
#define I915_PARAM_HAS_POOLED_EU 38
|
|
#define I915_PARAM_MIN_EU_IN_POOL 39
|
|
#define I915_PARAM_MMAP_GTT_VERSION 40
|
|
|
|
/*
|
|
* Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
|
|
* priorities and the driver will attempt to execute batches in priority order.
|
|
* The param returns a capability bitmask, nonzero implies that the scheduler
|
|
* is enabled, with different features present according to the mask.
|
|
*
|
|
* The initial priority for each batch is supplied by the context and is
|
|
* controlled via I915_CONTEXT_PARAM_PRIORITY.
|
|
*/
|
|
#define I915_PARAM_HAS_SCHEDULER 41
|
|
#define I915_SCHEDULER_CAP_ENABLED (1ul << 0)
|
|
#define I915_SCHEDULER_CAP_PRIORITY (1ul << 1)
|
|
#define I915_SCHEDULER_CAP_PREEMPTION (1ul << 2)
|
|
#define I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3)
|
|
#define I915_SCHEDULER_CAP_ENGINE_BUSY_STATS (1ul << 4)
|
|
|
|
#define I915_PARAM_HUC_STATUS 42
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
|
|
* synchronisation with implicit fencing on individual objects.
|
|
* See EXEC_OBJECT_ASYNC.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_ASYNC 43
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
|
|
* both being able to pass in a sync_file fd to wait upon before executing,
|
|
* and being able to return a new sync_file fd that is signaled when the
|
|
* current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_FENCE 44
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
|
|
* user specified bufffers for post-mortem debugging of GPU hangs. See
|
|
* EXEC_OBJECT_CAPTURE.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_CAPTURE 45
|
|
|
|
#define I915_PARAM_SLICE_MASK 46
|
|
|
|
/* Assuming it's uniform for each slice, this queries the mask of subslices
|
|
* per-slice for this system.
|
|
*/
|
|
#define I915_PARAM_SUBSLICE_MASK 47
|
|
|
|
/*
|
|
* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
|
|
* as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_BATCH_FIRST 48
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
|
|
* drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49
|
|
|
|
/*
|
|
* Query whether every context (both per-file default and user created) is
|
|
* isolated (insofar as HW supports). If this parameter is not true, then
|
|
* freshly created contexts may inherit values from an existing context,
|
|
* rather than default HW values. If true, it also ensures (insofar as HW
|
|
* supports) that all state set by this context will not leak to any other
|
|
* context.
|
|
*
|
|
* As not every engine across every gen support contexts, the returned
|
|
* value reports the support of context isolation for individual engines by
|
|
* returning a bitmask of each engine class set to true if that class supports
|
|
* isolation.
|
|
*/
|
|
#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
|
|
|
|
/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
|
|
* registers. This used to be fixed per platform but from CNL onwards, this
|
|
* might vary depending on the parts.
|
|
*/
|
|
#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
|
|
|
|
/*
|
|
* Once upon a time we supposed that writes through the GGTT would be
|
|
* immediately in physical memory (once flushed out of the CPU path). However,
|
|
* on a few different processors and chipsets, this is not necessarily the case
|
|
* as the writes appear to be buffered internally. Thus a read of the backing
|
|
* storage (physical memory) via a different path (with different physical tags
|
|
* to the indirect write via the GGTT) will see stale values from before
|
|
* the GGTT write. Inside the kernel, we can for the most part keep track of
|
|
* the different read/write domains in use (e.g. set-domain), but the assumption
|
|
* of coherency is baked into the ABI, hence reporting its true state in this
|
|
* parameter.
|
|
*
|
|
* Reports true when writes via mmap_gtt are immediately visible following an
|
|
* lfence to flush the WCB.
|
|
*
|
|
* Reports false when writes via mmap_gtt are indeterminately delayed in an in
|
|
* internal buffer and are _not_ immediately visible to third parties accessing
|
|
* directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
|
|
* communications channel when reporting false is strongly disadvised.
|
|
*/
|
|
#define I915_PARAM_MMAP_GTT_COHERENT 52
|
|
|
|
/*
|
|
* Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
|
|
* execution through use of explicit fence support.
|
|
* See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
|
|
|
|
/*
|
|
* Revision of the i915-perf uAPI. The value returned helps determine what
|
|
* i915-perf features are available. See drm_i915_perf_property_id.
|
|
*/
|
|
#define I915_PARAM_PERF_REVISION 54
|
|
|
|
/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
|
|
* timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
|
|
* I915_EXEC_USE_EXTENSIONS.
|
|
*/
|
|
#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
|
|
|
|
/* Must be kept compact -- no holes and well documented */
|
|
|
|
typedef struct drm_i915_getparam {
|
|
__s32 param;
|
|
/*
|
|
* WARNING: Using pointers instead of fixed-size u64 means we need to write
|
|
* compat32 code. Don't repeat this mistake.
|
|
*/
|
|
int __user *value;
|
|
} drm_i915_getparam_t;
|
|
|
|
/* Ioctl to set kernel params:
|
|
*/
|
|
#define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1
|
|
#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2
|
|
#define I915_SETPARAM_ALLOW_BATCHBUFFER 3
|
|
#define I915_SETPARAM_NUM_USED_FENCES 4
|
|
/* Must be kept compact -- no holes */
|
|
|
|
typedef struct drm_i915_setparam {
|
|
int param;
|
|
int value;
|
|
} drm_i915_setparam_t;
|
|
|
|
/* A memory manager for regions of shared memory:
|
|
*/
|
|
#define I915_MEM_REGION_AGP 1
|
|
|
|
typedef struct drm_i915_mem_alloc {
|
|
int region;
|
|
int alignment;
|
|
int size;
|
|
int __user *region_offset; /* offset from start of fb or agp */
|
|
} drm_i915_mem_alloc_t;
|
|
|
|
typedef struct drm_i915_mem_free {
|
|
int region;
|
|
int region_offset;
|
|
} drm_i915_mem_free_t;
|
|
|
|
typedef struct drm_i915_mem_init_heap {
|
|
int region;
|
|
int size;
|
|
int start;
|
|
} drm_i915_mem_init_heap_t;
|
|
|
|
/* Allow memory manager to be torn down and re-initialized (eg on
|
|
* rotate):
|
|
*/
|
|
typedef struct drm_i915_mem_destroy_heap {
|
|
int region;
|
|
} drm_i915_mem_destroy_heap_t;
|
|
|
|
/* Allow X server to configure which pipes to monitor for vblank signals
|
|
*/
|
|
#define DRM_I915_VBLANK_PIPE_A 1
|
|
#define DRM_I915_VBLANK_PIPE_B 2
|
|
|
|
typedef struct drm_i915_vblank_pipe {
|
|
int pipe;
|
|
} drm_i915_vblank_pipe_t;
|
|
|
|
/* Schedule buffer swap at given vertical blank:
|
|
*/
|
|
typedef struct drm_i915_vblank_swap {
|
|
drm_drawable_t drawable;
|
|
enum drm_vblank_seq_type seqtype;
|
|
unsigned int sequence;
|
|
} drm_i915_vblank_swap_t;
|
|
|
|
typedef struct drm_i915_hws_addr {
|
|
__u64 addr;
|
|
} drm_i915_hws_addr_t;
|
|
|
|
struct drm_i915_gem_init {
|
|
/**
|
|
* Beginning offset in the GTT to be managed by the DRM memory
|
|
* manager.
|
|
*/
|
|
__u64 gtt_start;
|
|
/**
|
|
* Ending offset in the GTT to be managed by the DRM memory
|
|
* manager.
|
|
*/
|
|
__u64 gtt_end;
|
|
};
|
|
|
|
struct drm_i915_gem_create {
|
|
/**
|
|
* Requested size for the object.
|
|
*
|
|
* The (page-aligned) allocated size for the object will be returned.
|
|
*/
|
|
__u64 size;
|
|
/**
|
|
* Returned handle for the object.
|
|
*
|
|
* Object handles are nonzero.
|
|
*/
|
|
__u32 handle;
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_pread {
|
|
/** Handle for the object being read. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/** Offset into the object to read from */
|
|
__u64 offset;
|
|
/** Length of data to read */
|
|
__u64 size;
|
|
/**
|
|
* Pointer to write the data into.
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 data_ptr;
|
|
};
|
|
|
|
struct drm_i915_gem_pwrite {
|
|
/** Handle for the object being written to. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/** Offset into the object to write to */
|
|
__u64 offset;
|
|
/** Length of data to write */
|
|
__u64 size;
|
|
/**
|
|
* Pointer to read the data from.
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 data_ptr;
|
|
};
|
|
|
|
struct drm_i915_gem_mmap {
|
|
/** Handle for the object being mapped. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/** Offset in the object to map. */
|
|
__u64 offset;
|
|
/**
|
|
* Length of data to map.
|
|
*
|
|
* The value will be page-aligned.
|
|
*/
|
|
__u64 size;
|
|
/**
|
|
* Returned pointer the data was mapped at.
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 addr_ptr;
|
|
|
|
/**
|
|
* Flags for extended behaviour.
|
|
*
|
|
* Added in version 2.
|
|
*/
|
|
__u64 flags;
|
|
#define I915_MMAP_WC 0x1
|
|
};
|
|
|
|
struct drm_i915_gem_mmap_gtt {
|
|
/** Handle for the object being mapped. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/**
|
|
* Fake offset to use for subsequent mmap call
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 offset;
|
|
};
|
|
|
|
struct drm_i915_gem_mmap_offset {
|
|
/** Handle for the object being mapped. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
/**
|
|
* Fake offset to use for subsequent mmap call
|
|
*
|
|
* This is a fixed-size type for 32/64 compatibility.
|
|
*/
|
|
__u64 offset;
|
|
|
|
/**
|
|
* Flags for extended behaviour.
|
|
*
|
|
* It is mandatory that one of the MMAP_OFFSET types
|
|
* (GTT, WC, WB, UC, etc) should be included.
|
|
*/
|
|
__u64 flags;
|
|
#define I915_MMAP_OFFSET_GTT 0
|
|
#define I915_MMAP_OFFSET_WC 1
|
|
#define I915_MMAP_OFFSET_WB 2
|
|
#define I915_MMAP_OFFSET_UC 3
|
|
|
|
/*
|
|
* Zero-terminated chain of extensions.
|
|
*
|
|
* No current extensions defined; mbz.
|
|
*/
|
|
__u64 extensions;
|
|
};
|
|
|
|
struct drm_i915_gem_set_domain {
|
|
/** Handle for the object */
|
|
__u32 handle;
|
|
|
|
/** New read domains */
|
|
__u32 read_domains;
|
|
|
|
/** New write domain */
|
|
__u32 write_domain;
|
|
};
|
|
|
|
struct drm_i915_gem_sw_finish {
|
|
/** Handle for the object */
|
|
__u32 handle;
|
|
};
|
|
|
|
struct drm_i915_gem_relocation_entry {
|
|
/**
|
|
* Handle of the buffer being pointed to by this relocation entry.
|
|
*
|
|
* It's appealing to make this be an index into the mm_validate_entry
|
|
* list to refer to the buffer, but this allows the driver to create
|
|
* a relocation list for state buffers and not re-write it per
|
|
* exec using the buffer.
|
|
*/
|
|
__u32 target_handle;
|
|
|
|
/**
|
|
* Value to be added to the offset of the target buffer to make up
|
|
* the relocation entry.
|
|
*/
|
|
__u32 delta;
|
|
|
|
/** Offset in the buffer the relocation entry will be written into */
|
|
__u64 offset;
|
|
|
|
/**
|
|
* Offset value of the target buffer that the relocation entry was last
|
|
* written as.
|
|
*
|
|
* If the buffer has the same offset as last time, we can skip syncing
|
|
* and writing the relocation. This value is written back out by
|
|
* the execbuffer ioctl when the relocation is written.
|
|
*/
|
|
__u64 presumed_offset;
|
|
|
|
/**
|
|
* Target memory domains read by this operation.
|
|
*/
|
|
__u32 read_domains;
|
|
|
|
/**
|
|
* Target memory domains written by this operation.
|
|
*
|
|
* Note that only one domain may be written by the whole
|
|
* execbuffer operation, so that where there are conflicts,
|
|
* the application will get -EINVAL back.
|
|
*/
|
|
__u32 write_domain;
|
|
};
|
|
|
|
/** @{
|
|
* Intel memory domains
|
|
*
|
|
* Most of these just align with the various caches in
|
|
* the system and are used to flush and invalidate as
|
|
* objects end up cached in different domains.
|
|
*/
|
|
/** CPU cache */
|
|
#define I915_GEM_DOMAIN_CPU 0x00000001
|
|
/** Render cache, used by 2D and 3D drawing */
|
|
#define I915_GEM_DOMAIN_RENDER 0x00000002
|
|
/** Sampler cache, used by texture engine */
|
|
#define I915_GEM_DOMAIN_SAMPLER 0x00000004
|
|
/** Command queue, used to load batch buffers */
|
|
#define I915_GEM_DOMAIN_COMMAND 0x00000008
|
|
/** Instruction cache, used by shader programs */
|
|
#define I915_GEM_DOMAIN_INSTRUCTION 0x00000010
|
|
/** Vertex address cache */
|
|
#define I915_GEM_DOMAIN_VERTEX 0x00000020
|
|
/** GTT domain - aperture and scanout */
|
|
#define I915_GEM_DOMAIN_GTT 0x00000040
|
|
/** WC domain - uncached access */
|
|
#define I915_GEM_DOMAIN_WC 0x00000080
|
|
/** @} */
|
|
|
|
struct drm_i915_gem_exec_object {
|
|
/**
|
|
* User's handle for a buffer to be bound into the GTT for this
|
|
* operation.
|
|
*/
|
|
__u32 handle;
|
|
|
|
/** Number of relocations to be performed on this buffer */
|
|
__u32 relocation_count;
|
|
/**
|
|
* Pointer to array of struct drm_i915_gem_relocation_entry containing
|
|
* the relocations to be performed in this buffer.
|
|
*/
|
|
__u64 relocs_ptr;
|
|
|
|
/** Required alignment in graphics aperture */
|
|
__u64 alignment;
|
|
|
|
/**
|
|
* Returned value of the updated offset of the object, for future
|
|
* presumed_offset writes.
|
|
*/
|
|
__u64 offset;
|
|
};
|
|
|
|
/* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
|
|
struct drm_i915_gem_execbuffer {
|
|
/**
|
|
* List of buffers to be validated with their relocations to be
|
|
* performend on them.
|
|
*
|
|
* This is a pointer to an array of struct drm_i915_gem_validate_entry.
|
|
*
|
|
* These buffers must be listed in an order such that all relocations
|
|
* a buffer is performing refer to buffers that have already appeared
|
|
* in the validate list.
|
|
*/
|
|
__u64 buffers_ptr;
|
|
__u32 buffer_count;
|
|
|
|
/** Offset in the batchbuffer to start execution from. */
|
|
__u32 batch_start_offset;
|
|
/** Bytes used in batchbuffer from batch_start_offset */
|
|
__u32 batch_len;
|
|
__u32 DR1;
|
|
__u32 DR4;
|
|
__u32 num_cliprects;
|
|
/** This is a struct drm_clip_rect *cliprects */
|
|
__u64 cliprects_ptr;
|
|
};
|
|
|
|
struct drm_i915_gem_exec_object2 {
|
|
/**
|
|
* User's handle for a buffer to be bound into the GTT for this
|
|
* operation.
|
|
*/
|
|
__u32 handle;
|
|
|
|
/** Number of relocations to be performed on this buffer */
|
|
__u32 relocation_count;
|
|
/**
|
|
* Pointer to array of struct drm_i915_gem_relocation_entry containing
|
|
* the relocations to be performed in this buffer.
|
|
*/
|
|
__u64 relocs_ptr;
|
|
|
|
/** Required alignment in graphics aperture */
|
|
__u64 alignment;
|
|
|
|
/**
|
|
* When the EXEC_OBJECT_PINNED flag is specified this is populated by
|
|
* the user with the GTT offset at which this object will be pinned.
|
|
* When the I915_EXEC_NO_RELOC flag is specified this must contain the
|
|
* presumed_offset of the object.
|
|
* During execbuffer2 the kernel populates it with the value of the
|
|
* current GTT offset of the object, for future presumed_offset writes.
|
|
*/
|
|
__u64 offset;
|
|
|
|
#define EXEC_OBJECT_NEEDS_FENCE (1<<0)
|
|
#define EXEC_OBJECT_NEEDS_GTT (1<<1)
|
|
#define EXEC_OBJECT_WRITE (1<<2)
|
|
#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
|
|
#define EXEC_OBJECT_PINNED (1<<4)
|
|
#define EXEC_OBJECT_PAD_TO_SIZE (1<<5)
|
|
/* The kernel implicitly tracks GPU activity on all GEM objects, and
|
|
* synchronises operations with outstanding rendering. This includes
|
|
* rendering on other devices if exported via dma-buf. However, sometimes
|
|
* this tracking is too coarse and the user knows better. For example,
|
|
* if the object is split into non-overlapping ranges shared between different
|
|
* clients or engines (i.e. suballocating objects), the implicit tracking
|
|
* by kernel assumes that each operation affects the whole object rather
|
|
* than an individual range, causing needless synchronisation between clients.
|
|
* The kernel will also forgo any CPU cache flushes prior to rendering from
|
|
* the object as the client is expected to be also handling such domain
|
|
* tracking.
|
|
*
|
|
* The kernel maintains the implicit tracking in order to manage resources
|
|
* used by the GPU - this flag only disables the synchronisation prior to
|
|
* rendering with this object in this execbuf.
|
|
*
|
|
* Opting out of implicit synhronisation requires the user to do its own
|
|
* explicit tracking to avoid rendering corruption. See, for example,
|
|
* I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
|
|
*/
|
|
#define EXEC_OBJECT_ASYNC (1<<6)
|
|
/* Request that the contents of this execobject be copied into the error
|
|
* state upon a GPU hang involving this batch for post-mortem debugging.
|
|
* These buffers are recorded in no particular order as "user" in
|
|
* /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
|
|
* if the kernel supports this flag.
|
|
*/
|
|
#define EXEC_OBJECT_CAPTURE (1<<7)
|
|
/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
|
|
#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
|
|
__u64 flags;
|
|
|
|
union {
|
|
__u64 rsvd1;
|
|
__u64 pad_to_size;
|
|
};
|
|
__u64 rsvd2;
|
|
};
|
|
|
|
struct drm_i915_gem_exec_fence {
|
|
/**
|
|
* User's handle for a drm_syncobj to wait on or signal.
|
|
*/
|
|
__u32 handle;
|
|
|
|
#define I915_EXEC_FENCE_WAIT (1<<0)
|
|
#define I915_EXEC_FENCE_SIGNAL (1<<1)
|
|
#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
|
|
__u32 flags;
|
|
};
|
|
|
|
/*
|
|
* See drm_i915_gem_execbuffer_ext_timeline_fences.
|
|
*/
|
|
#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
|
|
|
|
/*
|
|
* This structure describes an array of drm_syncobj and associated points for
|
|
* timeline variants of drm_syncobj. It is invalid to append this structure to
|
|
* the execbuf if I915_EXEC_FENCE_ARRAY is set.
|
|
*/
|
|
struct drm_i915_gem_execbuffer_ext_timeline_fences {
|
|
struct i915_user_extension base;
|
|
|
|
/**
|
|
* Number of element in the handles_ptr & value_ptr arrays.
|
|
*/
|
|
__u64 fence_count;
|
|
|
|
/**
|
|
* Pointer to an array of struct drm_i915_gem_exec_fence of length
|
|
* fence_count.
|
|
*/
|
|
__u64 handles_ptr;
|
|
|
|
/**
|
|
* Pointer to an array of u64 values of length fence_count. Values
|
|
* must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
|
|
* drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
|
|
*/
|
|
__u64 values_ptr;
|
|
};
|
|
|
|
struct drm_i915_gem_execbuffer2 {
|
|
/**
|
|
* List of gem_exec_object2 structs
|
|
*/
|
|
__u64 buffers_ptr;
|
|
__u32 buffer_count;
|
|
|
|
/** Offset in the batchbuffer to start execution from. */
|
|
__u32 batch_start_offset;
|
|
/** Bytes used in batchbuffer from batch_start_offset */
|
|
__u32 batch_len;
|
|
__u32 DR1;
|
|
__u32 DR4;
|
|
__u32 num_cliprects;
|
|
/**
|
|
* This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
|
|
* & I915_EXEC_USE_EXTENSIONS are not set.
|
|
*
|
|
* If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
|
|
* of struct drm_i915_gem_exec_fence and num_cliprects is the length
|
|
* of the array.
|
|
*
|
|
* If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
|
|
* single struct i915_user_extension and num_cliprects is 0.
|
|
*/
|
|
__u64 cliprects_ptr;
|
|
#define I915_EXEC_RING_MASK (0x3f)
|
|
#define I915_EXEC_DEFAULT (0<<0)
|
|
#define I915_EXEC_RENDER (1<<0)
|
|
#define I915_EXEC_BSD (2<<0)
|
|
#define I915_EXEC_BLT (3<<0)
|
|
#define I915_EXEC_VEBOX (4<<0)
|
|
|
|
/* Used for switching the constants addressing mode on gen4+ RENDER ring.
|
|
* Gen6+ only supports relative addressing to dynamic state (default) and
|
|
* absolute addressing.
|
|
*
|
|
* These flags are ignored for the BSD and BLT rings.
|
|
*/
|
|
#define I915_EXEC_CONSTANTS_MASK (3<<6)
|
|
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
|
|
#define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6)
|
|
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
|
|
__u64 flags;
|
|
__u64 rsvd1; /* now used for context info */
|
|
__u64 rsvd2;
|
|
};
|
|
|
|
/** Resets the SO write offset registers for transform feedback on gen7. */
|
|
#define I915_EXEC_GEN7_SOL_RESET (1<<8)
|
|
|
|
/** Request a privileged ("secure") batch buffer. Note only available for
|
|
* DRM_ROOT_ONLY | DRM_MASTER processes.
|
|
*/
|
|
#define I915_EXEC_SECURE (1<<9)
|
|
|
|
/** Inform the kernel that the batch is and will always be pinned. This
|
|
* negates the requirement for a workaround to be performed to avoid
|
|
* an incoherent CS (such as can be found on 830/845). If this flag is
|
|
* not passed, the kernel will endeavour to make sure the batch is
|
|
* coherent with the CS before execution. If this flag is passed,
|
|
* userspace assumes the responsibility for ensuring the same.
|
|
*/
|
|
#define I915_EXEC_IS_PINNED (1<<10)
|
|
|
|
/** Provide a hint to the kernel that the command stream and auxiliary
|
|
* state buffers already holds the correct presumed addresses and so the
|
|
* relocation process may be skipped if no buffers need to be moved in
|
|
* preparation for the execbuffer.
|
|
*/
|
|
#define I915_EXEC_NO_RELOC (1<<11)
|
|
|
|
/** Use the reloc.handle as an index into the exec object array rather
|
|
* than as the per-file handle.
|
|
*/
|
|
#define I915_EXEC_HANDLE_LUT (1<<12)
|
|
|
|
/** Used for switching BSD rings on the platforms with two BSD rings */
|
|
#define I915_EXEC_BSD_SHIFT (13)
|
|
#define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT)
|
|
/* default ping-pong mode */
|
|
#define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT)
|
|
#define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT)
|
|
#define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT)
|
|
|
|
/** Tell the kernel that the batchbuffer is processed by
|
|
* the resource streamer.
|
|
*/
|
|
#define I915_EXEC_RESOURCE_STREAMER (1<<15)
|
|
|
|
/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
|
|
* a sync_file fd to wait upon (in a nonblocking manner) prior to executing
|
|
* the batch.
|
|
*
|
|
* Returns -EINVAL if the sync_file fd cannot be found.
|
|
*/
|
|
#define I915_EXEC_FENCE_IN (1<<16)
|
|
|
|
/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
|
|
* in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
|
|
* to the caller, and it should be close() after use. (The fd is a regular
|
|
* file descriptor and will be cleaned up on process termination. It holds
|
|
* a reference to the request, but nothing else.)
|
|
*
|
|
* The sync_file fd can be combined with other sync_file and passed either
|
|
* to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
|
|
* will only occur after this request completes), or to other devices.
|
|
*
|
|
* Using I915_EXEC_FENCE_OUT requires use of
|
|
* DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
|
|
* back to userspace. Failure to do so will cause the out-fence to always
|
|
* be reported as zero, and the real fence fd to be leaked.
|
|
*/
|
|
#define I915_EXEC_FENCE_OUT (1<<17)
|
|
|
|
/*
|
|
* Traditionally the execbuf ioctl has only considered the final element in
|
|
* the execobject[] to be the executable batch. Often though, the client
|
|
* will known the batch object prior to construction and being able to place
|
|
* it into the execobject[] array first can simplify the relocation tracking.
|
|
* Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
|
|
* execobject[] as the * batch instead (the default is to use the last
|
|
* element).
|
|
*/
|
|
#define I915_EXEC_BATCH_FIRST (1<<18)
|
|
|
|
/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
|
|
* define an array of i915_gem_exec_fence structures which specify a set of
|
|
* dma fences to wait upon or signal.
|
|
*/
|
|
#define I915_EXEC_FENCE_ARRAY (1<<19)
|
|
|
|
/*
|
|
* Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
|
|
* a sync_file fd to wait upon (in a nonblocking manner) prior to executing
|
|
* the batch.
|
|
*
|
|
* Returns -EINVAL if the sync_file fd cannot be found.
|
|
*/
|
|
#define I915_EXEC_FENCE_SUBMIT (1 << 20)
|
|
|
|
/*
|
|
* Setting I915_EXEC_USE_EXTENSIONS implies that
|
|
* drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
|
|
* list of i915_user_extension. Each i915_user_extension node is the base of a
|
|
* larger structure. The list of supported structures are listed in the
|
|
* drm_i915_gem_execbuffer_ext enum.
|
|
*/
|
|
#define I915_EXEC_USE_EXTENSIONS (1 << 21)
|
|
|
|
#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
|
|
|
|
#define I915_EXEC_CONTEXT_ID_MASK (0xffffffff)
|
|
#define i915_execbuffer2_set_context_id(eb2, context) \
|
|
(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
|
|
#define i915_execbuffer2_get_context_id(eb2) \
|
|
((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
|
|
|
|
struct drm_i915_gem_pin {
|
|
/** Handle of the buffer to be pinned. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
|
|
/** alignment required within the aperture */
|
|
__u64 alignment;
|
|
|
|
/** Returned GTT offset of the buffer. */
|
|
__u64 offset;
|
|
};
|
|
|
|
struct drm_i915_gem_unpin {
|
|
/** Handle of the buffer to be unpinned. */
|
|
__u32 handle;
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_busy {
|
|
/** Handle of the buffer to check for busy */
|
|
__u32 handle;
|
|
|
|
/** Return busy status
|
|
*
|
|
* A return of 0 implies that the object is idle (after
|
|
* having flushed any pending activity), and a non-zero return that
|
|
* the object is still in-flight on the GPU. (The GPU has not yet
|
|
* signaled completion for all pending requests that reference the
|
|
* object.) An object is guaranteed to become idle eventually (so
|
|
* long as no new GPU commands are executed upon it). Due to the
|
|
* asynchronous nature of the hardware, an object reported
|
|
* as busy may become idle before the ioctl is completed.
|
|
*
|
|
* Furthermore, if the object is busy, which engine is busy is only
|
|
* provided as a guide and only indirectly by reporting its class
|
|
* (there may be more than one engine in each class). There are race
|
|
* conditions which prevent the report of which engines are busy from
|
|
* being always accurate. However, the converse is not true. If the
|
|
* object is idle, the result of the ioctl, that all engines are idle,
|
|
* is accurate.
|
|
*
|
|
* The returned dword is split into two fields to indicate both
|
|
* the engine classess on which the object is being read, and the
|
|
* engine class on which it is currently being written (if any).
|
|
*
|
|
* The low word (bits 0:15) indicate if the object is being written
|
|
* to by any engine (there can only be one, as the GEM implicit
|
|
* synchronisation rules force writes to be serialised). Only the
|
|
* engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
|
|
* 1 not 0 etc) for the last write is reported.
|
|
*
|
|
* The high word (bits 16:31) are a bitmask of which engines classes
|
|
* are currently reading from the object. Multiple engines may be
|
|
* reading from the object simultaneously.
|
|
*
|
|
* The value of each engine class is the same as specified in the
|
|
* I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
|
|
* I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
|
|
* reported as active itself. Some hardware may have parallel
|
|
* execution engines, e.g. multiple media engines, which are
|
|
* mapped to the same class identifier and so are not separately
|
|
* reported for busyness.
|
|
*
|
|
* Caveat emptor:
|
|
* Only the boolean result of this query is reliable; that is whether
|
|
* the object is idle or busy. The report of which engines are busy
|
|
* should be only used as a heuristic.
|
|
*/
|
|
__u32 busy;
|
|
};
|
|
|
|
/**
|
|
* I915_CACHING_NONE
|
|
*
|
|
* GPU access is not coherent with cpu caches. Default for machines without an
|
|
* LLC.
|
|
*/
|
|
#define I915_CACHING_NONE 0
|
|
/**
|
|
* I915_CACHING_CACHED
|
|
*
|
|
* GPU access is coherent with cpu caches and furthermore the data is cached in
|
|
* last-level caches shared between cpu cores and the gpu GT. Default on
|
|
* machines with HAS_LLC.
|
|
*/
|
|
#define I915_CACHING_CACHED 1
|
|
/**
|
|
* I915_CACHING_DISPLAY
|
|
*
|
|
* Special GPU caching mode which is coherent with the scanout engines.
|
|
* Transparently falls back to I915_CACHING_NONE on platforms where no special
|
|
* cache mode (like write-through or gfdt flushing) is available. The kernel
|
|
* automatically sets this mode when using a buffer as a scanout target.
|
|
* Userspace can manually set this mode to avoid a costly stall and clflush in
|
|
* the hotpath of drawing the first frame.
|
|
*/
|
|
#define I915_CACHING_DISPLAY 2
|
|
|
|
struct drm_i915_gem_caching {
|
|
/**
|
|
* Handle of the buffer to set/get the caching level of. */
|
|
__u32 handle;
|
|
|
|
/**
|
|
* Cacheing level to apply or return value
|
|
*
|
|
* bits0-15 are for generic caching control (i.e. the above defined
|
|
* values). bits16-31 are reserved for platform-specific variations
|
|
* (e.g. l3$ caching on gen7). */
|
|
__u32 caching;
|
|
};
|
|
|
|
#define I915_TILING_NONE 0
|
|
#define I915_TILING_X 1
|
|
#define I915_TILING_Y 2
|
|
#define I915_TILING_LAST I915_TILING_Y
|
|
|
|
#define I915_BIT_6_SWIZZLE_NONE 0
|
|
#define I915_BIT_6_SWIZZLE_9 1
|
|
#define I915_BIT_6_SWIZZLE_9_10 2
|
|
#define I915_BIT_6_SWIZZLE_9_11 3
|
|
#define I915_BIT_6_SWIZZLE_9_10_11 4
|
|
/* Not seen by userland */
|
|
#define I915_BIT_6_SWIZZLE_UNKNOWN 5
|
|
/* Seen by userland. */
|
|
#define I915_BIT_6_SWIZZLE_9_17 6
|
|
#define I915_BIT_6_SWIZZLE_9_10_17 7
|
|
|
|
struct drm_i915_gem_set_tiling {
|
|
/** Handle of the buffer to have its tiling state updated */
|
|
__u32 handle;
|
|
|
|
/**
|
|
* Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
|
|
* I915_TILING_Y).
|
|
*
|
|
* This value is to be set on request, and will be updated by the
|
|
* kernel on successful return with the actual chosen tiling layout.
|
|
*
|
|
* The tiling mode may be demoted to I915_TILING_NONE when the system
|
|
* has bit 6 swizzling that can't be managed correctly by GEM.
|
|
*
|
|
* Buffer contents become undefined when changing tiling_mode.
|
|
*/
|
|
__u32 tiling_mode;
|
|
|
|
/**
|
|
* Stride in bytes for the object when in I915_TILING_X or
|
|
* I915_TILING_Y.
|
|
*/
|
|
__u32 stride;
|
|
|
|
/**
|
|
* Returned address bit 6 swizzling required for CPU access through
|
|
* mmap mapping.
|
|
*/
|
|
__u32 swizzle_mode;
|
|
};
|
|
|
|
struct drm_i915_gem_get_tiling {
|
|
/** Handle of the buffer to get tiling state for. */
|
|
__u32 handle;
|
|
|
|
/**
|
|
* Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
|
|
* I915_TILING_Y).
|
|
*/
|
|
__u32 tiling_mode;
|
|
|
|
/**
|
|
* Returned address bit 6 swizzling required for CPU access through
|
|
* mmap mapping.
|
|
*/
|
|
__u32 swizzle_mode;
|
|
|
|
/**
|
|
* Returned address bit 6 swizzling required for CPU access through
|
|
* mmap mapping whilst bound.
|
|
*/
|
|
__u32 phys_swizzle_mode;
|
|
};
|
|
|
|
struct drm_i915_gem_get_aperture {
|
|
/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
|
|
__u64 aper_size;
|
|
|
|
/**
|
|
* Available space in the aperture used by i915_gem_execbuffer, in
|
|
* bytes
|
|
*/
|
|
__u64 aper_available_size;
|
|
};
|
|
|
|
struct drm_i915_get_pipe_from_crtc_id {
|
|
/** ID of CRTC being requested **/
|
|
__u32 crtc_id;
|
|
|
|
/** pipe of requested CRTC **/
|
|
__u32 pipe;
|
|
};
|
|
|
|
#define I915_MADV_WILLNEED 0
|
|
#define I915_MADV_DONTNEED 1
|
|
#define __I915_MADV_PURGED 2 /* internal state */
|
|
|
|
struct drm_i915_gem_madvise {
|
|
/** Handle of the buffer to change the backing store advice */
|
|
__u32 handle;
|
|
|
|
/* Advice: either the buffer will be needed again in the near future,
|
|
* or wont be and could be discarded under memory pressure.
|
|
*/
|
|
__u32 madv;
|
|
|
|
/** Whether the backing store still exists. */
|
|
__u32 retained;
|
|
};
|
|
|
|
/* flags */
|
|
#define I915_OVERLAY_TYPE_MASK 0xff
|
|
#define I915_OVERLAY_YUV_PLANAR 0x01
|
|
#define I915_OVERLAY_YUV_PACKED 0x02
|
|
#define I915_OVERLAY_RGB 0x03
|
|
|
|
#define I915_OVERLAY_DEPTH_MASK 0xff00
|
|
#define I915_OVERLAY_RGB24 0x1000
|
|
#define I915_OVERLAY_RGB16 0x2000
|
|
#define I915_OVERLAY_RGB15 0x3000
|
|
#define I915_OVERLAY_YUV422 0x0100
|
|
#define I915_OVERLAY_YUV411 0x0200
|
|
#define I915_OVERLAY_YUV420 0x0300
|
|
#define I915_OVERLAY_YUV410 0x0400
|
|
|
|
#define I915_OVERLAY_SWAP_MASK 0xff0000
|
|
#define I915_OVERLAY_NO_SWAP 0x000000
|
|
#define I915_OVERLAY_UV_SWAP 0x010000
|
|
#define I915_OVERLAY_Y_SWAP 0x020000
|
|
#define I915_OVERLAY_Y_AND_UV_SWAP 0x030000
|
|
|
|
#define I915_OVERLAY_FLAGS_MASK 0xff000000
|
|
#define I915_OVERLAY_ENABLE 0x01000000
|
|
|
|
struct drm_intel_overlay_put_image {
|
|
/* various flags and src format description */
|
|
__u32 flags;
|
|
/* source picture description */
|
|
__u32 bo_handle;
|
|
/* stride values and offsets are in bytes, buffer relative */
|
|
__u16 stride_Y; /* stride for packed formats */
|
|
__u16 stride_UV;
|
|
__u32 offset_Y; /* offset for packet formats */
|
|
__u32 offset_U;
|
|
__u32 offset_V;
|
|
/* in pixels */
|
|
__u16 src_width;
|
|
__u16 src_height;
|
|
/* to compensate the scaling factors for partially covered surfaces */
|
|
__u16 src_scan_width;
|
|
__u16 src_scan_height;
|
|
/* output crtc description */
|
|
__u32 crtc_id;
|
|
__u16 dst_x;
|
|
__u16 dst_y;
|
|
__u16 dst_width;
|
|
__u16 dst_height;
|
|
};
|
|
|
|
/* flags */
|
|
#define I915_OVERLAY_UPDATE_ATTRS (1<<0)
|
|
#define I915_OVERLAY_UPDATE_GAMMA (1<<1)
|
|
#define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2)
|
|
struct drm_intel_overlay_attrs {
|
|
__u32 flags;
|
|
__u32 color_key;
|
|
__s32 brightness;
|
|
__u32 contrast;
|
|
__u32 saturation;
|
|
__u32 gamma0;
|
|
__u32 gamma1;
|
|
__u32 gamma2;
|
|
__u32 gamma3;
|
|
__u32 gamma4;
|
|
__u32 gamma5;
|
|
};
|
|
|
|
/*
|
|
* Intel sprite handling
|
|
*
|
|
* Color keying works with a min/mask/max tuple. Both source and destination
|
|
* color keying is allowed.
|
|
*
|
|
* Source keying:
|
|
* Sprite pixels within the min & max values, masked against the color channels
|
|
* specified in the mask field, will be transparent. All other pixels will
|
|
* be displayed on top of the primary plane. For RGB surfaces, only the min
|
|
* and mask fields will be used; ranged compares are not allowed.
|
|
*
|
|
* Destination keying:
|
|
* Primary plane pixels that match the min value, masked against the color
|
|
* channels specified in the mask field, will be replaced by corresponding
|
|
* pixels from the sprite plane.
|
|
*
|
|
* Note that source & destination keying are exclusive; only one can be
|
|
* active on a given plane.
|
|
*/
|
|
|
|
#define I915_SET_COLORKEY_NONE (1<<0) /* Deprecated. Instead set
|
|
* flags==0 to disable colorkeying.
|
|
*/
|
|
#define I915_SET_COLORKEY_DESTINATION (1<<1)
|
|
#define I915_SET_COLORKEY_SOURCE (1<<2)
|
|
struct drm_intel_sprite_colorkey {
|
|
__u32 plane_id;
|
|
__u32 min_value;
|
|
__u32 channel_mask;
|
|
__u32 max_value;
|
|
__u32 flags;
|
|
};
|
|
|
|
struct drm_i915_gem_wait {
|
|
/** Handle of BO we shall wait on */
|
|
__u32 bo_handle;
|
|
__u32 flags;
|
|
/** Number of nanoseconds to wait, Returns time remaining. */
|
|
__s64 timeout_ns;
|
|
};
|
|
|
|
struct drm_i915_gem_context_create {
|
|
__u32 ctx_id; /* output: id of new context*/
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_context_create_ext {
|
|
__u32 ctx_id; /* output: id of new context*/
|
|
__u32 flags;
|
|
#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS (1u << 0)
|
|
#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE (1u << 1)
|
|
#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
|
|
(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
|
|
__u64 extensions;
|
|
};
|
|
|
|
struct drm_i915_gem_context_param {
|
|
__u32 ctx_id;
|
|
__u32 size;
|
|
__u64 param;
|
|
#define I915_CONTEXT_PARAM_BAN_PERIOD 0x1
|
|
#define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2
|
|
#define I915_CONTEXT_PARAM_GTT_SIZE 0x3
|
|
#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4
|
|
#define I915_CONTEXT_PARAM_BANNABLE 0x5
|
|
#define I915_CONTEXT_PARAM_PRIORITY 0x6
|
|
#define I915_CONTEXT_MAX_USER_PRIORITY 1023 /* inclusive */
|
|
#define I915_CONTEXT_DEFAULT_PRIORITY 0
|
|
#define I915_CONTEXT_MIN_USER_PRIORITY -1023 /* inclusive */
|
|
/*
|
|
* When using the following param, value should be a pointer to
|
|
* drm_i915_gem_context_param_sseu.
|
|
*/
|
|
#define I915_CONTEXT_PARAM_SSEU 0x7
|
|
|
|
/*
|
|
* Not all clients may want to attempt automatic recover of a context after
|
|
* a hang (for example, some clients may only submit very small incremental
|
|
* batches relying on known logical state of previous batches which will never
|
|
* recover correctly and each attempt will hang), and so would prefer that
|
|
* the context is forever banned instead.
|
|
*
|
|
* If set to false (0), after a reset, subsequent (and in flight) rendering
|
|
* from this context is discarded, and the client will need to create a new
|
|
* context to use instead.
|
|
*
|
|
* If set to true (1), the kernel will automatically attempt to recover the
|
|
* context by skipping the hanging batch and executing the next batch starting
|
|
* from the default context state (discarding the incomplete logical context
|
|
* state lost due to the reset).
|
|
*
|
|
* On creation, all new contexts are marked as recoverable.
|
|
*/
|
|
#define I915_CONTEXT_PARAM_RECOVERABLE 0x8
|
|
|
|
/*
|
|
* The id of the associated virtual memory address space (ppGTT) of
|
|
* this context. Can be retrieved and passed to another context
|
|
* (on the same fd) for both to use the same ppGTT and so share
|
|
* address layouts, and avoid reloading the page tables on context
|
|
* switches between themselves.
|
|
*
|
|
* See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
|
|
*/
|
|
#define I915_CONTEXT_PARAM_VM 0x9
|
|
|
|
/*
|
|
* I915_CONTEXT_PARAM_ENGINES:
|
|
*
|
|
* Bind this context to operate on this subset of available engines. Henceforth,
|
|
* the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
|
|
* an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
|
|
* and upwards. Slots 0...N are filled in using the specified (class, instance).
|
|
* Use
|
|
* engine_class: I915_ENGINE_CLASS_INVALID,
|
|
* engine_instance: I915_ENGINE_CLASS_INVALID_NONE
|
|
* to specify a gap in the array that can be filled in later, e.g. by a
|
|
* virtual engine used for load balancing.
|
|
*
|
|
* Setting the number of engines bound to the context to 0, by passing a zero
|
|
* sized argument, will revert back to default settings.
|
|
*
|
|
* See struct i915_context_param_engines.
|
|
*
|
|
* Extensions:
|
|
* i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
|
|
* i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
|
|
*/
|
|
#define I915_CONTEXT_PARAM_ENGINES 0xa
|
|
|
|
/*
|
|
* I915_CONTEXT_PARAM_PERSISTENCE:
|
|
*
|
|
* Allow the context and active rendering to survive the process until
|
|
* completion. Persistence allows fire-and-forget clients to queue up a
|
|
* bunch of work, hand the output over to a display server and then quit.
|
|
* If the context is marked as not persistent, upon closing (either via
|
|
* an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
|
|
* or process termination), the context and any outstanding requests will be
|
|
* cancelled (and exported fences for cancelled requests marked as -EIO).
|
|
*
|
|
* By default, new contexts allow persistence.
|
|
*/
|
|
#define I915_CONTEXT_PARAM_PERSISTENCE 0xb
|
|
|
|
/*
|
|
* I915_CONTEXT_PARAM_RINGSIZE:
|
|
*
|
|
* Sets the size of the CS ringbuffer to use for logical ring contexts. This
|
|
* applies a limit of how many batches can be queued to HW before the caller
|
|
* is blocked due to lack of space for more commands.
|
|
*
|
|
* Only reliably possible to be set prior to first use, i.e. during
|
|
* construction. At any later point, the current execution must be flushed as
|
|
* the ring can only be changed while the context is idle. Note, the ringsize
|
|
* can be specified as a constructor property, see
|
|
* I915_CONTEXT_CREATE_EXT_SETPARAM, but can also be set later if required.
|
|
*
|
|
* Only applies to the current set of engine and lost when those engines
|
|
* are replaced by a new mapping (see I915_CONTEXT_PARAM_ENGINES).
|
|
*
|
|
* Must be between 4 - 512 KiB, in intervals of page size [4 KiB].
|
|
* Default is 16 KiB.
|
|
*/
|
|
#define I915_CONTEXT_PARAM_RINGSIZE 0xc
|
|
/* Must be kept compact -- no holes and well documented */
|
|
|
|
__u64 value;
|
|
};
|
|
|
|
/*
|
|
* Context SSEU programming
|
|
*
|
|
* It may be necessary for either functional or performance reason to configure
|
|
* a context to run with a reduced number of SSEU (where SSEU stands for Slice/
|
|
* Sub-slice/EU).
|
|
*
|
|
* This is done by configuring SSEU configuration using the below
|
|
* @struct drm_i915_gem_context_param_sseu for every supported engine which
|
|
* userspace intends to use.
|
|
*
|
|
* Not all GPUs or engines support this functionality in which case an error
|
|
* code -ENODEV will be returned.
|
|
*
|
|
* Also, flexibility of possible SSEU configuration permutations varies between
|
|
* GPU generations and software imposed limitations. Requesting such a
|
|
* combination will return an error code of -EINVAL.
|
|
*
|
|
* NOTE: When perf/OA is active the context's SSEU configuration is ignored in
|
|
* favour of a single global setting.
|
|
*/
|
|
struct drm_i915_gem_context_param_sseu {
|
|
/*
|
|
* Engine class & instance to be configured or queried.
|
|
*/
|
|
struct i915_engine_class_instance engine;
|
|
|
|
/*
|
|
* Unknown flags must be cleared to zero.
|
|
*/
|
|
__u32 flags;
|
|
#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
|
|
|
|
/*
|
|
* Mask of slices to enable for the context. Valid values are a subset
|
|
* of the bitmask value returned for I915_PARAM_SLICE_MASK.
|
|
*/
|
|
__u64 slice_mask;
|
|
|
|
/*
|
|
* Mask of subslices to enable for the context. Valid values are a
|
|
* subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
|
|
*/
|
|
__u64 subslice_mask;
|
|
|
|
/*
|
|
* Minimum/Maximum number of EUs to enable per subslice for the
|
|
* context. min_eus_per_subslice must be inferior or equal to
|
|
* max_eus_per_subslice.
|
|
*/
|
|
__u16 min_eus_per_subslice;
|
|
__u16 max_eus_per_subslice;
|
|
|
|
/*
|
|
* Unused for now. Must be cleared to zero.
|
|
*/
|
|
__u32 rsvd;
|
|
};
|
|
|
|
/*
|
|
* i915_context_engines_load_balance:
|
|
*
|
|
* Enable load balancing across this set of engines.
|
|
*
|
|
* Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
|
|
* used will proxy the execbuffer request onto one of the set of engines
|
|
* in such a way as to distribute the load evenly across the set.
|
|
*
|
|
* The set of engines must be compatible (e.g. the same HW class) as they
|
|
* will share the same logical GPU context and ring.
|
|
*
|
|
* To intermix rendering with the virtual engine and direct rendering onto
|
|
* the backing engines (bypassing the load balancing proxy), the context must
|
|
* be defined to use a single timeline for all engines.
|
|
*/
|
|
struct i915_context_engines_load_balance {
|
|
struct i915_user_extension base;
|
|
|
|
__u16 engine_index;
|
|
__u16 num_siblings;
|
|
__u32 flags; /* all undefined flags must be zero */
|
|
|
|
__u64 mbz64; /* reserved for future use; must be zero */
|
|
|
|
struct i915_engine_class_instance engines[0];
|
|
} __attribute__((packed));
|
|
|
|
#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
|
|
struct i915_user_extension base; \
|
|
__u16 engine_index; \
|
|
__u16 num_siblings; \
|
|
__u32 flags; \
|
|
__u64 mbz64; \
|
|
struct i915_engine_class_instance engines[N__]; \
|
|
} __attribute__((packed)) name__
|
|
|
|
/*
|
|
* i915_context_engines_bond:
|
|
*
|
|
* Constructed bonded pairs for execution within a virtual engine.
|
|
*
|
|
* All engines are equal, but some are more equal than others. Given
|
|
* the distribution of resources in the HW, it may be preferable to run
|
|
* a request on a given subset of engines in parallel to a request on a
|
|
* specific engine. We enable this selection of engines within a virtual
|
|
* engine by specifying bonding pairs, for any given master engine we will
|
|
* only execute on one of the corresponding siblings within the virtual engine.
|
|
*
|
|
* To execute a request in parallel on the master engine and a sibling requires
|
|
* coordination with a I915_EXEC_FENCE_SUBMIT.
|
|
*/
|
|
struct i915_context_engines_bond {
|
|
struct i915_user_extension base;
|
|
|
|
struct i915_engine_class_instance master;
|
|
|
|
__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
|
|
__u16 num_bonds;
|
|
|
|
__u64 flags; /* all undefined flags must be zero */
|
|
__u64 mbz64[4]; /* reserved for future use; must be zero */
|
|
|
|
struct i915_engine_class_instance engines[0];
|
|
} __attribute__((packed));
|
|
|
|
#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
|
|
struct i915_user_extension base; \
|
|
struct i915_engine_class_instance master; \
|
|
__u16 virtual_index; \
|
|
__u16 num_bonds; \
|
|
__u64 flags; \
|
|
__u64 mbz64[4]; \
|
|
struct i915_engine_class_instance engines[N__]; \
|
|
} __attribute__((packed)) name__
|
|
|
|
struct i915_context_param_engines {
|
|
__u64 extensions; /* linked chain of extension blocks, 0 terminates */
|
|
#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
|
|
#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
|
|
struct i915_engine_class_instance engines[0];
|
|
} __attribute__((packed));
|
|
|
|
#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
|
|
__u64 extensions; \
|
|
struct i915_engine_class_instance engines[N__]; \
|
|
} __attribute__((packed)) name__
|
|
|
|
struct drm_i915_gem_context_create_ext_setparam {
|
|
#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
|
|
struct i915_user_extension base;
|
|
struct drm_i915_gem_context_param param;
|
|
};
|
|
|
|
struct drm_i915_gem_context_create_ext_clone {
|
|
#define I915_CONTEXT_CREATE_EXT_CLONE 1
|
|
struct i915_user_extension base;
|
|
__u32 clone_id;
|
|
__u32 flags;
|
|
#define I915_CONTEXT_CLONE_ENGINES (1u << 0)
|
|
#define I915_CONTEXT_CLONE_FLAGS (1u << 1)
|
|
#define I915_CONTEXT_CLONE_SCHEDATTR (1u << 2)
|
|
#define I915_CONTEXT_CLONE_SSEU (1u << 3)
|
|
#define I915_CONTEXT_CLONE_TIMELINE (1u << 4)
|
|
#define I915_CONTEXT_CLONE_VM (1u << 5)
|
|
#define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
|
|
__u64 rsvd;
|
|
};
|
|
|
|
struct drm_i915_gem_context_destroy {
|
|
__u32 ctx_id;
|
|
__u32 pad;
|
|
};
|
|
|
|
/*
|
|
* DRM_I915_GEM_VM_CREATE -
|
|
*
|
|
* Create a new virtual memory address space (ppGTT) for use within a context
|
|
* on the same file. Extensions can be provided to configure exactly how the
|
|
* address space is setup upon creation.
|
|
*
|
|
* The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
|
|
* returned in the outparam @id.
|
|
*
|
|
* No flags are defined, with all bits reserved and must be zero.
|
|
*
|
|
* An extension chain maybe provided, starting with @extensions, and terminated
|
|
* by the @next_extension being 0. Currently, no extensions are defined.
|
|
*
|
|
* DRM_I915_GEM_VM_DESTROY -
|
|
*
|
|
* Destroys a previously created VM id, specified in @id.
|
|
*
|
|
* No extensions or flags are allowed currently, and so must be zero.
|
|
*/
|
|
struct drm_i915_gem_vm_control {
|
|
__u64 extensions;
|
|
__u32 flags;
|
|
__u32 vm_id;
|
|
};
|
|
|
|
struct drm_i915_reg_read {
|
|
/*
|
|
* Register offset.
|
|
* For 64bit wide registers where the upper 32bits don't immediately
|
|
* follow the lower 32bits, the offset of the lower 32bits must
|
|
* be specified
|
|
*/
|
|
__u64 offset;
|
|
#define I915_REG_READ_8B_WA (1ul << 0)
|
|
|
|
__u64 val; /* Return value */
|
|
};
|
|
|
|
/* Known registers:
|
|
*
|
|
* Render engine timestamp - 0x2358 + 64bit - gen7+
|
|
* - Note this register returns an invalid value if using the default
|
|
* single instruction 8byte read, in order to workaround that pass
|
|
* flag I915_REG_READ_8B_WA in offset field.
|
|
*
|
|
*/
|
|
|
|
struct drm_i915_reset_stats {
|
|
__u32 ctx_id;
|
|
__u32 flags;
|
|
|
|
/* All resets since boot/module reload, for all contexts */
|
|
__u32 reset_count;
|
|
|
|
/* Number of batches lost when active in GPU, for this context */
|
|
__u32 batch_active;
|
|
|
|
/* Number of batches lost pending for execution, for this context */
|
|
__u32 batch_pending;
|
|
|
|
__u32 pad;
|
|
};
|
|
|
|
struct drm_i915_gem_userptr {
|
|
__u64 user_ptr;
|
|
__u64 user_size;
|
|
__u32 flags;
|
|
#define I915_USERPTR_READ_ONLY 0x1
|
|
#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
|
|
/**
|
|
* Returned handle for the object.
|
|
*
|
|
* Object handles are nonzero.
|
|
*/
|
|
__u32 handle;
|
|
};
|
|
|
|
enum drm_i915_oa_format {
|
|
I915_OA_FORMAT_A13 = 1, /* HSW only */
|
|
I915_OA_FORMAT_A29, /* HSW only */
|
|
I915_OA_FORMAT_A13_B8_C8, /* HSW only */
|
|
I915_OA_FORMAT_B4_C8, /* HSW only */
|
|
I915_OA_FORMAT_A45_B8_C8, /* HSW only */
|
|
I915_OA_FORMAT_B4_C8_A16, /* HSW only */
|
|
I915_OA_FORMAT_C4_B8, /* HSW+ */
|
|
|
|
/* Gen8+ */
|
|
I915_OA_FORMAT_A12,
|
|
I915_OA_FORMAT_A12_B8_C8,
|
|
I915_OA_FORMAT_A32u40_A4u32_B8_C8,
|
|
|
|
I915_OA_FORMAT_MAX /* non-ABI */
|
|
};
|
|
|
|
enum drm_i915_perf_property_id {
|
|
/**
|
|
* Open the stream for a specific context handle (as used with
|
|
* execbuffer2). A stream opened for a specific context this way
|
|
* won't typically require root privileges.
|
|
*
|
|
* This property is available in perf revision 1.
|
|
*/
|
|
DRM_I915_PERF_PROP_CTX_HANDLE = 1,
|
|
|
|
/**
|
|
* A value of 1 requests the inclusion of raw OA unit reports as
|
|
* part of stream samples.
|
|
*
|
|
* This property is available in perf revision 1.
|
|
*/
|
|
DRM_I915_PERF_PROP_SAMPLE_OA,
|
|
|
|
/**
|
|
* The value specifies which set of OA unit metrics should be
|
|
* configured, defining the contents of any OA unit reports.
|
|
*
|
|
* This property is available in perf revision 1.
|
|
*/
|
|
DRM_I915_PERF_PROP_OA_METRICS_SET,
|
|
|
|
/**
|
|
* The value specifies the size and layout of OA unit reports.
|
|
*
|
|
* This property is available in perf revision 1.
|
|
*/
|
|
DRM_I915_PERF_PROP_OA_FORMAT,
|
|
|
|
/**
|
|
* Specifying this property implicitly requests periodic OA unit
|
|
* sampling and (at least on Haswell) the sampling frequency is derived
|
|
* from this exponent as follows:
|
|
*
|
|
* 80ns * 2^(period_exponent + 1)
|
|
*
|
|
* This property is available in perf revision 1.
|
|
*/
|
|
DRM_I915_PERF_PROP_OA_EXPONENT,
|
|
|
|
/**
|
|
* Specifying this property is only valid when specify a context to
|
|
* filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
|
|
* will hold preemption of the particular context we want to gather
|
|
* performance data about. The execbuf2 submissions must include a
|
|
* drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
|
|
*
|
|
* This property is available in perf revision 3.
|
|
*/
|
|
DRM_I915_PERF_PROP_HOLD_PREEMPTION,
|
|
|
|
/**
|
|
* Specifying this pins all contexts to the specified SSEU power
|
|
* configuration for the duration of the recording.
|
|
*
|
|
* This parameter's value is a pointer to a struct
|
|
* drm_i915_gem_context_param_sseu.
|
|
*
|
|
* This property is available in perf revision 4.
|
|
*/
|
|
DRM_I915_PERF_PROP_GLOBAL_SSEU,
|
|
|
|
/**
|
|
* This optional parameter specifies the timer interval in nanoseconds
|
|
* at which the i915 driver will check the OA buffer for available data.
|
|
* Minimum allowed value is 100 microseconds. A default value is used by
|
|
* the driver if this parameter is not specified. Note that larger timer
|
|
* values will reduce cpu consumption during OA perf captures. However,
|
|
* excessively large values would potentially result in OA buffer
|
|
* overwrites as captures reach end of the OA buffer.
|
|
*
|
|
* This property is available in perf revision 5.
|
|
*/
|
|
DRM_I915_PERF_PROP_POLL_OA_PERIOD,
|
|
|
|
DRM_I915_PERF_PROP_MAX /* non-ABI */
|
|
};
|
|
|
|
struct drm_i915_perf_open_param {
|
|
__u32 flags;
|
|
#define I915_PERF_FLAG_FD_CLOEXEC (1<<0)
|
|
#define I915_PERF_FLAG_FD_NONBLOCK (1<<1)
|
|
#define I915_PERF_FLAG_DISABLED (1<<2)
|
|
|
|
/** The number of u64 (id, value) pairs */
|
|
__u32 num_properties;
|
|
|
|
/**
|
|
* Pointer to array of u64 (id, value) pairs configuring the stream
|
|
* to open.
|
|
*/
|
|
__u64 properties_ptr;
|
|
};
|
|
|
|
/*
|
|
* Enable data capture for a stream that was either opened in a disabled state
|
|
* via I915_PERF_FLAG_DISABLED or was later disabled via
|
|
* I915_PERF_IOCTL_DISABLE.
|
|
*
|
|
* It is intended to be cheaper to disable and enable a stream than it may be
|
|
* to close and re-open a stream with the same configuration.
|
|
*
|
|
* It's undefined whether any pending data for the stream will be lost.
|
|
*
|
|
* This ioctl is available in perf revision 1.
|
|
*/
|
|
#define I915_PERF_IOCTL_ENABLE _IO('i', 0x0)
|
|
|
|
/*
|
|
* Disable data capture for a stream.
|
|
*
|
|
* It is an error to try and read a stream that is disabled.
|
|
*
|
|
* This ioctl is available in perf revision 1.
|
|
*/
|
|
#define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
|
|
|
|
/*
|
|
* Change metrics_set captured by a stream.
|
|
*
|
|
* If the stream is bound to a specific context, the configuration change
|
|
* will performed inline with that context such that it takes effect before
|
|
* the next execbuf submission.
|
|
*
|
|
* Returns the previously bound metrics set id, or a negative error code.
|
|
*
|
|
* This ioctl is available in perf revision 2.
|
|
*/
|
|
#define I915_PERF_IOCTL_CONFIG _IO('i', 0x2)
|
|
|
|
/*
|
|
* Common to all i915 perf records
|
|
*/
|
|
struct drm_i915_perf_record_header {
|
|
__u32 type;
|
|
__u16 pad;
|
|
__u16 size;
|
|
};
|
|
|
|
enum drm_i915_perf_record_type {
|
|
|
|
/**
|
|
* Samples are the work horse record type whose contents are extensible
|
|
* and defined when opening an i915 perf stream based on the given
|
|
* properties.
|
|
*
|
|
* Boolean properties following the naming convention
|
|
* DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
|
|
* every sample.
|
|
*
|
|
* The order of these sample properties given by userspace has no
|
|
* affect on the ordering of data within a sample. The order is
|
|
* documented here.
|
|
*
|
|
* struct {
|
|
* struct drm_i915_perf_record_header header;
|
|
*
|
|
* { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
|
|
* };
|
|
*/
|
|
DRM_I915_PERF_RECORD_SAMPLE = 1,
|
|
|
|
/*
|
|
* Indicates that one or more OA reports were not written by the
|
|
* hardware. This can happen for example if an MI_REPORT_PERF_COUNT
|
|
* command collides with periodic sampling - which would be more likely
|
|
* at higher sampling frequencies.
|
|
*/
|
|
DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
|
|
|
|
/**
|
|
* An error occurred that resulted in all pending OA reports being lost.
|
|
*/
|
|
DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
|
|
|
|
DRM_I915_PERF_RECORD_MAX /* non-ABI */
|
|
};
|
|
|
|
/*
|
|
* Structure to upload perf dynamic configuration into the kernel.
|
|
*/
|
|
struct drm_i915_perf_oa_config {
|
|
/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
|
|
char uuid[36];
|
|
|
|
__u32 n_mux_regs;
|
|
__u32 n_boolean_regs;
|
|
__u32 n_flex_regs;
|
|
|
|
/*
|
|
* These fields are pointers to tuples of u32 values (register address,
|
|
* value). For example the expected length of the buffer pointed by
|
|
* mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
|
|
*/
|
|
__u64 mux_regs_ptr;
|
|
__u64 boolean_regs_ptr;
|
|
__u64 flex_regs_ptr;
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_query_item - An individual query for the kernel to process.
|
|
*
|
|
* The behaviour is determined by the @query_id. Note that exactly what
|
|
* @data_ptr is also depends on the specific @query_id.
|
|
*/
|
|
struct drm_i915_query_item {
|
|
/** @query_id: The id for this query */
|
|
__u64 query_id;
|
|
#define DRM_I915_QUERY_TOPOLOGY_INFO 1
|
|
#define DRM_I915_QUERY_ENGINE_INFO 2
|
|
#define DRM_I915_QUERY_PERF_CONFIG 3
|
|
#define DRM_I915_QUERY_MEMORY_REGIONS 4
|
|
/* Must be kept compact -- no holes and well documented */
|
|
|
|
/**
|
|
* @length:
|
|
*
|
|
* When set to zero by userspace, this is filled with the size of the
|
|
* data to be written at the @data_ptr pointer. The kernel sets this
|
|
* value to a negative value to signal an error on a particular query
|
|
* item.
|
|
*/
|
|
__s32 length;
|
|
|
|
/**
|
|
* @flags:
|
|
*
|
|
* When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
|
|
*
|
|
* When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
|
|
* following:
|
|
*
|
|
* - DRM_I915_QUERY_PERF_CONFIG_LIST
|
|
* - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
|
|
* - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
|
|
*/
|
|
__u32 flags;
|
|
#define DRM_I915_QUERY_PERF_CONFIG_LIST 1
|
|
#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
|
|
#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID 3
|
|
|
|
/**
|
|
* @data_ptr:
|
|
*
|
|
* Data will be written at the location pointed by @data_ptr when the
|
|
* value of @length matches the length of the data to be written by the
|
|
* kernel.
|
|
*/
|
|
__u64 data_ptr;
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
|
|
* kernel to fill out.
|
|
*
|
|
* Note that this is generally a two step process for each struct
|
|
* drm_i915_query_item in the array:
|
|
*
|
|
* 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
|
|
* drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
|
|
* kernel will then fill in the size, in bytes, which tells userspace how
|
|
* memory it needs to allocate for the blob(say for an array of properties).
|
|
*
|
|
* 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
|
|
* &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
|
|
* the &drm_i915_query_item.length should still be the same as what the
|
|
* kernel previously set. At this point the kernel can fill in the blob.
|
|
*
|
|
* Note that for some query items it can make sense for userspace to just pass
|
|
* in a buffer/blob equal to or larger than the required size. In this case only
|
|
* a single ioctl call is needed. For some smaller query items this can work
|
|
* quite well.
|
|
*
|
|
*/
|
|
struct drm_i915_query {
|
|
/** @num_items: The number of elements in the @items_ptr array */
|
|
__u32 num_items;
|
|
|
|
/**
|
|
* @flags: Unused for now. Must be cleared to zero.
|
|
*/
|
|
__u32 flags;
|
|
|
|
/**
|
|
* @items_ptr:
|
|
*
|
|
* Pointer to an array of struct drm_i915_query_item. The number of
|
|
* array elements is @num_items.
|
|
*/
|
|
__u64 items_ptr;
|
|
};
|
|
|
|
/*
|
|
* Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
|
|
*
|
|
* data: contains the 3 pieces of information :
|
|
*
|
|
* - the slice mask with one bit per slice telling whether a slice is
|
|
* available. The availability of slice X can be queried with the following
|
|
* formula :
|
|
*
|
|
* (data[X / 8] >> (X % 8)) & 1
|
|
*
|
|
* - the subslice mask for each slice with one bit per subslice telling
|
|
* whether a subslice is available. Gen12 has dual-subslices, which are
|
|
* similar to two gen11 subslices. For gen12, this array represents dual-
|
|
* subslices. The availability of subslice Y in slice X can be queried
|
|
* with the following formula :
|
|
*
|
|
* (data[subslice_offset +
|
|
* X * subslice_stride +
|
|
* Y / 8] >> (Y % 8)) & 1
|
|
*
|
|
* - the EU mask for each subslice in each slice with one bit per EU telling
|
|
* whether an EU is available. The availability of EU Z in subslice Y in
|
|
* slice X can be queried with the following formula :
|
|
*
|
|
* (data[eu_offset +
|
|
* (X * max_subslices + Y) * eu_stride +
|
|
* Z / 8] >> (Z % 8)) & 1
|
|
*/
|
|
struct drm_i915_query_topology_info {
|
|
/*
|
|
* Unused for now. Must be cleared to zero.
|
|
*/
|
|
__u16 flags;
|
|
|
|
__u16 max_slices;
|
|
__u16 max_subslices;
|
|
__u16 max_eus_per_subslice;
|
|
|
|
/*
|
|
* Offset in data[] at which the subslice masks are stored.
|
|
*/
|
|
__u16 subslice_offset;
|
|
|
|
/*
|
|
* Stride at which each of the subslice masks for each slice are
|
|
* stored.
|
|
*/
|
|
__u16 subslice_stride;
|
|
|
|
/*
|
|
* Offset in data[] at which the EU masks are stored.
|
|
*/
|
|
__u16 eu_offset;
|
|
|
|
/*
|
|
* Stride at which each of the EU masks for each subslice are stored.
|
|
*/
|
|
__u16 eu_stride;
|
|
|
|
__u8 data[];
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_engine_info
|
|
*
|
|
* Describes one engine and it's capabilities as known to the driver.
|
|
*/
|
|
struct drm_i915_engine_info {
|
|
/** @engine: Engine class and instance. */
|
|
struct i915_engine_class_instance engine;
|
|
|
|
/** @rsvd0: Reserved field. */
|
|
__u32 rsvd0;
|
|
|
|
/** @flags: Engine flags. */
|
|
__u64 flags;
|
|
|
|
/** @capabilities: Capabilities of this engine. */
|
|
__u64 capabilities;
|
|
#define I915_VIDEO_CLASS_CAPABILITY_HEVC (1 << 0)
|
|
#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC (1 << 1)
|
|
|
|
/** @rsvd1: Reserved fields. */
|
|
__u64 rsvd1[4];
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_query_engine_info
|
|
*
|
|
* Engine info query enumerates all engines known to the driver by filling in
|
|
* an array of struct drm_i915_engine_info structures.
|
|
*/
|
|
struct drm_i915_query_engine_info {
|
|
/** @num_engines: Number of struct drm_i915_engine_info structs following. */
|
|
__u32 num_engines;
|
|
|
|
/** @rsvd: MBZ */
|
|
__u32 rsvd[3];
|
|
|
|
/** @engines: Marker for drm_i915_engine_info structures. */
|
|
struct drm_i915_engine_info engines[];
|
|
};
|
|
|
|
/*
|
|
* Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
|
|
*/
|
|
struct drm_i915_query_perf_config {
|
|
union {
|
|
/*
|
|
* When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
|
|
* this fields to the number of configurations available.
|
|
*/
|
|
__u64 n_configs;
|
|
|
|
/*
|
|
* When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
|
|
* i915 will use the value in this field as configuration
|
|
* identifier to decide what data to write into config_ptr.
|
|
*/
|
|
__u64 config;
|
|
|
|
/*
|
|
* When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
|
|
* i915 will use the value in this field as configuration
|
|
* identifier to decide what data to write into config_ptr.
|
|
*
|
|
* String formatted like "%08x-%04x-%04x-%04x-%012x"
|
|
*/
|
|
char uuid[36];
|
|
};
|
|
|
|
/*
|
|
* Unused for now. Must be cleared to zero.
|
|
*/
|
|
__u32 flags;
|
|
|
|
/*
|
|
* When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
|
|
* write an array of __u64 of configuration identifiers.
|
|
*
|
|
* When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
|
|
* write a struct drm_i915_perf_oa_config. If the following fields of
|
|
* drm_i915_perf_oa_config are set not set to 0, i915 will write into
|
|
* the associated pointers the values of submitted when the
|
|
* configuration was created :
|
|
*
|
|
* - n_mux_regs
|
|
* - n_boolean_regs
|
|
* - n_flex_regs
|
|
*/
|
|
__u8 data[];
|
|
};
|
|
|
|
/**
|
|
* enum drm_i915_gem_memory_class - Supported memory classes
|
|
*/
|
|
enum drm_i915_gem_memory_class {
|
|
/** @I915_MEMORY_CLASS_SYSTEM: System memory */
|
|
I915_MEMORY_CLASS_SYSTEM = 0,
|
|
/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
|
|
I915_MEMORY_CLASS_DEVICE,
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_gem_memory_class_instance - Identify particular memory region
|
|
*/
|
|
struct drm_i915_gem_memory_class_instance {
|
|
/** @memory_class: See enum drm_i915_gem_memory_class */
|
|
__u16 memory_class;
|
|
|
|
/** @memory_instance: Which instance */
|
|
__u16 memory_instance;
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_memory_region_info - Describes one region as known to the
|
|
* driver.
|
|
*
|
|
* Note that we reserve some stuff here for potential future work. As an example
|
|
* we might want expose the capabilities for a given region, which could include
|
|
* things like if the region is CPU mappable/accessible, what are the supported
|
|
* mapping types etc.
|
|
*
|
|
* Note that to extend struct drm_i915_memory_region_info and struct
|
|
* drm_i915_query_memory_regions in the future the plan is to do the following:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_i915_memory_region_info {
|
|
* struct drm_i915_gem_memory_class_instance region;
|
|
* union {
|
|
* __u32 rsvd0;
|
|
* __u32 new_thing1;
|
|
* };
|
|
* ...
|
|
* union {
|
|
* __u64 rsvd1[8];
|
|
* struct {
|
|
* __u64 new_thing2;
|
|
* __u64 new_thing3;
|
|
* ...
|
|
* };
|
|
* };
|
|
* };
|
|
*
|
|
* With this things should remain source compatible between versions for
|
|
* userspace, even as we add new fields.
|
|
*
|
|
* Note this is using both struct drm_i915_query_item and struct drm_i915_query.
|
|
* For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
|
|
* at &drm_i915_query_item.query_id.
|
|
*/
|
|
struct drm_i915_memory_region_info {
|
|
/** @region: The class:instance pair encoding */
|
|
struct drm_i915_gem_memory_class_instance region;
|
|
|
|
/** @rsvd0: MBZ */
|
|
__u32 rsvd0;
|
|
|
|
/** @probed_size: Memory probed by the driver (-1 = unknown) */
|
|
__u64 probed_size;
|
|
|
|
/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
|
|
__u64 unallocated_size;
|
|
|
|
/** @rsvd1: MBZ */
|
|
__u64 rsvd1[8];
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_query_memory_regions
|
|
*
|
|
* The region info query enumerates all regions known to the driver by filling
|
|
* in an array of struct drm_i915_memory_region_info structures.
|
|
*
|
|
* Example for getting the list of supported regions:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_i915_query_memory_regions *info;
|
|
* struct drm_i915_query_item item = {
|
|
* .query_id = DRM_I915_QUERY_MEMORY_REGIONS;
|
|
* };
|
|
* struct drm_i915_query query = {
|
|
* .num_items = 1,
|
|
* .items_ptr = (uintptr_t)&item,
|
|
* };
|
|
* int err, i;
|
|
*
|
|
* // First query the size of the blob we need, this needs to be large
|
|
* // enough to hold our array of regions. The kernel will fill out the
|
|
* // item.length for us, which is the number of bytes we need.
|
|
* err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
|
|
* if (err) ...
|
|
*
|
|
* info = calloc(1, item.length);
|
|
* // Now that we allocated the required number of bytes, we call the ioctl
|
|
* // again, this time with the data_ptr pointing to our newly allocated
|
|
* // blob, which the kernel can then populate with the all the region info.
|
|
* item.data_ptr = (uintptr_t)&info,
|
|
*
|
|
* err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
|
|
* if (err) ...
|
|
*
|
|
* // We can now access each region in the array
|
|
* for (i = 0; i < info->num_regions; i++) {
|
|
* struct drm_i915_memory_region_info mr = info->regions[i];
|
|
* u16 class = mr.region.class;
|
|
* u16 instance = mr.region.instance;
|
|
*
|
|
* ....
|
|
* }
|
|
*
|
|
* free(info);
|
|
*/
|
|
struct drm_i915_query_memory_regions {
|
|
/** @num_regions: Number of supported regions */
|
|
__u32 num_regions;
|
|
|
|
/** @rsvd: MBZ */
|
|
__u32 rsvd[3];
|
|
|
|
/** @regions: Info about each supported region */
|
|
struct drm_i915_memory_region_info regions[];
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
|
|
* extension support using struct i915_user_extension.
|
|
*
|
|
* Note that in the future we want to have our buffer flags here, at least for
|
|
* the stuff that is immutable. Previously we would have two ioctls, one to
|
|
* create the object with gem_create, and another to apply various parameters,
|
|
* however this creates some ambiguity for the params which are considered
|
|
* immutable. Also in general we're phasing out the various SET/GET ioctls.
|
|
*/
|
|
struct drm_i915_gem_create_ext {
|
|
/**
|
|
* @size: Requested size for the object.
|
|
*
|
|
* The (page-aligned) allocated size for the object will be returned.
|
|
*
|
|
* Note that for some devices we have might have further minimum
|
|
* page-size restrictions(larger than 4K), like for device local-memory.
|
|
* However in general the final size here should always reflect any
|
|
* rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS
|
|
* extension to place the object in device local-memory.
|
|
*/
|
|
__u64 size;
|
|
/**
|
|
* @handle: Returned handle for the object.
|
|
*
|
|
* Object handles are nonzero.
|
|
*/
|
|
__u32 handle;
|
|
/** @flags: MBZ */
|
|
__u32 flags;
|
|
/**
|
|
* @extensions: The chain of extensions to apply to this object.
|
|
*
|
|
* This will be useful in the future when we need to support several
|
|
* different extensions, and we need to apply more than one when
|
|
* creating the object. See struct i915_user_extension.
|
|
*
|
|
* If we don't supply any extensions then we get the same old gem_create
|
|
* behaviour.
|
|
*
|
|
* For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
|
|
* struct drm_i915_gem_create_ext_memory_regions.
|
|
*/
|
|
#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
|
|
__u64 extensions;
|
|
};
|
|
|
|
/**
|
|
* struct drm_i915_gem_create_ext_memory_regions - The
|
|
* I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
|
|
*
|
|
* Set the object with the desired set of placements/regions in priority
|
|
* order. Each entry must be unique and supported by the device.
|
|
*
|
|
* This is provided as an array of struct drm_i915_gem_memory_class_instance, or
|
|
* an equivalent layout of class:instance pair encodings. See struct
|
|
* drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
|
|
* query the supported regions for a device.
|
|
*
|
|
* As an example, on discrete devices, if we wish to set the placement as
|
|
* device local-memory we can do something like:
|
|
*
|
|
* .. code-block:: C
|
|
*
|
|
* struct drm_i915_gem_memory_class_instance region_lmem = {
|
|
* .memory_class = I915_MEMORY_CLASS_DEVICE,
|
|
* .memory_instance = 0,
|
|
* };
|
|
* struct drm_i915_gem_create_ext_memory_regions regions = {
|
|
* .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
|
|
* .regions = (uintptr_t)®ion_lmem,
|
|
* .num_regions = 1,
|
|
* };
|
|
* struct drm_i915_gem_create_ext create_ext = {
|
|
* .size = 16 * PAGE_SIZE,
|
|
* .extensions = (uintptr_t)®ions,
|
|
* };
|
|
*
|
|
* int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
|
|
* if (err) ...
|
|
*
|
|
* At which point we get the object handle in &drm_i915_gem_create_ext.handle,
|
|
* along with the final object size in &drm_i915_gem_create_ext.size, which
|
|
* should account for any rounding up, if required.
|
|
*/
|
|
struct drm_i915_gem_create_ext_memory_regions {
|
|
/** @base: Extension link. See struct i915_user_extension. */
|
|
struct i915_user_extension base;
|
|
|
|
/** @pad: MBZ */
|
|
__u32 pad;
|
|
/** @num_regions: Number of elements in the @regions array. */
|
|
__u32 num_regions;
|
|
/**
|
|
* @regions: The regions/placements array.
|
|
*
|
|
* An array of struct drm_i915_gem_memory_class_instance.
|
|
*/
|
|
__u64 regions;
|
|
};
|
|
|
|
#if defined(__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* _UAPI_I915_DRM_H_ */
|