mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 01:04:19 +08:00
fc0e01974c
I've bisected the deadlock when many small appends are done on jffs2 down to
this commit:
commit 6fe6900e1e
Author: Nick Piggin <npiggin@suse.de>
Date: Sun May 6 14:49:04 2007 -0700
mm: make read_cache_page synchronous
Ensure pages are uptodate after returning from read_cache_page, which allows
us to cut out most of the filesystem-internal PageUptodate calls.
I didn't have a great look down the call chains, but this appears to fixes 7
possible use-before uptodate in hfs, 2 in hfsplus, 1 in jfs, a few in
ecryptfs, 1 in jffs2, and a possible cleared data overwritten with readpage in
block2mtd. All depending on whether the filler is async and/or can return
with a !uptodate page.
It introduced a wait to read_cache_page, as well as a
read_cache_page_async function equivalent to the old read_cache_page
without any callers.
Switching jffs2_gc_fetch_page to read_cache_page_async for the old
behavior makes the deadlocks go away, but maybe reintroduces the
use-before-uptodate problem? I don't understand the mm/fs interaction
well enough to say.
[It's fine. dwmw2.]
Signed-off-by: Jason Lunz <lunz@falooley.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
704 lines
18 KiB
C
704 lines
18 KiB
C
/*
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
|
*
|
|
* Copyright © 2001-2007 Red Hat, Inc.
|
|
*
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
|
*
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/vfs.h>
|
|
#include <linux/crc32.h>
|
|
#include "nodelist.h"
|
|
|
|
static int jffs2_flash_setup(struct jffs2_sb_info *c);
|
|
|
|
static int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
|
|
{
|
|
struct jffs2_full_dnode *old_metadata, *new_metadata;
|
|
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
|
|
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
|
|
struct jffs2_raw_inode *ri;
|
|
union jffs2_device_node dev;
|
|
unsigned char *mdata = NULL;
|
|
int mdatalen = 0;
|
|
unsigned int ivalid;
|
|
uint32_t alloclen;
|
|
int ret;
|
|
D1(printk(KERN_DEBUG "jffs2_setattr(): ino #%lu\n", inode->i_ino));
|
|
ret = inode_change_ok(inode, iattr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Special cases - we don't want more than one data node
|
|
for these types on the medium at any time. So setattr
|
|
must read the original data associated with the node
|
|
(i.e. the device numbers or the target name) and write
|
|
it out again with the appropriate data attached */
|
|
if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
|
|
/* For these, we don't actually need to read the old node */
|
|
mdatalen = jffs2_encode_dev(&dev, inode->i_rdev);
|
|
mdata = (char *)&dev;
|
|
D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen));
|
|
} else if (S_ISLNK(inode->i_mode)) {
|
|
down(&f->sem);
|
|
mdatalen = f->metadata->size;
|
|
mdata = kmalloc(f->metadata->size, GFP_USER);
|
|
if (!mdata) {
|
|
up(&f->sem);
|
|
return -ENOMEM;
|
|
}
|
|
ret = jffs2_read_dnode(c, f, f->metadata, mdata, 0, mdatalen);
|
|
if (ret) {
|
|
up(&f->sem);
|
|
kfree(mdata);
|
|
return ret;
|
|
}
|
|
up(&f->sem);
|
|
D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen));
|
|
}
|
|
|
|
ri = jffs2_alloc_raw_inode();
|
|
if (!ri) {
|
|
if (S_ISLNK(inode->i_mode))
|
|
kfree(mdata);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = jffs2_reserve_space(c, sizeof(*ri) + mdatalen, &alloclen,
|
|
ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
|
|
if (ret) {
|
|
jffs2_free_raw_inode(ri);
|
|
if (S_ISLNK(inode->i_mode & S_IFMT))
|
|
kfree(mdata);
|
|
return ret;
|
|
}
|
|
down(&f->sem);
|
|
ivalid = iattr->ia_valid;
|
|
|
|
ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
|
|
ri->totlen = cpu_to_je32(sizeof(*ri) + mdatalen);
|
|
ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
|
|
|
|
ri->ino = cpu_to_je32(inode->i_ino);
|
|
ri->version = cpu_to_je32(++f->highest_version);
|
|
|
|
ri->uid = cpu_to_je16((ivalid & ATTR_UID)?iattr->ia_uid:inode->i_uid);
|
|
ri->gid = cpu_to_je16((ivalid & ATTR_GID)?iattr->ia_gid:inode->i_gid);
|
|
|
|
if (ivalid & ATTR_MODE)
|
|
if (iattr->ia_mode & S_ISGID &&
|
|
!in_group_p(je16_to_cpu(ri->gid)) && !capable(CAP_FSETID))
|
|
ri->mode = cpu_to_jemode(iattr->ia_mode & ~S_ISGID);
|
|
else
|
|
ri->mode = cpu_to_jemode(iattr->ia_mode);
|
|
else
|
|
ri->mode = cpu_to_jemode(inode->i_mode);
|
|
|
|
|
|
ri->isize = cpu_to_je32((ivalid & ATTR_SIZE)?iattr->ia_size:inode->i_size);
|
|
ri->atime = cpu_to_je32(I_SEC((ivalid & ATTR_ATIME)?iattr->ia_atime:inode->i_atime));
|
|
ri->mtime = cpu_to_je32(I_SEC((ivalid & ATTR_MTIME)?iattr->ia_mtime:inode->i_mtime));
|
|
ri->ctime = cpu_to_je32(I_SEC((ivalid & ATTR_CTIME)?iattr->ia_ctime:inode->i_ctime));
|
|
|
|
ri->offset = cpu_to_je32(0);
|
|
ri->csize = ri->dsize = cpu_to_je32(mdatalen);
|
|
ri->compr = JFFS2_COMPR_NONE;
|
|
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
|
|
/* It's an extension. Make it a hole node */
|
|
ri->compr = JFFS2_COMPR_ZERO;
|
|
ri->dsize = cpu_to_je32(iattr->ia_size - inode->i_size);
|
|
ri->offset = cpu_to_je32(inode->i_size);
|
|
}
|
|
ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
|
|
if (mdatalen)
|
|
ri->data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
|
|
else
|
|
ri->data_crc = cpu_to_je32(0);
|
|
|
|
new_metadata = jffs2_write_dnode(c, f, ri, mdata, mdatalen, ALLOC_NORMAL);
|
|
if (S_ISLNK(inode->i_mode))
|
|
kfree(mdata);
|
|
|
|
if (IS_ERR(new_metadata)) {
|
|
jffs2_complete_reservation(c);
|
|
jffs2_free_raw_inode(ri);
|
|
up(&f->sem);
|
|
return PTR_ERR(new_metadata);
|
|
}
|
|
/* It worked. Update the inode */
|
|
inode->i_atime = ITIME(je32_to_cpu(ri->atime));
|
|
inode->i_ctime = ITIME(je32_to_cpu(ri->ctime));
|
|
inode->i_mtime = ITIME(je32_to_cpu(ri->mtime));
|
|
inode->i_mode = jemode_to_cpu(ri->mode);
|
|
inode->i_uid = je16_to_cpu(ri->uid);
|
|
inode->i_gid = je16_to_cpu(ri->gid);
|
|
|
|
|
|
old_metadata = f->metadata;
|
|
|
|
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
|
|
jffs2_truncate_fragtree (c, &f->fragtree, iattr->ia_size);
|
|
|
|
if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
|
|
jffs2_add_full_dnode_to_inode(c, f, new_metadata);
|
|
inode->i_size = iattr->ia_size;
|
|
f->metadata = NULL;
|
|
} else {
|
|
f->metadata = new_metadata;
|
|
}
|
|
if (old_metadata) {
|
|
jffs2_mark_node_obsolete(c, old_metadata->raw);
|
|
jffs2_free_full_dnode(old_metadata);
|
|
}
|
|
jffs2_free_raw_inode(ri);
|
|
|
|
up(&f->sem);
|
|
jffs2_complete_reservation(c);
|
|
|
|
/* We have to do the vmtruncate() without f->sem held, since
|
|
some pages may be locked and waiting for it in readpage().
|
|
We are protected from a simultaneous write() extending i_size
|
|
back past iattr->ia_size, because do_truncate() holds the
|
|
generic inode semaphore. */
|
|
if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
|
|
vmtruncate(inode, iattr->ia_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int jffs2_setattr(struct dentry *dentry, struct iattr *iattr)
|
|
{
|
|
int rc;
|
|
|
|
rc = jffs2_do_setattr(dentry->d_inode, iattr);
|
|
if (!rc && (iattr->ia_valid & ATTR_MODE))
|
|
rc = jffs2_acl_chmod(dentry->d_inode);
|
|
return rc;
|
|
}
|
|
|
|
int jffs2_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct jffs2_sb_info *c = JFFS2_SB_INFO(dentry->d_sb);
|
|
unsigned long avail;
|
|
|
|
buf->f_type = JFFS2_SUPER_MAGIC;
|
|
buf->f_bsize = 1 << PAGE_SHIFT;
|
|
buf->f_blocks = c->flash_size >> PAGE_SHIFT;
|
|
buf->f_files = 0;
|
|
buf->f_ffree = 0;
|
|
buf->f_namelen = JFFS2_MAX_NAME_LEN;
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
avail = c->dirty_size + c->free_size;
|
|
if (avail > c->sector_size * c->resv_blocks_write)
|
|
avail -= c->sector_size * c->resv_blocks_write;
|
|
else
|
|
avail = 0;
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
buf->f_bavail = buf->f_bfree = avail >> PAGE_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void jffs2_clear_inode (struct inode *inode)
|
|
{
|
|
/* We can forget about this inode for now - drop all
|
|
* the nodelists associated with it, etc.
|
|
*/
|
|
struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
|
|
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_clear_inode(): ino #%lu mode %o\n", inode->i_ino, inode->i_mode));
|
|
jffs2_do_clear_inode(c, f);
|
|
}
|
|
|
|
void jffs2_read_inode (struct inode *inode)
|
|
{
|
|
struct jffs2_inode_info *f;
|
|
struct jffs2_sb_info *c;
|
|
struct jffs2_raw_inode latest_node;
|
|
union jffs2_device_node jdev;
|
|
dev_t rdev = 0;
|
|
int ret;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_read_inode(): inode->i_ino == %lu\n", inode->i_ino));
|
|
|
|
f = JFFS2_INODE_INFO(inode);
|
|
c = JFFS2_SB_INFO(inode->i_sb);
|
|
|
|
jffs2_init_inode_info(f);
|
|
down(&f->sem);
|
|
|
|
ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node);
|
|
|
|
if (ret) {
|
|
make_bad_inode(inode);
|
|
up(&f->sem);
|
|
return;
|
|
}
|
|
inode->i_mode = jemode_to_cpu(latest_node.mode);
|
|
inode->i_uid = je16_to_cpu(latest_node.uid);
|
|
inode->i_gid = je16_to_cpu(latest_node.gid);
|
|
inode->i_size = je32_to_cpu(latest_node.isize);
|
|
inode->i_atime = ITIME(je32_to_cpu(latest_node.atime));
|
|
inode->i_mtime = ITIME(je32_to_cpu(latest_node.mtime));
|
|
inode->i_ctime = ITIME(je32_to_cpu(latest_node.ctime));
|
|
|
|
inode->i_nlink = f->inocache->nlink;
|
|
|
|
inode->i_blocks = (inode->i_size + 511) >> 9;
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
|
|
case S_IFLNK:
|
|
inode->i_op = &jffs2_symlink_inode_operations;
|
|
break;
|
|
|
|
case S_IFDIR:
|
|
{
|
|
struct jffs2_full_dirent *fd;
|
|
|
|
for (fd=f->dents; fd; fd = fd->next) {
|
|
if (fd->type == DT_DIR && fd->ino)
|
|
inc_nlink(inode);
|
|
}
|
|
/* and '..' */
|
|
inc_nlink(inode);
|
|
/* Root dir gets i_nlink 3 for some reason */
|
|
if (inode->i_ino == 1)
|
|
inc_nlink(inode);
|
|
|
|
inode->i_op = &jffs2_dir_inode_operations;
|
|
inode->i_fop = &jffs2_dir_operations;
|
|
break;
|
|
}
|
|
case S_IFREG:
|
|
inode->i_op = &jffs2_file_inode_operations;
|
|
inode->i_fop = &jffs2_file_operations;
|
|
inode->i_mapping->a_ops = &jffs2_file_address_operations;
|
|
inode->i_mapping->nrpages = 0;
|
|
break;
|
|
|
|
case S_IFBLK:
|
|
case S_IFCHR:
|
|
/* Read the device numbers from the media */
|
|
if (f->metadata->size != sizeof(jdev.old) &&
|
|
f->metadata->size != sizeof(jdev.new)) {
|
|
printk(KERN_NOTICE "Device node has strange size %d\n", f->metadata->size);
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
make_bad_inode(inode);
|
|
return;
|
|
}
|
|
D1(printk(KERN_DEBUG "Reading device numbers from flash\n"));
|
|
if (jffs2_read_dnode(c, f, f->metadata, (char *)&jdev, 0, f->metadata->size) < 0) {
|
|
/* Eep */
|
|
printk(KERN_NOTICE "Read device numbers for inode %lu failed\n", (unsigned long)inode->i_ino);
|
|
up(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
make_bad_inode(inode);
|
|
return;
|
|
}
|
|
if (f->metadata->size == sizeof(jdev.old))
|
|
rdev = old_decode_dev(je16_to_cpu(jdev.old));
|
|
else
|
|
rdev = new_decode_dev(je32_to_cpu(jdev.new));
|
|
|
|
case S_IFSOCK:
|
|
case S_IFIFO:
|
|
inode->i_op = &jffs2_file_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_WARNING "jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode->i_mode, (unsigned long)inode->i_ino);
|
|
}
|
|
|
|
up(&f->sem);
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_read_inode() returning\n"));
|
|
}
|
|
|
|
void jffs2_dirty_inode(struct inode *inode)
|
|
{
|
|
struct iattr iattr;
|
|
|
|
if (!(inode->i_state & I_DIRTY_DATASYNC)) {
|
|
D2(printk(KERN_DEBUG "jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode->i_ino));
|
|
return;
|
|
}
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode->i_ino));
|
|
|
|
iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
|
|
iattr.ia_mode = inode->i_mode;
|
|
iattr.ia_uid = inode->i_uid;
|
|
iattr.ia_gid = inode->i_gid;
|
|
iattr.ia_atime = inode->i_atime;
|
|
iattr.ia_mtime = inode->i_mtime;
|
|
iattr.ia_ctime = inode->i_ctime;
|
|
|
|
jffs2_do_setattr(inode, &iattr);
|
|
}
|
|
|
|
int jffs2_remount_fs (struct super_block *sb, int *flags, char *data)
|
|
{
|
|
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
|
|
|
|
if (c->flags & JFFS2_SB_FLAG_RO && !(sb->s_flags & MS_RDONLY))
|
|
return -EROFS;
|
|
|
|
/* We stop if it was running, then restart if it needs to.
|
|
This also catches the case where it was stopped and this
|
|
is just a remount to restart it.
|
|
Flush the writebuffer, if neccecary, else we loose it */
|
|
if (!(sb->s_flags & MS_RDONLY)) {
|
|
jffs2_stop_garbage_collect_thread(c);
|
|
down(&c->alloc_sem);
|
|
jffs2_flush_wbuf_pad(c);
|
|
up(&c->alloc_sem);
|
|
}
|
|
|
|
if (!(*flags & MS_RDONLY))
|
|
jffs2_start_garbage_collect_thread(c);
|
|
|
|
*flags |= MS_NOATIME;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_write_super (struct super_block *sb)
|
|
{
|
|
struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
|
|
sb->s_dirt = 0;
|
|
|
|
if (sb->s_flags & MS_RDONLY)
|
|
return;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_write_super()\n"));
|
|
jffs2_garbage_collect_trigger(c);
|
|
jffs2_erase_pending_blocks(c, 0);
|
|
jffs2_flush_wbuf_gc(c, 0);
|
|
}
|
|
|
|
|
|
/* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
|
|
fill in the raw_inode while you're at it. */
|
|
struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri)
|
|
{
|
|
struct inode *inode;
|
|
struct super_block *sb = dir_i->i_sb;
|
|
struct jffs2_sb_info *c;
|
|
struct jffs2_inode_info *f;
|
|
int ret;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode));
|
|
|
|
c = JFFS2_SB_INFO(sb);
|
|
|
|
inode = new_inode(sb);
|
|
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
f = JFFS2_INODE_INFO(inode);
|
|
jffs2_init_inode_info(f);
|
|
down(&f->sem);
|
|
|
|
memset(ri, 0, sizeof(*ri));
|
|
/* Set OS-specific defaults for new inodes */
|
|
ri->uid = cpu_to_je16(current->fsuid);
|
|
|
|
if (dir_i->i_mode & S_ISGID) {
|
|
ri->gid = cpu_to_je16(dir_i->i_gid);
|
|
if (S_ISDIR(mode))
|
|
mode |= S_ISGID;
|
|
} else {
|
|
ri->gid = cpu_to_je16(current->fsgid);
|
|
}
|
|
ri->mode = cpu_to_jemode(mode);
|
|
ret = jffs2_do_new_inode (c, f, mode, ri);
|
|
if (ret) {
|
|
make_bad_inode(inode);
|
|
iput(inode);
|
|
return ERR_PTR(ret);
|
|
}
|
|
inode->i_nlink = 1;
|
|
inode->i_ino = je32_to_cpu(ri->ino);
|
|
inode->i_mode = jemode_to_cpu(ri->mode);
|
|
inode->i_gid = je16_to_cpu(ri->gid);
|
|
inode->i_uid = je16_to_cpu(ri->uid);
|
|
inode->i_atime = inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
|
|
ri->atime = ri->mtime = ri->ctime = cpu_to_je32(I_SEC(inode->i_mtime));
|
|
|
|
inode->i_blocks = 0;
|
|
inode->i_size = 0;
|
|
|
|
insert_inode_hash(inode);
|
|
|
|
return inode;
|
|
}
|
|
|
|
|
|
int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
|
|
{
|
|
struct jffs2_sb_info *c;
|
|
struct inode *root_i;
|
|
int ret;
|
|
size_t blocks;
|
|
|
|
c = JFFS2_SB_INFO(sb);
|
|
|
|
#ifndef CONFIG_JFFS2_FS_WRITEBUFFER
|
|
if (c->mtd->type == MTD_NANDFLASH) {
|
|
printk(KERN_ERR "jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
|
|
return -EINVAL;
|
|
}
|
|
if (c->mtd->type == MTD_DATAFLASH) {
|
|
printk(KERN_ERR "jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
c->flash_size = c->mtd->size;
|
|
c->sector_size = c->mtd->erasesize;
|
|
blocks = c->flash_size / c->sector_size;
|
|
|
|
/*
|
|
* Size alignment check
|
|
*/
|
|
if ((c->sector_size * blocks) != c->flash_size) {
|
|
c->flash_size = c->sector_size * blocks;
|
|
printk(KERN_INFO "jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
|
|
c->flash_size / 1024);
|
|
}
|
|
|
|
if (c->flash_size < 5*c->sector_size) {
|
|
printk(KERN_ERR "jffs2: Too few erase blocks (%d)\n", c->flash_size / c->sector_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
c->cleanmarker_size = sizeof(struct jffs2_unknown_node);
|
|
|
|
/* NAND (or other bizarre) flash... do setup accordingly */
|
|
ret = jffs2_flash_setup(c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
c->inocache_list = kcalloc(INOCACHE_HASHSIZE, sizeof(struct jffs2_inode_cache *), GFP_KERNEL);
|
|
if (!c->inocache_list) {
|
|
ret = -ENOMEM;
|
|
goto out_wbuf;
|
|
}
|
|
|
|
jffs2_init_xattr_subsystem(c);
|
|
|
|
if ((ret = jffs2_do_mount_fs(c)))
|
|
goto out_inohash;
|
|
|
|
ret = -EINVAL;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_do_fill_super(): Getting root inode\n"));
|
|
root_i = iget(sb, 1);
|
|
if (is_bad_inode(root_i)) {
|
|
D1(printk(KERN_WARNING "get root inode failed\n"));
|
|
goto out_root_i;
|
|
}
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_do_fill_super(): d_alloc_root()\n"));
|
|
sb->s_root = d_alloc_root(root_i);
|
|
if (!sb->s_root)
|
|
goto out_root_i;
|
|
|
|
sb->s_maxbytes = 0xFFFFFFFF;
|
|
sb->s_blocksize = PAGE_CACHE_SIZE;
|
|
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
|
|
sb->s_magic = JFFS2_SUPER_MAGIC;
|
|
if (!(sb->s_flags & MS_RDONLY))
|
|
jffs2_start_garbage_collect_thread(c);
|
|
return 0;
|
|
|
|
out_root_i:
|
|
iput(root_i);
|
|
jffs2_free_ino_caches(c);
|
|
jffs2_free_raw_node_refs(c);
|
|
if (jffs2_blocks_use_vmalloc(c))
|
|
vfree(c->blocks);
|
|
else
|
|
kfree(c->blocks);
|
|
out_inohash:
|
|
jffs2_clear_xattr_subsystem(c);
|
|
kfree(c->inocache_list);
|
|
out_wbuf:
|
|
jffs2_flash_cleanup(c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void jffs2_gc_release_inode(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_info *f)
|
|
{
|
|
iput(OFNI_EDONI_2SFFJ(f));
|
|
}
|
|
|
|
struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
|
|
int inum, int nlink)
|
|
{
|
|
struct inode *inode;
|
|
struct jffs2_inode_cache *ic;
|
|
if (!nlink) {
|
|
/* The inode has zero nlink but its nodes weren't yet marked
|
|
obsolete. This has to be because we're still waiting for
|
|
the final (close() and) iput() to happen.
|
|
|
|
There's a possibility that the final iput() could have
|
|
happened while we were contemplating. In order to ensure
|
|
that we don't cause a new read_inode() (which would fail)
|
|
for the inode in question, we use ilookup() in this case
|
|
instead of iget().
|
|
|
|
The nlink can't _become_ zero at this point because we're
|
|
holding the alloc_sem, and jffs2_do_unlink() would also
|
|
need that while decrementing nlink on any inode.
|
|
*/
|
|
inode = ilookup(OFNI_BS_2SFFJ(c), inum);
|
|
if (!inode) {
|
|
D1(printk(KERN_DEBUG "ilookup() failed for ino #%u; inode is probably deleted.\n",
|
|
inum));
|
|
|
|
spin_lock(&c->inocache_lock);
|
|
ic = jffs2_get_ino_cache(c, inum);
|
|
if (!ic) {
|
|
D1(printk(KERN_DEBUG "Inode cache for ino #%u is gone.\n", inum));
|
|
spin_unlock(&c->inocache_lock);
|
|
return NULL;
|
|
}
|
|
if (ic->state != INO_STATE_CHECKEDABSENT) {
|
|
/* Wait for progress. Don't just loop */
|
|
D1(printk(KERN_DEBUG "Waiting for ino #%u in state %d\n",
|
|
ic->ino, ic->state));
|
|
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
|
|
} else {
|
|
spin_unlock(&c->inocache_lock);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
} else {
|
|
/* Inode has links to it still; they're not going away because
|
|
jffs2_do_unlink() would need the alloc_sem and we have it.
|
|
Just iget() it, and if read_inode() is necessary that's OK.
|
|
*/
|
|
inode = iget(OFNI_BS_2SFFJ(c), inum);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
if (is_bad_inode(inode)) {
|
|
printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u. nlink %d\n",
|
|
inum, nlink);
|
|
/* NB. This will happen again. We need to do something appropriate here. */
|
|
iput(inode);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
return JFFS2_INODE_INFO(inode);
|
|
}
|
|
|
|
unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_info *f,
|
|
unsigned long offset,
|
|
unsigned long *priv)
|
|
{
|
|
struct inode *inode = OFNI_EDONI_2SFFJ(f);
|
|
struct page *pg;
|
|
|
|
pg = read_cache_page_async(inode->i_mapping, offset >> PAGE_CACHE_SHIFT,
|
|
(void *)jffs2_do_readpage_unlock, inode);
|
|
if (IS_ERR(pg))
|
|
return (void *)pg;
|
|
|
|
*priv = (unsigned long)pg;
|
|
return kmap(pg);
|
|
}
|
|
|
|
void jffs2_gc_release_page(struct jffs2_sb_info *c,
|
|
unsigned char *ptr,
|
|
unsigned long *priv)
|
|
{
|
|
struct page *pg = (void *)*priv;
|
|
|
|
kunmap(pg);
|
|
page_cache_release(pg);
|
|
}
|
|
|
|
static int jffs2_flash_setup(struct jffs2_sb_info *c) {
|
|
int ret = 0;
|
|
|
|
if (jffs2_cleanmarker_oob(c)) {
|
|
/* NAND flash... do setup accordingly */
|
|
ret = jffs2_nand_flash_setup(c);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* and Dataflash */
|
|
if (jffs2_dataflash(c)) {
|
|
ret = jffs2_dataflash_setup(c);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* and Intel "Sibley" flash */
|
|
if (jffs2_nor_wbuf_flash(c)) {
|
|
ret = jffs2_nor_wbuf_flash_setup(c);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* and an UBI volume */
|
|
if (jffs2_ubivol(c)) {
|
|
ret = jffs2_ubivol_setup(c);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
|
|
|
|
if (jffs2_cleanmarker_oob(c)) {
|
|
jffs2_nand_flash_cleanup(c);
|
|
}
|
|
|
|
/* and DataFlash */
|
|
if (jffs2_dataflash(c)) {
|
|
jffs2_dataflash_cleanup(c);
|
|
}
|
|
|
|
/* and Intel "Sibley" flash */
|
|
if (jffs2_nor_wbuf_flash(c)) {
|
|
jffs2_nor_wbuf_flash_cleanup(c);
|
|
}
|
|
|
|
/* and an UBI volume */
|
|
if (jffs2_ubivol(c)) {
|
|
jffs2_ubivol_cleanup(c);
|
|
}
|
|
}
|