linux/tools/testing/selftests/kvm/aarch64/get-reg-list.c
Andrew Jones c6232bd40b KVM: arm64: selftests: Filter out DEMUX registers
DEMUX register presence depends on the host's hardware (the
CLIDR_EL1 register to be precise). This means there's no set
of them that we can bless and that it's possible to encounter
new ones when running on different hardware (which would
generate "Consider adding them ..." messages, but we'll never
want to add them.)

Remove the ones we have in the blessed list and filter them
out of the new list, but also provide a new command line switch
to list them if one so desires.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201126134641.35231-3-drjones@redhat.com
2020-11-27 19:46:47 +00:00

863 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Check for KVM_GET_REG_LIST regressions.
*
* Copyright (C) 2020, Red Hat, Inc.
*
* When attempting to migrate from a host with an older kernel to a host
* with a newer kernel we allow the newer kernel on the destination to
* list new registers with get-reg-list. We assume they'll be unused, at
* least until the guest reboots, and so they're relatively harmless.
* However, if the destination host with the newer kernel is missing
* registers which the source host with the older kernel has, then that's
* a regression in get-reg-list. This test checks for that regression by
* checking the current list against a blessed list. We should never have
* missing registers, but if new ones appear then they can probably be
* added to the blessed list. A completely new blessed list can be created
* by running the test with the --list command line argument.
*
* Note, the blessed list should be created from the oldest possible
* kernel. We can't go older than v4.15, though, because that's the first
* release to expose the ID system registers in KVM_GET_REG_LIST, see
* commit 93390c0a1b20 ("arm64: KVM: Hide unsupported AArch64 CPU features
* from guests"). Also, one must use the --core-reg-fixup command line
* option when running on an older kernel that doesn't include df205b5c6328
* ("KVM: arm64: Filter out invalid core register IDs in KVM_GET_REG_LIST")
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "kvm_util.h"
#include "test_util.h"
#include "processor.h"
#ifdef REG_LIST_SVE
#define reg_list_sve() (true)
#else
#define reg_list_sve() (false)
#endif
#define REG_MASK (KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK)
#define for_each_reg(i) \
for ((i) = 0; (i) < reg_list->n; ++(i))
#define for_each_reg_filtered(i) \
for_each_reg(i) \
if (!filter_reg(reg_list->reg[i]))
#define for_each_missing_reg(i) \
for ((i) = 0; (i) < blessed_n; ++(i)) \
if (!find_reg(reg_list->reg, reg_list->n, blessed_reg[i]))
#define for_each_new_reg(i) \
for_each_reg_filtered(i) \
if (!find_reg(blessed_reg, blessed_n, reg_list->reg[i]))
static struct kvm_reg_list *reg_list;
static __u64 base_regs[], vregs[], sve_regs[], rejects_set[];
static __u64 base_regs_n, vregs_n, sve_regs_n, rejects_set_n;
static __u64 *blessed_reg, blessed_n;
static bool filter_reg(__u64 reg)
{
/*
* DEMUX register presence depends on the host's CLIDR_EL1.
* This means there's no set of them that we can bless.
*/
if ((reg & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return true;
return false;
}
static bool find_reg(__u64 regs[], __u64 nr_regs, __u64 reg)
{
int i;
for (i = 0; i < nr_regs; ++i)
if (reg == regs[i])
return true;
return false;
}
static const char *str_with_index(const char *template, __u64 index)
{
char *str, *p;
int n;
str = strdup(template);
p = strstr(str, "##");
n = sprintf(p, "%lld", index);
strcat(p + n, strstr(template, "##") + 2);
return (const char *)str;
}
#define CORE_REGS_XX_NR_WORDS 2
#define CORE_SPSR_XX_NR_WORDS 2
#define CORE_FPREGS_XX_NR_WORDS 4
static const char *core_id_to_str(__u64 id)
{
__u64 core_off = id & ~REG_MASK, idx;
/*
* core_off is the offset into struct kvm_regs
*/
switch (core_off) {
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
KVM_REG_ARM_CORE_REG(regs.regs[30]):
idx = (core_off - KVM_REG_ARM_CORE_REG(regs.regs[0])) / CORE_REGS_XX_NR_WORDS;
TEST_ASSERT(idx < 31, "Unexpected regs.regs index: %lld", idx);
return str_with_index("KVM_REG_ARM_CORE_REG(regs.regs[##])", idx);
case KVM_REG_ARM_CORE_REG(regs.sp):
return "KVM_REG_ARM_CORE_REG(regs.sp)";
case KVM_REG_ARM_CORE_REG(regs.pc):
return "KVM_REG_ARM_CORE_REG(regs.pc)";
case KVM_REG_ARM_CORE_REG(regs.pstate):
return "KVM_REG_ARM_CORE_REG(regs.pstate)";
case KVM_REG_ARM_CORE_REG(sp_el1):
return "KVM_REG_ARM_CORE_REG(sp_el1)";
case KVM_REG_ARM_CORE_REG(elr_el1):
return "KVM_REG_ARM_CORE_REG(elr_el1)";
case KVM_REG_ARM_CORE_REG(spsr[0]) ...
KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
idx = (core_off - KVM_REG_ARM_CORE_REG(spsr[0])) / CORE_SPSR_XX_NR_WORDS;
TEST_ASSERT(idx < KVM_NR_SPSR, "Unexpected spsr index: %lld", idx);
return str_with_index("KVM_REG_ARM_CORE_REG(spsr[##])", idx);
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
idx = (core_off - KVM_REG_ARM_CORE_REG(fp_regs.vregs[0])) / CORE_FPREGS_XX_NR_WORDS;
TEST_ASSERT(idx < 32, "Unexpected fp_regs.vregs index: %lld", idx);
return str_with_index("KVM_REG_ARM_CORE_REG(fp_regs.vregs[##])", idx);
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
return "KVM_REG_ARM_CORE_REG(fp_regs.fpsr)";
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
return "KVM_REG_ARM_CORE_REG(fp_regs.fpcr)";
}
TEST_FAIL("Unknown core reg id: 0x%llx", id);
return NULL;
}
static const char *sve_id_to_str(__u64 id)
{
__u64 sve_off, n, i;
if (id == KVM_REG_ARM64_SVE_VLS)
return "KVM_REG_ARM64_SVE_VLS";
sve_off = id & ~(REG_MASK | ((1ULL << 5) - 1));
i = id & (KVM_ARM64_SVE_MAX_SLICES - 1);
TEST_ASSERT(i == 0, "Currently we don't expect slice > 0, reg id 0x%llx", id);
switch (sve_off) {
case KVM_REG_ARM64_SVE_ZREG_BASE ...
KVM_REG_ARM64_SVE_ZREG_BASE + (1ULL << 5) * KVM_ARM64_SVE_NUM_ZREGS - 1:
n = (id >> 5) & (KVM_ARM64_SVE_NUM_ZREGS - 1);
TEST_ASSERT(id == KVM_REG_ARM64_SVE_ZREG(n, 0),
"Unexpected bits set in SVE ZREG id: 0x%llx", id);
return str_with_index("KVM_REG_ARM64_SVE_ZREG(##, 0)", n);
case KVM_REG_ARM64_SVE_PREG_BASE ...
KVM_REG_ARM64_SVE_PREG_BASE + (1ULL << 5) * KVM_ARM64_SVE_NUM_PREGS - 1:
n = (id >> 5) & (KVM_ARM64_SVE_NUM_PREGS - 1);
TEST_ASSERT(id == KVM_REG_ARM64_SVE_PREG(n, 0),
"Unexpected bits set in SVE PREG id: 0x%llx", id);
return str_with_index("KVM_REG_ARM64_SVE_PREG(##, 0)", n);
case KVM_REG_ARM64_SVE_FFR_BASE:
TEST_ASSERT(id == KVM_REG_ARM64_SVE_FFR(0),
"Unexpected bits set in SVE FFR id: 0x%llx", id);
return "KVM_REG_ARM64_SVE_FFR(0)";
}
return NULL;
}
static void print_reg(__u64 id)
{
unsigned op0, op1, crn, crm, op2;
const char *reg_size = NULL;
TEST_ASSERT((id & KVM_REG_ARCH_MASK) == KVM_REG_ARM64,
"KVM_REG_ARM64 missing in reg id: 0x%llx", id);
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U8:
reg_size = "KVM_REG_SIZE_U8";
break;
case KVM_REG_SIZE_U16:
reg_size = "KVM_REG_SIZE_U16";
break;
case KVM_REG_SIZE_U32:
reg_size = "KVM_REG_SIZE_U32";
break;
case KVM_REG_SIZE_U64:
reg_size = "KVM_REG_SIZE_U64";
break;
case KVM_REG_SIZE_U128:
reg_size = "KVM_REG_SIZE_U128";
break;
case KVM_REG_SIZE_U256:
reg_size = "KVM_REG_SIZE_U256";
break;
case KVM_REG_SIZE_U512:
reg_size = "KVM_REG_SIZE_U512";
break;
case KVM_REG_SIZE_U1024:
reg_size = "KVM_REG_SIZE_U1024";
break;
case KVM_REG_SIZE_U2048:
reg_size = "KVM_REG_SIZE_U2048";
break;
default:
TEST_FAIL("Unexpected reg size: 0x%llx in reg id: 0x%llx",
(id & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT, id);
}
switch (id & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE:
printf("\tKVM_REG_ARM64 | %s | KVM_REG_ARM_CORE | %s,\n", reg_size, core_id_to_str(id));
break;
case KVM_REG_ARM_DEMUX:
TEST_ASSERT(!(id & ~(REG_MASK | KVM_REG_ARM_DEMUX_ID_MASK | KVM_REG_ARM_DEMUX_VAL_MASK)),
"Unexpected bits set in DEMUX reg id: 0x%llx", id);
printf("\tKVM_REG_ARM64 | %s | KVM_REG_ARM_DEMUX | KVM_REG_ARM_DEMUX_ID_CCSIDR | %lld,\n",
reg_size, id & KVM_REG_ARM_DEMUX_VAL_MASK);
break;
case KVM_REG_ARM64_SYSREG:
op0 = (id & KVM_REG_ARM64_SYSREG_OP0_MASK) >> KVM_REG_ARM64_SYSREG_OP0_SHIFT;
op1 = (id & KVM_REG_ARM64_SYSREG_OP1_MASK) >> KVM_REG_ARM64_SYSREG_OP1_SHIFT;
crn = (id & KVM_REG_ARM64_SYSREG_CRN_MASK) >> KVM_REG_ARM64_SYSREG_CRN_SHIFT;
crm = (id & KVM_REG_ARM64_SYSREG_CRM_MASK) >> KVM_REG_ARM64_SYSREG_CRM_SHIFT;
op2 = (id & KVM_REG_ARM64_SYSREG_OP2_MASK) >> KVM_REG_ARM64_SYSREG_OP2_SHIFT;
TEST_ASSERT(id == ARM64_SYS_REG(op0, op1, crn, crm, op2),
"Unexpected bits set in SYSREG reg id: 0x%llx", id);
printf("\tARM64_SYS_REG(%d, %d, %d, %d, %d),\n", op0, op1, crn, crm, op2);
break;
case KVM_REG_ARM_FW:
TEST_ASSERT(id == KVM_REG_ARM_FW_REG(id & 0xffff),
"Unexpected bits set in FW reg id: 0x%llx", id);
printf("\tKVM_REG_ARM_FW_REG(%lld),\n", id & 0xffff);
break;
case KVM_REG_ARM64_SVE:
if (reg_list_sve())
printf("\t%s,\n", sve_id_to_str(id));
else
TEST_FAIL("KVM_REG_ARM64_SVE is an unexpected coproc type in reg id: 0x%llx", id);
break;
default:
TEST_FAIL("Unexpected coproc type: 0x%llx in reg id: 0x%llx",
(id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT, id);
}
}
/*
* Older kernels listed each 32-bit word of CORE registers separately.
* For 64 and 128-bit registers we need to ignore the extra words. We
* also need to fixup the sizes, because the older kernels stated all
* registers were 64-bit, even when they weren't.
*/
static void core_reg_fixup(void)
{
struct kvm_reg_list *tmp;
__u64 id, core_off;
int i;
tmp = calloc(1, sizeof(*tmp) + reg_list->n * sizeof(__u64));
for (i = 0; i < reg_list->n; ++i) {
id = reg_list->reg[i];
if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM_CORE) {
tmp->reg[tmp->n++] = id;
continue;
}
core_off = id & ~REG_MASK;
switch (core_off) {
case 0x52: case 0xd2: case 0xd6:
/*
* These offsets are pointing at padding.
* We need to ignore them too.
*/
continue;
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
if (core_off & 3)
continue;
id &= ~KVM_REG_SIZE_MASK;
id |= KVM_REG_SIZE_U128;
tmp->reg[tmp->n++] = id;
continue;
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
id &= ~KVM_REG_SIZE_MASK;
id |= KVM_REG_SIZE_U32;
tmp->reg[tmp->n++] = id;
continue;
default:
if (core_off & 1)
continue;
tmp->reg[tmp->n++] = id;
break;
}
}
free(reg_list);
reg_list = tmp;
}
static void prepare_vcpu_init(struct kvm_vcpu_init *init)
{
if (reg_list_sve())
init->features[0] |= 1 << KVM_ARM_VCPU_SVE;
}
static void finalize_vcpu(struct kvm_vm *vm, uint32_t vcpuid)
{
int feature;
if (reg_list_sve()) {
feature = KVM_ARM_VCPU_SVE;
vcpu_ioctl(vm, vcpuid, KVM_ARM_VCPU_FINALIZE, &feature);
}
}
static void check_supported(void)
{
if (reg_list_sve() && !kvm_check_cap(KVM_CAP_ARM_SVE)) {
fprintf(stderr, "SVE not available, skipping tests\n");
exit(KSFT_SKIP);
}
}
int main(int ac, char **av)
{
struct kvm_vcpu_init init = { .target = -1, };
int new_regs = 0, missing_regs = 0, i;
int failed_get = 0, failed_set = 0, failed_reject = 0;
bool print_list = false, print_filtered = false, fixup_core_regs = false;
struct kvm_vm *vm;
__u64 *vec_regs;
check_supported();
for (i = 1; i < ac; ++i) {
if (strcmp(av[i], "--core-reg-fixup") == 0)
fixup_core_regs = true;
else if (strcmp(av[i], "--list") == 0)
print_list = true;
else if (strcmp(av[i], "--list-filtered") == 0)
print_filtered = true;
else
TEST_FAIL("Unknown option: %s\n", av[i]);
}
vm = vm_create(VM_MODE_DEFAULT, DEFAULT_GUEST_PHY_PAGES, O_RDWR);
prepare_vcpu_init(&init);
aarch64_vcpu_add_default(vm, 0, &init, NULL);
finalize_vcpu(vm, 0);
reg_list = vcpu_get_reg_list(vm, 0);
if (fixup_core_regs)
core_reg_fixup();
if (print_list || print_filtered) {
putchar('\n');
for_each_reg(i) {
__u64 id = reg_list->reg[i];
if ((print_list && !filter_reg(id)) ||
(print_filtered && filter_reg(id)))
print_reg(id);
}
putchar('\n');
return 0;
}
/*
* We only test that we can get the register and then write back the
* same value. Some registers may allow other values to be written
* back, but others only allow some bits to be changed, and at least
* for ID registers set will fail if the value does not exactly match
* what was returned by get. If registers that allow other values to
* be written need to have the other values tested, then we should
* create a new set of tests for those in a new independent test
* executable.
*/
for_each_reg(i) {
uint8_t addr[2048 / 8];
struct kvm_one_reg reg = {
.id = reg_list->reg[i],
.addr = (__u64)&addr,
};
int ret;
ret = _vcpu_ioctl(vm, 0, KVM_GET_ONE_REG, &reg);
if (ret) {
puts("Failed to get ");
print_reg(reg.id);
putchar('\n');
++failed_get;
}
/* rejects_set registers are rejected after KVM_ARM_VCPU_FINALIZE */
if (find_reg(rejects_set, rejects_set_n, reg.id)) {
ret = _vcpu_ioctl(vm, 0, KVM_SET_ONE_REG, &reg);
if (ret != -1 || errno != EPERM) {
printf("Failed to reject (ret=%d, errno=%d) ", ret, errno);
print_reg(reg.id);
putchar('\n');
++failed_reject;
}
continue;
}
ret = _vcpu_ioctl(vm, 0, KVM_SET_ONE_REG, &reg);
if (ret) {
puts("Failed to set ");
print_reg(reg.id);
putchar('\n');
++failed_set;
}
}
if (reg_list_sve()) {
blessed_n = base_regs_n + sve_regs_n;
vec_regs = sve_regs;
} else {
blessed_n = base_regs_n + vregs_n;
vec_regs = vregs;
}
blessed_reg = calloc(blessed_n, sizeof(__u64));
for (i = 0; i < base_regs_n; ++i)
blessed_reg[i] = base_regs[i];
for (i = 0; i < blessed_n - base_regs_n; ++i)
blessed_reg[base_regs_n + i] = vec_regs[i];
for_each_new_reg(i)
++new_regs;
for_each_missing_reg(i)
++missing_regs;
if (new_regs || missing_regs) {
printf("Number blessed registers: %5lld\n", blessed_n);
printf("Number registers: %5lld\n", reg_list->n);
}
if (new_regs) {
printf("\nThere are %d new registers.\n"
"Consider adding them to the blessed reg "
"list with the following lines:\n\n", new_regs);
for_each_new_reg(i)
print_reg(reg_list->reg[i]);
putchar('\n');
}
if (missing_regs) {
printf("\nThere are %d missing registers.\n"
"The following lines are missing registers:\n\n", missing_regs);
for_each_missing_reg(i)
print_reg(blessed_reg[i]);
putchar('\n');
}
TEST_ASSERT(!missing_regs && !failed_get && !failed_set && !failed_reject,
"There are %d missing registers; "
"%d registers failed get; %d registers failed set; %d registers failed reject",
missing_regs, failed_get, failed_set, failed_reject);
return 0;
}
/*
* The current blessed list was primed with the output of kernel version
* v4.15 with --core-reg-fixup and then later updated with new registers.
*
* The blessed list is up to date with kernel version v5.10-rc5
*/
static __u64 base_regs[] = {
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[0]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[1]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[2]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[3]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[4]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[5]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[6]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[7]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[8]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[9]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[10]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[11]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[12]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[13]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[14]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[15]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[16]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[17]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[18]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[19]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[20]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[21]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[22]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[23]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[24]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[25]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[26]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[27]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[28]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[29]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[30]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.sp),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.pc),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.pstate),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(sp_el1),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(elr_el1),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[0]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[1]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[2]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[3]),
KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[4]),
KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.fpsr),
KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.fpcr),
KVM_REG_ARM_FW_REG(0),
KVM_REG_ARM_FW_REG(1),
KVM_REG_ARM_FW_REG(2),
ARM64_SYS_REG(3, 3, 14, 3, 1), /* CNTV_CTL_EL0 */
ARM64_SYS_REG(3, 3, 14, 3, 2), /* CNTV_CVAL_EL0 */
ARM64_SYS_REG(3, 3, 14, 0, 2),
ARM64_SYS_REG(3, 0, 0, 0, 0), /* MIDR_EL1 */
ARM64_SYS_REG(3, 0, 0, 0, 6), /* REVIDR_EL1 */
ARM64_SYS_REG(3, 1, 0, 0, 1), /* CLIDR_EL1 */
ARM64_SYS_REG(3, 1, 0, 0, 7), /* AIDR_EL1 */
ARM64_SYS_REG(3, 3, 0, 0, 1), /* CTR_EL0 */
ARM64_SYS_REG(2, 0, 0, 0, 4),
ARM64_SYS_REG(2, 0, 0, 0, 5),
ARM64_SYS_REG(2, 0, 0, 0, 6),
ARM64_SYS_REG(2, 0, 0, 0, 7),
ARM64_SYS_REG(2, 0, 0, 1, 4),
ARM64_SYS_REG(2, 0, 0, 1, 5),
ARM64_SYS_REG(2, 0, 0, 1, 6),
ARM64_SYS_REG(2, 0, 0, 1, 7),
ARM64_SYS_REG(2, 0, 0, 2, 0), /* MDCCINT_EL1 */
ARM64_SYS_REG(2, 0, 0, 2, 2), /* MDSCR_EL1 */
ARM64_SYS_REG(2, 0, 0, 2, 4),
ARM64_SYS_REG(2, 0, 0, 2, 5),
ARM64_SYS_REG(2, 0, 0, 2, 6),
ARM64_SYS_REG(2, 0, 0, 2, 7),
ARM64_SYS_REG(2, 0, 0, 3, 4),
ARM64_SYS_REG(2, 0, 0, 3, 5),
ARM64_SYS_REG(2, 0, 0, 3, 6),
ARM64_SYS_REG(2, 0, 0, 3, 7),
ARM64_SYS_REG(2, 0, 0, 4, 4),
ARM64_SYS_REG(2, 0, 0, 4, 5),
ARM64_SYS_REG(2, 0, 0, 4, 6),
ARM64_SYS_REG(2, 0, 0, 4, 7),
ARM64_SYS_REG(2, 0, 0, 5, 4),
ARM64_SYS_REG(2, 0, 0, 5, 5),
ARM64_SYS_REG(2, 0, 0, 5, 6),
ARM64_SYS_REG(2, 0, 0, 5, 7),
ARM64_SYS_REG(2, 0, 0, 6, 4),
ARM64_SYS_REG(2, 0, 0, 6, 5),
ARM64_SYS_REG(2, 0, 0, 6, 6),
ARM64_SYS_REG(2, 0, 0, 6, 7),
ARM64_SYS_REG(2, 0, 0, 7, 4),
ARM64_SYS_REG(2, 0, 0, 7, 5),
ARM64_SYS_REG(2, 0, 0, 7, 6),
ARM64_SYS_REG(2, 0, 0, 7, 7),
ARM64_SYS_REG(2, 0, 0, 8, 4),
ARM64_SYS_REG(2, 0, 0, 8, 5),
ARM64_SYS_REG(2, 0, 0, 8, 6),
ARM64_SYS_REG(2, 0, 0, 8, 7),
ARM64_SYS_REG(2, 0, 0, 9, 4),
ARM64_SYS_REG(2, 0, 0, 9, 5),
ARM64_SYS_REG(2, 0, 0, 9, 6),
ARM64_SYS_REG(2, 0, 0, 9, 7),
ARM64_SYS_REG(2, 0, 0, 10, 4),
ARM64_SYS_REG(2, 0, 0, 10, 5),
ARM64_SYS_REG(2, 0, 0, 10, 6),
ARM64_SYS_REG(2, 0, 0, 10, 7),
ARM64_SYS_REG(2, 0, 0, 11, 4),
ARM64_SYS_REG(2, 0, 0, 11, 5),
ARM64_SYS_REG(2, 0, 0, 11, 6),
ARM64_SYS_REG(2, 0, 0, 11, 7),
ARM64_SYS_REG(2, 0, 0, 12, 4),
ARM64_SYS_REG(2, 0, 0, 12, 5),
ARM64_SYS_REG(2, 0, 0, 12, 6),
ARM64_SYS_REG(2, 0, 0, 12, 7),
ARM64_SYS_REG(2, 0, 0, 13, 4),
ARM64_SYS_REG(2, 0, 0, 13, 5),
ARM64_SYS_REG(2, 0, 0, 13, 6),
ARM64_SYS_REG(2, 0, 0, 13, 7),
ARM64_SYS_REG(2, 0, 0, 14, 4),
ARM64_SYS_REG(2, 0, 0, 14, 5),
ARM64_SYS_REG(2, 0, 0, 14, 6),
ARM64_SYS_REG(2, 0, 0, 14, 7),
ARM64_SYS_REG(2, 0, 0, 15, 4),
ARM64_SYS_REG(2, 0, 0, 15, 5),
ARM64_SYS_REG(2, 0, 0, 15, 6),
ARM64_SYS_REG(2, 0, 0, 15, 7),
ARM64_SYS_REG(2, 4, 0, 7, 0), /* DBGVCR32_EL2 */
ARM64_SYS_REG(3, 0, 0, 0, 5), /* MPIDR_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 0), /* ID_PFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 1), /* ID_PFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 2), /* ID_DFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 3), /* ID_AFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 4), /* ID_MMFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 5), /* ID_MMFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 6), /* ID_MMFR2_EL1 */
ARM64_SYS_REG(3, 0, 0, 1, 7), /* ID_MMFR3_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 0), /* ID_ISAR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 1), /* ID_ISAR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 2), /* ID_ISAR2_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 3), /* ID_ISAR3_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 4), /* ID_ISAR4_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 5), /* ID_ISAR5_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 6), /* ID_MMFR4_EL1 */
ARM64_SYS_REG(3, 0, 0, 2, 7), /* ID_ISAR6_EL1 */
ARM64_SYS_REG(3, 0, 0, 3, 0), /* MVFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 3, 1), /* MVFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 3, 2), /* MVFR2_EL1 */
ARM64_SYS_REG(3, 0, 0, 3, 3),
ARM64_SYS_REG(3, 0, 0, 3, 4), /* ID_PFR2_EL1 */
ARM64_SYS_REG(3, 0, 0, 3, 5), /* ID_DFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 3, 6), /* ID_MMFR5_EL1 */
ARM64_SYS_REG(3, 0, 0, 3, 7),
ARM64_SYS_REG(3, 0, 0, 4, 0), /* ID_AA64PFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 4, 1), /* ID_AA64PFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 4, 2),
ARM64_SYS_REG(3, 0, 0, 4, 3),
ARM64_SYS_REG(3, 0, 0, 4, 4), /* ID_AA64ZFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 4, 5),
ARM64_SYS_REG(3, 0, 0, 4, 6),
ARM64_SYS_REG(3, 0, 0, 4, 7),
ARM64_SYS_REG(3, 0, 0, 5, 0), /* ID_AA64DFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 5, 1), /* ID_AA64DFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 5, 2),
ARM64_SYS_REG(3, 0, 0, 5, 3),
ARM64_SYS_REG(3, 0, 0, 5, 4), /* ID_AA64AFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 5, 5), /* ID_AA64AFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 5, 6),
ARM64_SYS_REG(3, 0, 0, 5, 7),
ARM64_SYS_REG(3, 0, 0, 6, 0), /* ID_AA64ISAR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 6, 1), /* ID_AA64ISAR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 6, 2),
ARM64_SYS_REG(3, 0, 0, 6, 3),
ARM64_SYS_REG(3, 0, 0, 6, 4),
ARM64_SYS_REG(3, 0, 0, 6, 5),
ARM64_SYS_REG(3, 0, 0, 6, 6),
ARM64_SYS_REG(3, 0, 0, 6, 7),
ARM64_SYS_REG(3, 0, 0, 7, 0), /* ID_AA64MMFR0_EL1 */
ARM64_SYS_REG(3, 0, 0, 7, 1), /* ID_AA64MMFR1_EL1 */
ARM64_SYS_REG(3, 0, 0, 7, 2), /* ID_AA64MMFR2_EL1 */
ARM64_SYS_REG(3, 0, 0, 7, 3),
ARM64_SYS_REG(3, 0, 0, 7, 4),
ARM64_SYS_REG(3, 0, 0, 7, 5),
ARM64_SYS_REG(3, 0, 0, 7, 6),
ARM64_SYS_REG(3, 0, 0, 7, 7),
ARM64_SYS_REG(3, 0, 1, 0, 0), /* SCTLR_EL1 */
ARM64_SYS_REG(3, 0, 1, 0, 1), /* ACTLR_EL1 */
ARM64_SYS_REG(3, 0, 1, 0, 2), /* CPACR_EL1 */
ARM64_SYS_REG(3, 0, 2, 0, 0), /* TTBR0_EL1 */
ARM64_SYS_REG(3, 0, 2, 0, 1), /* TTBR1_EL1 */
ARM64_SYS_REG(3, 0, 2, 0, 2), /* TCR_EL1 */
ARM64_SYS_REG(3, 0, 5, 1, 0), /* AFSR0_EL1 */
ARM64_SYS_REG(3, 0, 5, 1, 1), /* AFSR1_EL1 */
ARM64_SYS_REG(3, 0, 5, 2, 0), /* ESR_EL1 */
ARM64_SYS_REG(3, 0, 6, 0, 0), /* FAR_EL1 */
ARM64_SYS_REG(3, 0, 7, 4, 0), /* PAR_EL1 */
ARM64_SYS_REG(3, 0, 9, 14, 1), /* PMINTENSET_EL1 */
ARM64_SYS_REG(3, 0, 9, 14, 2), /* PMINTENCLR_EL1 */
ARM64_SYS_REG(3, 0, 10, 2, 0), /* MAIR_EL1 */
ARM64_SYS_REG(3, 0, 10, 3, 0), /* AMAIR_EL1 */
ARM64_SYS_REG(3, 0, 12, 0, 0), /* VBAR_EL1 */
ARM64_SYS_REG(3, 0, 12, 1, 1), /* DISR_EL1 */
ARM64_SYS_REG(3, 0, 13, 0, 1), /* CONTEXTIDR_EL1 */
ARM64_SYS_REG(3, 0, 13, 0, 4), /* TPIDR_EL1 */
ARM64_SYS_REG(3, 0, 14, 1, 0), /* CNTKCTL_EL1 */
ARM64_SYS_REG(3, 2, 0, 0, 0), /* CSSELR_EL1 */
ARM64_SYS_REG(3, 3, 9, 12, 0), /* PMCR_EL0 */
ARM64_SYS_REG(3, 3, 9, 12, 1), /* PMCNTENSET_EL0 */
ARM64_SYS_REG(3, 3, 9, 12, 2), /* PMCNTENCLR_EL0 */
ARM64_SYS_REG(3, 3, 9, 12, 3), /* PMOVSCLR_EL0 */
ARM64_SYS_REG(3, 3, 9, 12, 4), /* PMSWINC_EL0 */
ARM64_SYS_REG(3, 3, 9, 12, 5), /* PMSELR_EL0 */
ARM64_SYS_REG(3, 3, 9, 13, 0), /* PMCCNTR_EL0 */
ARM64_SYS_REG(3, 3, 9, 14, 0), /* PMUSERENR_EL0 */
ARM64_SYS_REG(3, 3, 9, 14, 3), /* PMOVSSET_EL0 */
ARM64_SYS_REG(3, 3, 13, 0, 2), /* TPIDR_EL0 */
ARM64_SYS_REG(3, 3, 13, 0, 3), /* TPIDRRO_EL0 */
ARM64_SYS_REG(3, 3, 14, 8, 0),
ARM64_SYS_REG(3, 3, 14, 8, 1),
ARM64_SYS_REG(3, 3, 14, 8, 2),
ARM64_SYS_REG(3, 3, 14, 8, 3),
ARM64_SYS_REG(3, 3, 14, 8, 4),
ARM64_SYS_REG(3, 3, 14, 8, 5),
ARM64_SYS_REG(3, 3, 14, 8, 6),
ARM64_SYS_REG(3, 3, 14, 8, 7),
ARM64_SYS_REG(3, 3, 14, 9, 0),
ARM64_SYS_REG(3, 3, 14, 9, 1),
ARM64_SYS_REG(3, 3, 14, 9, 2),
ARM64_SYS_REG(3, 3, 14, 9, 3),
ARM64_SYS_REG(3, 3, 14, 9, 4),
ARM64_SYS_REG(3, 3, 14, 9, 5),
ARM64_SYS_REG(3, 3, 14, 9, 6),
ARM64_SYS_REG(3, 3, 14, 9, 7),
ARM64_SYS_REG(3, 3, 14, 10, 0),
ARM64_SYS_REG(3, 3, 14, 10, 1),
ARM64_SYS_REG(3, 3, 14, 10, 2),
ARM64_SYS_REG(3, 3, 14, 10, 3),
ARM64_SYS_REG(3, 3, 14, 10, 4),
ARM64_SYS_REG(3, 3, 14, 10, 5),
ARM64_SYS_REG(3, 3, 14, 10, 6),
ARM64_SYS_REG(3, 3, 14, 10, 7),
ARM64_SYS_REG(3, 3, 14, 11, 0),
ARM64_SYS_REG(3, 3, 14, 11, 1),
ARM64_SYS_REG(3, 3, 14, 11, 2),
ARM64_SYS_REG(3, 3, 14, 11, 3),
ARM64_SYS_REG(3, 3, 14, 11, 4),
ARM64_SYS_REG(3, 3, 14, 11, 5),
ARM64_SYS_REG(3, 3, 14, 11, 6),
ARM64_SYS_REG(3, 3, 14, 12, 0),
ARM64_SYS_REG(3, 3, 14, 12, 1),
ARM64_SYS_REG(3, 3, 14, 12, 2),
ARM64_SYS_REG(3, 3, 14, 12, 3),
ARM64_SYS_REG(3, 3, 14, 12, 4),
ARM64_SYS_REG(3, 3, 14, 12, 5),
ARM64_SYS_REG(3, 3, 14, 12, 6),
ARM64_SYS_REG(3, 3, 14, 12, 7),
ARM64_SYS_REG(3, 3, 14, 13, 0),
ARM64_SYS_REG(3, 3, 14, 13, 1),
ARM64_SYS_REG(3, 3, 14, 13, 2),
ARM64_SYS_REG(3, 3, 14, 13, 3),
ARM64_SYS_REG(3, 3, 14, 13, 4),
ARM64_SYS_REG(3, 3, 14, 13, 5),
ARM64_SYS_REG(3, 3, 14, 13, 6),
ARM64_SYS_REG(3, 3, 14, 13, 7),
ARM64_SYS_REG(3, 3, 14, 14, 0),
ARM64_SYS_REG(3, 3, 14, 14, 1),
ARM64_SYS_REG(3, 3, 14, 14, 2),
ARM64_SYS_REG(3, 3, 14, 14, 3),
ARM64_SYS_REG(3, 3, 14, 14, 4),
ARM64_SYS_REG(3, 3, 14, 14, 5),
ARM64_SYS_REG(3, 3, 14, 14, 6),
ARM64_SYS_REG(3, 3, 14, 14, 7),
ARM64_SYS_REG(3, 3, 14, 15, 0),
ARM64_SYS_REG(3, 3, 14, 15, 1),
ARM64_SYS_REG(3, 3, 14, 15, 2),
ARM64_SYS_REG(3, 3, 14, 15, 3),
ARM64_SYS_REG(3, 3, 14, 15, 4),
ARM64_SYS_REG(3, 3, 14, 15, 5),
ARM64_SYS_REG(3, 3, 14, 15, 6),
ARM64_SYS_REG(3, 3, 14, 15, 7), /* PMCCFILTR_EL0 */
ARM64_SYS_REG(3, 4, 3, 0, 0), /* DACR32_EL2 */
ARM64_SYS_REG(3, 4, 5, 0, 1), /* IFSR32_EL2 */
ARM64_SYS_REG(3, 4, 5, 3, 0), /* FPEXC32_EL2 */
};
static __u64 base_regs_n = ARRAY_SIZE(base_regs);
static __u64 vregs[] = {
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[1]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[2]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[3]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[4]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[5]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[6]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[7]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[8]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[9]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[10]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[11]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[12]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[13]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[14]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[15]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[16]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[17]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[18]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[19]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[20]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[21]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[22]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[23]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[24]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[25]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[26]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[27]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[28]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[29]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[30]),
KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]),
};
static __u64 vregs_n = ARRAY_SIZE(vregs);
static __u64 sve_regs[] = {
KVM_REG_ARM64_SVE_VLS,
KVM_REG_ARM64_SVE_ZREG(0, 0),
KVM_REG_ARM64_SVE_ZREG(1, 0),
KVM_REG_ARM64_SVE_ZREG(2, 0),
KVM_REG_ARM64_SVE_ZREG(3, 0),
KVM_REG_ARM64_SVE_ZREG(4, 0),
KVM_REG_ARM64_SVE_ZREG(5, 0),
KVM_REG_ARM64_SVE_ZREG(6, 0),
KVM_REG_ARM64_SVE_ZREG(7, 0),
KVM_REG_ARM64_SVE_ZREG(8, 0),
KVM_REG_ARM64_SVE_ZREG(9, 0),
KVM_REG_ARM64_SVE_ZREG(10, 0),
KVM_REG_ARM64_SVE_ZREG(11, 0),
KVM_REG_ARM64_SVE_ZREG(12, 0),
KVM_REG_ARM64_SVE_ZREG(13, 0),
KVM_REG_ARM64_SVE_ZREG(14, 0),
KVM_REG_ARM64_SVE_ZREG(15, 0),
KVM_REG_ARM64_SVE_ZREG(16, 0),
KVM_REG_ARM64_SVE_ZREG(17, 0),
KVM_REG_ARM64_SVE_ZREG(18, 0),
KVM_REG_ARM64_SVE_ZREG(19, 0),
KVM_REG_ARM64_SVE_ZREG(20, 0),
KVM_REG_ARM64_SVE_ZREG(21, 0),
KVM_REG_ARM64_SVE_ZREG(22, 0),
KVM_REG_ARM64_SVE_ZREG(23, 0),
KVM_REG_ARM64_SVE_ZREG(24, 0),
KVM_REG_ARM64_SVE_ZREG(25, 0),
KVM_REG_ARM64_SVE_ZREG(26, 0),
KVM_REG_ARM64_SVE_ZREG(27, 0),
KVM_REG_ARM64_SVE_ZREG(28, 0),
KVM_REG_ARM64_SVE_ZREG(29, 0),
KVM_REG_ARM64_SVE_ZREG(30, 0),
KVM_REG_ARM64_SVE_ZREG(31, 0),
KVM_REG_ARM64_SVE_PREG(0, 0),
KVM_REG_ARM64_SVE_PREG(1, 0),
KVM_REG_ARM64_SVE_PREG(2, 0),
KVM_REG_ARM64_SVE_PREG(3, 0),
KVM_REG_ARM64_SVE_PREG(4, 0),
KVM_REG_ARM64_SVE_PREG(5, 0),
KVM_REG_ARM64_SVE_PREG(6, 0),
KVM_REG_ARM64_SVE_PREG(7, 0),
KVM_REG_ARM64_SVE_PREG(8, 0),
KVM_REG_ARM64_SVE_PREG(9, 0),
KVM_REG_ARM64_SVE_PREG(10, 0),
KVM_REG_ARM64_SVE_PREG(11, 0),
KVM_REG_ARM64_SVE_PREG(12, 0),
KVM_REG_ARM64_SVE_PREG(13, 0),
KVM_REG_ARM64_SVE_PREG(14, 0),
KVM_REG_ARM64_SVE_PREG(15, 0),
KVM_REG_ARM64_SVE_FFR(0),
ARM64_SYS_REG(3, 0, 1, 2, 0), /* ZCR_EL1 */
};
static __u64 sve_regs_n = ARRAY_SIZE(sve_regs);
static __u64 rejects_set[] = {
#ifdef REG_LIST_SVE
KVM_REG_ARM64_SVE_VLS,
#endif
};
static __u64 rejects_set_n = ARRAY_SIZE(rejects_set);