mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 02:04:19 +08:00
468ffde46d
The creation of the I/O clock domain requires some adjustments. Since the watchdog counters are clocked by the I/O clock, use its rate for timing calculations. Signed-off-by: David Daney <ddaney@caviumnetworks.com> Cc: Wim Van Sebroeck <wim@iguana.be> Cc: linux-watchdog@vger.kernel.org Patchwork: http://patchwork.linux-mips.org/patch/1659/ Acked-by: Wim Van Sebroeck <wim@iguana.be> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
747 lines
19 KiB
C
747 lines
19 KiB
C
/*
|
|
* Octeon Watchdog driver
|
|
*
|
|
* Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
|
|
*
|
|
* Some parts derived from wdt.c
|
|
*
|
|
* (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
|
|
* warranty for any of this software. This material is provided
|
|
* "AS-IS" and at no charge.
|
|
*
|
|
* (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
*
|
|
* The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
|
|
* For most systems this is less than 10 seconds, so to allow for
|
|
* software to request longer watchdog heartbeats, we maintain software
|
|
* counters to count multiples of the base rate. If the system locks
|
|
* up in such a manner that we can not run the software counters, the
|
|
* only result is a watchdog reset sooner than was requested. But
|
|
* that is OK, because in this case userspace would likely not be able
|
|
* to do anything anyhow.
|
|
*
|
|
* The hardware watchdog interval we call the period. The OCTEON
|
|
* watchdog goes through several stages, after the first period an
|
|
* irq is asserted, then if it is not reset, after the next period NMI
|
|
* is asserted, then after an additional period a chip wide soft reset.
|
|
* So for the software counters, we reset watchdog after each period
|
|
* and decrement the counter. But for the last two periods we need to
|
|
* let the watchdog progress to the NMI stage so we disable the irq
|
|
* and let it proceed. Once in the NMI, we print the register state
|
|
* to the serial port and then wait for the reset.
|
|
*
|
|
* A watchdog is maintained for each CPU in the system, that way if
|
|
* one CPU suffers a lockup, we also get a register dump and reset.
|
|
* The userspace ping resets the watchdog on all CPUs.
|
|
*
|
|
* Before userspace opens the watchdog device, we still run the
|
|
* watchdogs to catch any lockups that may be kernel related.
|
|
*
|
|
*/
|
|
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/watchdog.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/uasm.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
|
|
/* The count needed to achieve timeout_sec. */
|
|
static unsigned int timeout_cnt;
|
|
|
|
/* The maximum period supported. */
|
|
static unsigned int max_timeout_sec;
|
|
|
|
/* The current period. */
|
|
static unsigned int timeout_sec;
|
|
|
|
/* Set to non-zero when userspace countdown mode active */
|
|
static int do_coundown;
|
|
static unsigned int countdown_reset;
|
|
static unsigned int per_cpu_countdown[NR_CPUS];
|
|
|
|
static cpumask_t irq_enabled_cpus;
|
|
|
|
#define WD_TIMO 60 /* Default heartbeat = 60 seconds */
|
|
|
|
static int heartbeat = WD_TIMO;
|
|
module_param(heartbeat, int, S_IRUGO);
|
|
MODULE_PARM_DESC(heartbeat,
|
|
"Watchdog heartbeat in seconds. (0 < heartbeat, default="
|
|
__MODULE_STRING(WD_TIMO) ")");
|
|
|
|
static int nowayout = WATCHDOG_NOWAYOUT;
|
|
module_param(nowayout, int, S_IRUGO);
|
|
MODULE_PARM_DESC(nowayout,
|
|
"Watchdog cannot be stopped once started (default="
|
|
__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
|
|
|
|
static unsigned long octeon_wdt_is_open;
|
|
static char expect_close;
|
|
|
|
static u32 __initdata nmi_stage1_insns[64];
|
|
/* We need one branch and therefore one relocation per target label. */
|
|
static struct uasm_label __initdata labels[5];
|
|
static struct uasm_reloc __initdata relocs[5];
|
|
|
|
enum lable_id {
|
|
label_enter_bootloader = 1
|
|
};
|
|
|
|
/* Some CP0 registers */
|
|
#define K0 26
|
|
#define C0_CVMMEMCTL 11, 7
|
|
#define C0_STATUS 12, 0
|
|
#define C0_EBASE 15, 1
|
|
#define C0_DESAVE 31, 0
|
|
|
|
void octeon_wdt_nmi_stage2(void);
|
|
|
|
static void __init octeon_wdt_build_stage1(void)
|
|
{
|
|
int i;
|
|
int len;
|
|
u32 *p = nmi_stage1_insns;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
#endif
|
|
|
|
/*
|
|
* For the next few instructions running the debugger may
|
|
* cause corruption of k0 in the saved registers. Since we're
|
|
* about to crash, nobody probably cares.
|
|
*
|
|
* Save K0 into the debug scratch register
|
|
*/
|
|
uasm_i_dmtc0(&p, K0, C0_DESAVE);
|
|
|
|
uasm_i_mfc0(&p, K0, C0_STATUS);
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
|
|
#endif
|
|
/* Force 64-bit addressing enabled */
|
|
uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
|
|
uasm_i_mtc0(&p, K0, C0_STATUS);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
uasm_i_mfc0(&p, K0, C0_EBASE);
|
|
/* Coreid number in K0 */
|
|
uasm_i_andi(&p, K0, K0, 0xf);
|
|
/* 8 * coreid in bits 16-31 */
|
|
uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
|
|
uasm_i_ori(&p, K0, K0, 0x8001);
|
|
uasm_i_dsll_safe(&p, K0, K0, 16);
|
|
uasm_i_ori(&p, K0, K0, 0x0700);
|
|
uasm_i_drotr_safe(&p, K0, K0, 32);
|
|
/*
|
|
* Should result in: 0x8001,0700,0000,8*coreid which is
|
|
* CVMX_CIU_WDOGX(coreid) - 0x0500
|
|
*
|
|
* Now ld K0, CVMX_CIU_WDOGX(coreid)
|
|
*/
|
|
uasm_i_ld(&p, K0, 0x500, K0);
|
|
/*
|
|
* If bit one set handle the NMI as a watchdog event.
|
|
* otherwise transfer control to bootloader.
|
|
*/
|
|
uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
|
|
uasm_i_nop(&p);
|
|
#endif
|
|
|
|
/* Clear Dcache so cvmseg works right. */
|
|
uasm_i_cache(&p, 1, 0, 0);
|
|
|
|
/* Use K0 to do a read/modify/write of CVMMEMCTL */
|
|
uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
|
|
/* Clear out the size of CVMSEG */
|
|
uasm_i_dins(&p, K0, 0, 0, 6);
|
|
/* Set CVMSEG to its largest value */
|
|
uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
|
|
/* Store the CVMMEMCTL value */
|
|
uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
|
|
|
|
/* Load the address of the second stage handler */
|
|
UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
|
|
uasm_i_jr(&p, K0);
|
|
uasm_i_dmfc0(&p, K0, C0_DESAVE);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
uasm_build_label(&l, p, label_enter_bootloader);
|
|
/* Jump to the bootloader and restore K0 */
|
|
UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
|
|
uasm_i_jr(&p, K0);
|
|
uasm_i_dmfc0(&p, K0, C0_DESAVE);
|
|
#endif
|
|
uasm_resolve_relocs(relocs, labels);
|
|
|
|
len = (int)(p - nmi_stage1_insns);
|
|
pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);
|
|
|
|
pr_debug("\t.set push\n");
|
|
pr_debug("\t.set noreorder\n");
|
|
for (i = 0; i < len; i++)
|
|
pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
|
|
pr_debug("\t.set pop\n");
|
|
|
|
if (len > 32)
|
|
panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
|
|
}
|
|
|
|
static int cpu2core(int cpu)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return cpu_logical_map(cpu);
|
|
#else
|
|
return cvmx_get_core_num();
|
|
#endif
|
|
}
|
|
|
|
static int core2cpu(int coreid)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return cpu_number_map(coreid);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Poke the watchdog when an interrupt is received
|
|
*
|
|
* @cpl:
|
|
* @dev_id:
|
|
*
|
|
* Returns
|
|
*/
|
|
static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
|
|
{
|
|
unsigned int core = cvmx_get_core_num();
|
|
int cpu = core2cpu(core);
|
|
|
|
if (do_coundown) {
|
|
if (per_cpu_countdown[cpu] > 0) {
|
|
/* We're alive, poke the watchdog */
|
|
cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
|
|
per_cpu_countdown[cpu]--;
|
|
} else {
|
|
/* Bad news, you are about to reboot. */
|
|
disable_irq_nosync(cpl);
|
|
cpumask_clear_cpu(cpu, &irq_enabled_cpus);
|
|
}
|
|
} else {
|
|
/* Not open, just ping away... */
|
|
cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* From setup.c */
|
|
extern int prom_putchar(char c);
|
|
|
|
/**
|
|
* Write a string to the uart
|
|
*
|
|
* @str: String to write
|
|
*/
|
|
static void octeon_wdt_write_string(const char *str)
|
|
{
|
|
/* Just loop writing one byte at a time */
|
|
while (*str)
|
|
prom_putchar(*str++);
|
|
}
|
|
|
|
/**
|
|
* Write a hex number out of the uart
|
|
*
|
|
* @value: Number to display
|
|
* @digits: Number of digits to print (1 to 16)
|
|
*/
|
|
static void octeon_wdt_write_hex(u64 value, int digits)
|
|
{
|
|
int d;
|
|
int v;
|
|
for (d = 0; d < digits; d++) {
|
|
v = (value >> ((digits - d - 1) * 4)) & 0xf;
|
|
if (v >= 10)
|
|
prom_putchar('a' + v - 10);
|
|
else
|
|
prom_putchar('0' + v);
|
|
}
|
|
}
|
|
|
|
const char *reg_name[] = {
|
|
"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
|
|
};
|
|
|
|
/**
|
|
* NMI stage 3 handler. NMIs are handled in the following manner:
|
|
* 1) The first NMI handler enables CVMSEG and transfers from
|
|
* the bootbus region into normal memory. It is careful to not
|
|
* destroy any registers.
|
|
* 2) The second stage handler uses CVMSEG to save the registers
|
|
* and create a stack for C code. It then calls the third level
|
|
* handler with one argument, a pointer to the register values.
|
|
* 3) The third, and final, level handler is the following C
|
|
* function that prints out some useful infomration.
|
|
*
|
|
* @reg: Pointer to register state before the NMI
|
|
*/
|
|
void octeon_wdt_nmi_stage3(u64 reg[32])
|
|
{
|
|
u64 i;
|
|
|
|
unsigned int coreid = cvmx_get_core_num();
|
|
/*
|
|
* Save status and cause early to get them before any changes
|
|
* might happen.
|
|
*/
|
|
u64 cp0_cause = read_c0_cause();
|
|
u64 cp0_status = read_c0_status();
|
|
u64 cp0_error_epc = read_c0_errorepc();
|
|
u64 cp0_epc = read_c0_epc();
|
|
|
|
/* Delay so output from all cores output is not jumbled together. */
|
|
__delay(100000000ull * coreid);
|
|
|
|
octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
|
|
octeon_wdt_write_hex(coreid, 1);
|
|
octeon_wdt_write_string(" ***\r\n");
|
|
for (i = 0; i < 32; i++) {
|
|
octeon_wdt_write_string("\t");
|
|
octeon_wdt_write_string(reg_name[i]);
|
|
octeon_wdt_write_string("\t0x");
|
|
octeon_wdt_write_hex(reg[i], 16);
|
|
if (i & 1)
|
|
octeon_wdt_write_string("\r\n");
|
|
}
|
|
octeon_wdt_write_string("\terr_epc\t0x");
|
|
octeon_wdt_write_hex(cp0_error_epc, 16);
|
|
|
|
octeon_wdt_write_string("\tepc\t0x");
|
|
octeon_wdt_write_hex(cp0_epc, 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
|
|
octeon_wdt_write_string("\tstatus\t0x");
|
|
octeon_wdt_write_hex(cp0_status, 16);
|
|
octeon_wdt_write_string("\tcause\t0x");
|
|
octeon_wdt_write_hex(cp0_cause, 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
|
|
octeon_wdt_write_string("\tsum0\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
|
|
octeon_wdt_write_string("\ten0\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
|
|
octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
|
|
}
|
|
|
|
static void octeon_wdt_disable_interrupt(int cpu)
|
|
{
|
|
unsigned int core;
|
|
unsigned int irq;
|
|
union cvmx_ciu_wdogx ciu_wdog;
|
|
|
|
core = cpu2core(cpu);
|
|
|
|
irq = OCTEON_IRQ_WDOG0 + core;
|
|
|
|
/* Poke the watchdog to clear out its state */
|
|
cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
|
|
|
|
/* Disable the hardware. */
|
|
ciu_wdog.u64 = 0;
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
|
|
|
|
free_irq(irq, octeon_wdt_poke_irq);
|
|
}
|
|
|
|
static void octeon_wdt_setup_interrupt(int cpu)
|
|
{
|
|
unsigned int core;
|
|
unsigned int irq;
|
|
union cvmx_ciu_wdogx ciu_wdog;
|
|
|
|
core = cpu2core(cpu);
|
|
|
|
/* Disable it before doing anything with the interrupts. */
|
|
ciu_wdog.u64 = 0;
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
|
|
|
|
per_cpu_countdown[cpu] = countdown_reset;
|
|
|
|
irq = OCTEON_IRQ_WDOG0 + core;
|
|
|
|
if (request_irq(irq, octeon_wdt_poke_irq,
|
|
IRQF_DISABLED, "octeon_wdt", octeon_wdt_poke_irq))
|
|
panic("octeon_wdt: Couldn't obtain irq %d", irq);
|
|
|
|
cpumask_set_cpu(cpu, &irq_enabled_cpus);
|
|
|
|
/* Poke the watchdog to clear out its state */
|
|
cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
|
|
|
|
/* Finally enable the watchdog now that all handlers are installed */
|
|
ciu_wdog.u64 = 0;
|
|
ciu_wdog.s.len = timeout_cnt;
|
|
ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
|
|
}
|
|
|
|
static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
|
|
switch (action) {
|
|
case CPU_DOWN_PREPARE:
|
|
octeon_wdt_disable_interrupt(cpu);
|
|
break;
|
|
case CPU_ONLINE:
|
|
case CPU_DOWN_FAILED:
|
|
octeon_wdt_setup_interrupt(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static void octeon_wdt_ping(void)
|
|
{
|
|
int cpu;
|
|
int coreid;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
coreid = cpu2core(cpu);
|
|
cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
|
|
per_cpu_countdown[cpu] = countdown_reset;
|
|
if ((countdown_reset || !do_coundown) &&
|
|
!cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
|
|
/* We have to enable the irq */
|
|
int irq = OCTEON_IRQ_WDOG0 + coreid;
|
|
enable_irq(irq);
|
|
cpumask_set_cpu(cpu, &irq_enabled_cpus);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void octeon_wdt_calc_parameters(int t)
|
|
{
|
|
unsigned int periods;
|
|
|
|
timeout_sec = max_timeout_sec;
|
|
|
|
|
|
/*
|
|
* Find the largest interrupt period, that can evenly divide
|
|
* the requested heartbeat time.
|
|
*/
|
|
while ((t % timeout_sec) != 0)
|
|
timeout_sec--;
|
|
|
|
periods = t / timeout_sec;
|
|
|
|
/*
|
|
* The last two periods are after the irq is disabled, and
|
|
* then to the nmi, so we subtract them off.
|
|
*/
|
|
|
|
countdown_reset = periods > 2 ? periods - 2 : 0;
|
|
heartbeat = t;
|
|
timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
|
|
}
|
|
|
|
static int octeon_wdt_set_heartbeat(int t)
|
|
{
|
|
int cpu;
|
|
int coreid;
|
|
union cvmx_ciu_wdogx ciu_wdog;
|
|
|
|
if (t <= 0)
|
|
return -1;
|
|
|
|
octeon_wdt_calc_parameters(t);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
coreid = cpu2core(cpu);
|
|
cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
|
|
ciu_wdog.u64 = 0;
|
|
ciu_wdog.s.len = timeout_cnt;
|
|
ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
|
|
cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
|
|
}
|
|
octeon_wdt_ping(); /* Get the irqs back on. */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* octeon_wdt_write:
|
|
* @file: file handle to the watchdog
|
|
* @buf: buffer to write (unused as data does not matter here
|
|
* @count: count of bytes
|
|
* @ppos: pointer to the position to write. No seeks allowed
|
|
*
|
|
* A write to a watchdog device is defined as a keepalive signal. Any
|
|
* write of data will do, as we we don't define content meaning.
|
|
*/
|
|
|
|
static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
if (count) {
|
|
if (!nowayout) {
|
|
size_t i;
|
|
|
|
/* In case it was set long ago */
|
|
expect_close = 0;
|
|
|
|
for (i = 0; i != count; i++) {
|
|
char c;
|
|
if (get_user(c, buf + i))
|
|
return -EFAULT;
|
|
if (c == 'V')
|
|
expect_close = 1;
|
|
}
|
|
}
|
|
octeon_wdt_ping();
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* octeon_wdt_ioctl:
|
|
* @file: file handle to the device
|
|
* @cmd: watchdog command
|
|
* @arg: argument pointer
|
|
*
|
|
* The watchdog API defines a common set of functions for all
|
|
* watchdogs according to their available features. We only
|
|
* actually usefully support querying capabilities and setting
|
|
* the timeout.
|
|
*/
|
|
|
|
static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
void __user *argp = (void __user *)arg;
|
|
int __user *p = argp;
|
|
int new_heartbeat;
|
|
|
|
static struct watchdog_info ident = {
|
|
.options = WDIOF_SETTIMEOUT|
|
|
WDIOF_MAGICCLOSE|
|
|
WDIOF_KEEPALIVEPING,
|
|
.firmware_version = 1,
|
|
.identity = "OCTEON",
|
|
};
|
|
|
|
switch (cmd) {
|
|
case WDIOC_GETSUPPORT:
|
|
return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
|
|
case WDIOC_GETSTATUS:
|
|
case WDIOC_GETBOOTSTATUS:
|
|
return put_user(0, p);
|
|
case WDIOC_KEEPALIVE:
|
|
octeon_wdt_ping();
|
|
return 0;
|
|
case WDIOC_SETTIMEOUT:
|
|
if (get_user(new_heartbeat, p))
|
|
return -EFAULT;
|
|
if (octeon_wdt_set_heartbeat(new_heartbeat))
|
|
return -EINVAL;
|
|
/* Fall through. */
|
|
case WDIOC_GETTIMEOUT:
|
|
return put_user(heartbeat, p);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* octeon_wdt_open:
|
|
* @inode: inode of device
|
|
* @file: file handle to device
|
|
*
|
|
* The watchdog device has been opened. The watchdog device is single
|
|
* open and on opening we do a ping to reset the counters.
|
|
*/
|
|
|
|
static int octeon_wdt_open(struct inode *inode, struct file *file)
|
|
{
|
|
if (test_and_set_bit(0, &octeon_wdt_is_open))
|
|
return -EBUSY;
|
|
/*
|
|
* Activate
|
|
*/
|
|
octeon_wdt_ping();
|
|
do_coundown = 1;
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
/**
|
|
* octeon_wdt_release:
|
|
* @inode: inode to board
|
|
* @file: file handle to board
|
|
*
|
|
* The watchdog has a configurable API. There is a religious dispute
|
|
* between people who want their watchdog to be able to shut down and
|
|
* those who want to be sure if the watchdog manager dies the machine
|
|
* reboots. In the former case we disable the counters, in the latter
|
|
* case you have to open it again very soon.
|
|
*/
|
|
|
|
static int octeon_wdt_release(struct inode *inode, struct file *file)
|
|
{
|
|
if (expect_close) {
|
|
do_coundown = 0;
|
|
octeon_wdt_ping();
|
|
} else {
|
|
pr_crit("octeon_wdt: WDT device closed unexpectedly. WDT will not stop!\n");
|
|
}
|
|
clear_bit(0, &octeon_wdt_is_open);
|
|
expect_close = 0;
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations octeon_wdt_fops = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = no_llseek,
|
|
.write = octeon_wdt_write,
|
|
.unlocked_ioctl = octeon_wdt_ioctl,
|
|
.open = octeon_wdt_open,
|
|
.release = octeon_wdt_release,
|
|
};
|
|
|
|
static struct miscdevice octeon_wdt_miscdev = {
|
|
.minor = WATCHDOG_MINOR,
|
|
.name = "watchdog",
|
|
.fops = &octeon_wdt_fops,
|
|
};
|
|
|
|
static struct notifier_block octeon_wdt_cpu_notifier = {
|
|
.notifier_call = octeon_wdt_cpu_callback,
|
|
};
|
|
|
|
|
|
/**
|
|
* Module/ driver initialization.
|
|
*
|
|
* Returns Zero on success
|
|
*/
|
|
static int __init octeon_wdt_init(void)
|
|
{
|
|
int i;
|
|
int ret;
|
|
int cpu;
|
|
u64 *ptr;
|
|
|
|
/*
|
|
* Watchdog time expiration length = The 16 bits of LEN
|
|
* represent the most significant bits of a 24 bit decrementer
|
|
* that decrements every 256 cycles.
|
|
*
|
|
* Try for a timeout of 5 sec, if that fails a smaller number
|
|
* of even seconds,
|
|
*/
|
|
max_timeout_sec = 6;
|
|
do {
|
|
max_timeout_sec--;
|
|
timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
|
|
} while (timeout_cnt > 65535);
|
|
|
|
BUG_ON(timeout_cnt == 0);
|
|
|
|
octeon_wdt_calc_parameters(heartbeat);
|
|
|
|
pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);
|
|
|
|
ret = misc_register(&octeon_wdt_miscdev);
|
|
if (ret) {
|
|
pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
|
|
WATCHDOG_MINOR, ret);
|
|
goto out;
|
|
}
|
|
|
|
/* Build the NMI handler ... */
|
|
octeon_wdt_build_stage1();
|
|
|
|
/* ... and install it. */
|
|
ptr = (u64 *) nmi_stage1_insns;
|
|
for (i = 0; i < 16; i++) {
|
|
cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
|
|
cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
|
|
}
|
|
cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
|
|
|
|
cpumask_clear(&irq_enabled_cpus);
|
|
|
|
for_each_online_cpu(cpu)
|
|
octeon_wdt_setup_interrupt(cpu);
|
|
|
|
register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Module / driver shutdown
|
|
*/
|
|
static void __exit octeon_wdt_cleanup(void)
|
|
{
|
|
int cpu;
|
|
|
|
misc_deregister(&octeon_wdt_miscdev);
|
|
|
|
unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
int core = cpu2core(cpu);
|
|
/* Disable the watchdog */
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
|
|
/* Free the interrupt handler */
|
|
free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
|
|
}
|
|
/*
|
|
* Disable the boot-bus memory, the code it points to is soon
|
|
* to go missing.
|
|
*/
|
|
cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
|
|
MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
|
|
module_init(octeon_wdt_init);
|
|
module_exit(octeon_wdt_cleanup);
|