mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-21 18:14:48 +08:00
5ff6e2fff8
If 'aggr_interval' is smaller than 'sample_interval', max_nr_accesses in
damon_nr_accesses_to_accesses_bp() becomes zero which leads to divide
error, let's validate the values of them in damon_set_attrs() to fix it,
which similar to others attrs check.
Link: https://lkml.kernel.org/r/20230527032101.167788-1-wangkefeng.wang@huawei.com
Fixes: 2f5bef5a59
("mm/damon/core: update monitoring results for new monitoring attributes")
Reported-by: syzbot+841a46899768ec7bec67@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=841a46899768ec7bec67
Link: https://lore.kernel.org/damon/00000000000055fc4e05fc975bc2@google.com/
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1471 lines
36 KiB
C
1471 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Data Access Monitor
|
|
*
|
|
* Author: SeongJae Park <sjpark@amazon.de>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "damon: " fmt
|
|
|
|
#include <linux/damon.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/damon.h>
|
|
|
|
#ifdef CONFIG_DAMON_KUNIT_TEST
|
|
#undef DAMON_MIN_REGION
|
|
#define DAMON_MIN_REGION 1
|
|
#endif
|
|
|
|
static DEFINE_MUTEX(damon_lock);
|
|
static int nr_running_ctxs;
|
|
static bool running_exclusive_ctxs;
|
|
|
|
static DEFINE_MUTEX(damon_ops_lock);
|
|
static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
|
|
|
|
static struct kmem_cache *damon_region_cache __ro_after_init;
|
|
|
|
/* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
|
|
static bool __damon_is_registered_ops(enum damon_ops_id id)
|
|
{
|
|
struct damon_operations empty_ops = {};
|
|
|
|
if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* damon_is_registered_ops() - Check if a given damon_operations is registered.
|
|
* @id: Id of the damon_operations to check if registered.
|
|
*
|
|
* Return: true if the ops is set, false otherwise.
|
|
*/
|
|
bool damon_is_registered_ops(enum damon_ops_id id)
|
|
{
|
|
bool registered;
|
|
|
|
if (id >= NR_DAMON_OPS)
|
|
return false;
|
|
mutex_lock(&damon_ops_lock);
|
|
registered = __damon_is_registered_ops(id);
|
|
mutex_unlock(&damon_ops_lock);
|
|
return registered;
|
|
}
|
|
|
|
/**
|
|
* damon_register_ops() - Register a monitoring operations set to DAMON.
|
|
* @ops: monitoring operations set to register.
|
|
*
|
|
* This function registers a monitoring operations set of valid &struct
|
|
* damon_operations->id so that others can find and use them later.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_register_ops(struct damon_operations *ops)
|
|
{
|
|
int err = 0;
|
|
|
|
if (ops->id >= NR_DAMON_OPS)
|
|
return -EINVAL;
|
|
mutex_lock(&damon_ops_lock);
|
|
/* Fail for already registered ops */
|
|
if (__damon_is_registered_ops(ops->id)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
damon_registered_ops[ops->id] = *ops;
|
|
out:
|
|
mutex_unlock(&damon_ops_lock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* damon_select_ops() - Select a monitoring operations to use with the context.
|
|
* @ctx: monitoring context to use the operations.
|
|
* @id: id of the registered monitoring operations to select.
|
|
*
|
|
* This function finds registered monitoring operations set of @id and make
|
|
* @ctx to use it.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
|
|
{
|
|
int err = 0;
|
|
|
|
if (id >= NR_DAMON_OPS)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&damon_ops_lock);
|
|
if (!__damon_is_registered_ops(id))
|
|
err = -EINVAL;
|
|
else
|
|
ctx->ops = damon_registered_ops[id];
|
|
mutex_unlock(&damon_ops_lock);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Construct a damon_region struct
|
|
*
|
|
* Returns the pointer to the new struct if success, or NULL otherwise
|
|
*/
|
|
struct damon_region *damon_new_region(unsigned long start, unsigned long end)
|
|
{
|
|
struct damon_region *region;
|
|
|
|
region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
|
|
if (!region)
|
|
return NULL;
|
|
|
|
region->ar.start = start;
|
|
region->ar.end = end;
|
|
region->nr_accesses = 0;
|
|
INIT_LIST_HEAD(®ion->list);
|
|
|
|
region->age = 0;
|
|
region->last_nr_accesses = 0;
|
|
|
|
return region;
|
|
}
|
|
|
|
void damon_add_region(struct damon_region *r, struct damon_target *t)
|
|
{
|
|
list_add_tail(&r->list, &t->regions_list);
|
|
t->nr_regions++;
|
|
}
|
|
|
|
static void damon_del_region(struct damon_region *r, struct damon_target *t)
|
|
{
|
|
list_del(&r->list);
|
|
t->nr_regions--;
|
|
}
|
|
|
|
static void damon_free_region(struct damon_region *r)
|
|
{
|
|
kmem_cache_free(damon_region_cache, r);
|
|
}
|
|
|
|
void damon_destroy_region(struct damon_region *r, struct damon_target *t)
|
|
{
|
|
damon_del_region(r, t);
|
|
damon_free_region(r);
|
|
}
|
|
|
|
/*
|
|
* Check whether a region is intersecting an address range
|
|
*
|
|
* Returns true if it is.
|
|
*/
|
|
static bool damon_intersect(struct damon_region *r,
|
|
struct damon_addr_range *re)
|
|
{
|
|
return !(r->ar.end <= re->start || re->end <= r->ar.start);
|
|
}
|
|
|
|
/*
|
|
* Fill holes in regions with new regions.
|
|
*/
|
|
static int damon_fill_regions_holes(struct damon_region *first,
|
|
struct damon_region *last, struct damon_target *t)
|
|
{
|
|
struct damon_region *r = first;
|
|
|
|
damon_for_each_region_from(r, t) {
|
|
struct damon_region *next, *newr;
|
|
|
|
if (r == last)
|
|
break;
|
|
next = damon_next_region(r);
|
|
if (r->ar.end != next->ar.start) {
|
|
newr = damon_new_region(r->ar.end, next->ar.start);
|
|
if (!newr)
|
|
return -ENOMEM;
|
|
damon_insert_region(newr, r, next, t);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* damon_set_regions() - Set regions of a target for given address ranges.
|
|
* @t: the given target.
|
|
* @ranges: array of new monitoring target ranges.
|
|
* @nr_ranges: length of @ranges.
|
|
*
|
|
* This function adds new regions to, or modify existing regions of a
|
|
* monitoring target to fit in specific ranges.
|
|
*
|
|
* Return: 0 if success, or negative error code otherwise.
|
|
*/
|
|
int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
|
|
unsigned int nr_ranges)
|
|
{
|
|
struct damon_region *r, *next;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
/* Remove regions which are not in the new ranges */
|
|
damon_for_each_region_safe(r, next, t) {
|
|
for (i = 0; i < nr_ranges; i++) {
|
|
if (damon_intersect(r, &ranges[i]))
|
|
break;
|
|
}
|
|
if (i == nr_ranges)
|
|
damon_destroy_region(r, t);
|
|
}
|
|
|
|
r = damon_first_region(t);
|
|
/* Add new regions or resize existing regions to fit in the ranges */
|
|
for (i = 0; i < nr_ranges; i++) {
|
|
struct damon_region *first = NULL, *last, *newr;
|
|
struct damon_addr_range *range;
|
|
|
|
range = &ranges[i];
|
|
/* Get the first/last regions intersecting with the range */
|
|
damon_for_each_region_from(r, t) {
|
|
if (damon_intersect(r, range)) {
|
|
if (!first)
|
|
first = r;
|
|
last = r;
|
|
}
|
|
if (r->ar.start >= range->end)
|
|
break;
|
|
}
|
|
if (!first) {
|
|
/* no region intersects with this range */
|
|
newr = damon_new_region(
|
|
ALIGN_DOWN(range->start,
|
|
DAMON_MIN_REGION),
|
|
ALIGN(range->end, DAMON_MIN_REGION));
|
|
if (!newr)
|
|
return -ENOMEM;
|
|
damon_insert_region(newr, damon_prev_region(r), r, t);
|
|
} else {
|
|
/* resize intersecting regions to fit in this range */
|
|
first->ar.start = ALIGN_DOWN(range->start,
|
|
DAMON_MIN_REGION);
|
|
last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
|
|
|
|
/* fill possible holes in the range */
|
|
err = damon_fill_regions_holes(first, last, t);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct damos_filter *damos_new_filter(enum damos_filter_type type,
|
|
bool matching)
|
|
{
|
|
struct damos_filter *filter;
|
|
|
|
filter = kmalloc(sizeof(*filter), GFP_KERNEL);
|
|
if (!filter)
|
|
return NULL;
|
|
filter->type = type;
|
|
filter->matching = matching;
|
|
return filter;
|
|
}
|
|
|
|
void damos_add_filter(struct damos *s, struct damos_filter *f)
|
|
{
|
|
list_add_tail(&f->list, &s->filters);
|
|
}
|
|
|
|
static void damos_del_filter(struct damos_filter *f)
|
|
{
|
|
list_del(&f->list);
|
|
}
|
|
|
|
static void damos_free_filter(struct damos_filter *f)
|
|
{
|
|
kfree(f);
|
|
}
|
|
|
|
void damos_destroy_filter(struct damos_filter *f)
|
|
{
|
|
damos_del_filter(f);
|
|
damos_free_filter(f);
|
|
}
|
|
|
|
/* initialize private fields of damos_quota and return the pointer */
|
|
static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
|
|
{
|
|
quota->total_charged_sz = 0;
|
|
quota->total_charged_ns = 0;
|
|
quota->esz = 0;
|
|
quota->charged_sz = 0;
|
|
quota->charged_from = 0;
|
|
quota->charge_target_from = NULL;
|
|
quota->charge_addr_from = 0;
|
|
return quota;
|
|
}
|
|
|
|
struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
|
|
enum damos_action action, struct damos_quota *quota,
|
|
struct damos_watermarks *wmarks)
|
|
{
|
|
struct damos *scheme;
|
|
|
|
scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
|
|
if (!scheme)
|
|
return NULL;
|
|
scheme->pattern = *pattern;
|
|
scheme->action = action;
|
|
INIT_LIST_HEAD(&scheme->filters);
|
|
scheme->stat = (struct damos_stat){};
|
|
INIT_LIST_HEAD(&scheme->list);
|
|
|
|
scheme->quota = *(damos_quota_init_priv(quota));
|
|
|
|
scheme->wmarks = *wmarks;
|
|
scheme->wmarks.activated = true;
|
|
|
|
return scheme;
|
|
}
|
|
|
|
void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
|
|
{
|
|
list_add_tail(&s->list, &ctx->schemes);
|
|
}
|
|
|
|
static void damon_del_scheme(struct damos *s)
|
|
{
|
|
list_del(&s->list);
|
|
}
|
|
|
|
static void damon_free_scheme(struct damos *s)
|
|
{
|
|
kfree(s);
|
|
}
|
|
|
|
void damon_destroy_scheme(struct damos *s)
|
|
{
|
|
struct damos_filter *f, *next;
|
|
|
|
damos_for_each_filter_safe(f, next, s)
|
|
damos_destroy_filter(f);
|
|
damon_del_scheme(s);
|
|
damon_free_scheme(s);
|
|
}
|
|
|
|
/*
|
|
* Construct a damon_target struct
|
|
*
|
|
* Returns the pointer to the new struct if success, or NULL otherwise
|
|
*/
|
|
struct damon_target *damon_new_target(void)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
t = kmalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
return NULL;
|
|
|
|
t->pid = NULL;
|
|
t->nr_regions = 0;
|
|
INIT_LIST_HEAD(&t->regions_list);
|
|
INIT_LIST_HEAD(&t->list);
|
|
|
|
return t;
|
|
}
|
|
|
|
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
|
|
{
|
|
list_add_tail(&t->list, &ctx->adaptive_targets);
|
|
}
|
|
|
|
bool damon_targets_empty(struct damon_ctx *ctx)
|
|
{
|
|
return list_empty(&ctx->adaptive_targets);
|
|
}
|
|
|
|
static void damon_del_target(struct damon_target *t)
|
|
{
|
|
list_del(&t->list);
|
|
}
|
|
|
|
void damon_free_target(struct damon_target *t)
|
|
{
|
|
struct damon_region *r, *next;
|
|
|
|
damon_for_each_region_safe(r, next, t)
|
|
damon_free_region(r);
|
|
kfree(t);
|
|
}
|
|
|
|
void damon_destroy_target(struct damon_target *t)
|
|
{
|
|
damon_del_target(t);
|
|
damon_free_target(t);
|
|
}
|
|
|
|
unsigned int damon_nr_regions(struct damon_target *t)
|
|
{
|
|
return t->nr_regions;
|
|
}
|
|
|
|
struct damon_ctx *damon_new_ctx(void)
|
|
{
|
|
struct damon_ctx *ctx;
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return NULL;
|
|
|
|
ctx->attrs.sample_interval = 5 * 1000;
|
|
ctx->attrs.aggr_interval = 100 * 1000;
|
|
ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
|
|
|
|
ktime_get_coarse_ts64(&ctx->last_aggregation);
|
|
ctx->last_ops_update = ctx->last_aggregation;
|
|
|
|
mutex_init(&ctx->kdamond_lock);
|
|
|
|
ctx->attrs.min_nr_regions = 10;
|
|
ctx->attrs.max_nr_regions = 1000;
|
|
|
|
INIT_LIST_HEAD(&ctx->adaptive_targets);
|
|
INIT_LIST_HEAD(&ctx->schemes);
|
|
|
|
return ctx;
|
|
}
|
|
|
|
static void damon_destroy_targets(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t, *next_t;
|
|
|
|
if (ctx->ops.cleanup) {
|
|
ctx->ops.cleanup(ctx);
|
|
return;
|
|
}
|
|
|
|
damon_for_each_target_safe(t, next_t, ctx)
|
|
damon_destroy_target(t);
|
|
}
|
|
|
|
void damon_destroy_ctx(struct damon_ctx *ctx)
|
|
{
|
|
struct damos *s, *next_s;
|
|
|
|
damon_destroy_targets(ctx);
|
|
|
|
damon_for_each_scheme_safe(s, next_s, ctx)
|
|
damon_destroy_scheme(s);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
static unsigned int damon_age_for_new_attrs(unsigned int age,
|
|
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
|
|
{
|
|
return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
|
|
}
|
|
|
|
/* convert access ratio in bp (per 10,000) to nr_accesses */
|
|
static unsigned int damon_accesses_bp_to_nr_accesses(
|
|
unsigned int accesses_bp, struct damon_attrs *attrs)
|
|
{
|
|
unsigned int max_nr_accesses =
|
|
attrs->aggr_interval / attrs->sample_interval;
|
|
|
|
return accesses_bp * max_nr_accesses / 10000;
|
|
}
|
|
|
|
/* convert nr_accesses to access ratio in bp (per 10,000) */
|
|
static unsigned int damon_nr_accesses_to_accesses_bp(
|
|
unsigned int nr_accesses, struct damon_attrs *attrs)
|
|
{
|
|
unsigned int max_nr_accesses =
|
|
attrs->aggr_interval / attrs->sample_interval;
|
|
|
|
return nr_accesses * 10000 / max_nr_accesses;
|
|
}
|
|
|
|
static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
|
|
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
|
|
{
|
|
return damon_accesses_bp_to_nr_accesses(
|
|
damon_nr_accesses_to_accesses_bp(
|
|
nr_accesses, old_attrs),
|
|
new_attrs);
|
|
}
|
|
|
|
static void damon_update_monitoring_result(struct damon_region *r,
|
|
struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
|
|
{
|
|
r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
|
|
old_attrs, new_attrs);
|
|
r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
|
|
}
|
|
|
|
/*
|
|
* region->nr_accesses is the number of sampling intervals in the last
|
|
* aggregation interval that access to the region has found, and region->age is
|
|
* the number of aggregation intervals that its access pattern has maintained.
|
|
* For the reason, the real meaning of the two fields depend on current
|
|
* sampling interval and aggregation interval. This function updates
|
|
* ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
|
|
*/
|
|
static void damon_update_monitoring_results(struct damon_ctx *ctx,
|
|
struct damon_attrs *new_attrs)
|
|
{
|
|
struct damon_attrs *old_attrs = &ctx->attrs;
|
|
struct damon_target *t;
|
|
struct damon_region *r;
|
|
|
|
/* if any interval is zero, simply forgive conversion */
|
|
if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
|
|
!new_attrs->sample_interval ||
|
|
!new_attrs->aggr_interval)
|
|
return;
|
|
|
|
damon_for_each_target(t, ctx)
|
|
damon_for_each_region(r, t)
|
|
damon_update_monitoring_result(
|
|
r, old_attrs, new_attrs);
|
|
}
|
|
|
|
/**
|
|
* damon_set_attrs() - Set attributes for the monitoring.
|
|
* @ctx: monitoring context
|
|
* @attrs: monitoring attributes
|
|
*
|
|
* This function should not be called while the kdamond is running.
|
|
* Every time interval is in micro-seconds.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
|
|
{
|
|
if (attrs->min_nr_regions < 3)
|
|
return -EINVAL;
|
|
if (attrs->min_nr_regions > attrs->max_nr_regions)
|
|
return -EINVAL;
|
|
if (attrs->sample_interval > attrs->aggr_interval)
|
|
return -EINVAL;
|
|
|
|
damon_update_monitoring_results(ctx, attrs);
|
|
ctx->attrs = *attrs;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* damon_set_schemes() - Set data access monitoring based operation schemes.
|
|
* @ctx: monitoring context
|
|
* @schemes: array of the schemes
|
|
* @nr_schemes: number of entries in @schemes
|
|
*
|
|
* This function should not be called while the kdamond of the context is
|
|
* running.
|
|
*/
|
|
void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
|
|
ssize_t nr_schemes)
|
|
{
|
|
struct damos *s, *next;
|
|
ssize_t i;
|
|
|
|
damon_for_each_scheme_safe(s, next, ctx)
|
|
damon_destroy_scheme(s);
|
|
for (i = 0; i < nr_schemes; i++)
|
|
damon_add_scheme(ctx, schemes[i]);
|
|
}
|
|
|
|
/**
|
|
* damon_nr_running_ctxs() - Return number of currently running contexts.
|
|
*/
|
|
int damon_nr_running_ctxs(void)
|
|
{
|
|
int nr_ctxs;
|
|
|
|
mutex_lock(&damon_lock);
|
|
nr_ctxs = nr_running_ctxs;
|
|
mutex_unlock(&damon_lock);
|
|
|
|
return nr_ctxs;
|
|
}
|
|
|
|
/* Returns the size upper limit for each monitoring region */
|
|
static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
struct damon_region *r;
|
|
unsigned long sz = 0;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
damon_for_each_region(r, t)
|
|
sz += damon_sz_region(r);
|
|
}
|
|
|
|
if (ctx->attrs.min_nr_regions)
|
|
sz /= ctx->attrs.min_nr_regions;
|
|
if (sz < DAMON_MIN_REGION)
|
|
sz = DAMON_MIN_REGION;
|
|
|
|
return sz;
|
|
}
|
|
|
|
static int kdamond_fn(void *data);
|
|
|
|
/*
|
|
* __damon_start() - Starts monitoring with given context.
|
|
* @ctx: monitoring context
|
|
*
|
|
* This function should be called while damon_lock is hold.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
static int __damon_start(struct damon_ctx *ctx)
|
|
{
|
|
int err = -EBUSY;
|
|
|
|
mutex_lock(&ctx->kdamond_lock);
|
|
if (!ctx->kdamond) {
|
|
err = 0;
|
|
ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
|
|
nr_running_ctxs);
|
|
if (IS_ERR(ctx->kdamond)) {
|
|
err = PTR_ERR(ctx->kdamond);
|
|
ctx->kdamond = NULL;
|
|
}
|
|
}
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* damon_start() - Starts the monitorings for a given group of contexts.
|
|
* @ctxs: an array of the pointers for contexts to start monitoring
|
|
* @nr_ctxs: size of @ctxs
|
|
* @exclusive: exclusiveness of this contexts group
|
|
*
|
|
* This function starts a group of monitoring threads for a group of monitoring
|
|
* contexts. One thread per each context is created and run in parallel. The
|
|
* caller should handle synchronization between the threads by itself. If
|
|
* @exclusive is true and a group of threads that created by other
|
|
* 'damon_start()' call is currently running, this function does nothing but
|
|
* returns -EBUSY.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
|
|
{
|
|
int i;
|
|
int err = 0;
|
|
|
|
mutex_lock(&damon_lock);
|
|
if ((exclusive && nr_running_ctxs) ||
|
|
(!exclusive && running_exclusive_ctxs)) {
|
|
mutex_unlock(&damon_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
for (i = 0; i < nr_ctxs; i++) {
|
|
err = __damon_start(ctxs[i]);
|
|
if (err)
|
|
break;
|
|
nr_running_ctxs++;
|
|
}
|
|
if (exclusive && nr_running_ctxs)
|
|
running_exclusive_ctxs = true;
|
|
mutex_unlock(&damon_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* __damon_stop() - Stops monitoring of a given context.
|
|
* @ctx: monitoring context
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
static int __damon_stop(struct damon_ctx *ctx)
|
|
{
|
|
struct task_struct *tsk;
|
|
|
|
mutex_lock(&ctx->kdamond_lock);
|
|
tsk = ctx->kdamond;
|
|
if (tsk) {
|
|
get_task_struct(tsk);
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
kthread_stop(tsk);
|
|
put_task_struct(tsk);
|
|
return 0;
|
|
}
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
|
|
return -EPERM;
|
|
}
|
|
|
|
/**
|
|
* damon_stop() - Stops the monitorings for a given group of contexts.
|
|
* @ctxs: an array of the pointers for contexts to stop monitoring
|
|
* @nr_ctxs: size of @ctxs
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < nr_ctxs; i++) {
|
|
/* nr_running_ctxs is decremented in kdamond_fn */
|
|
err = __damon_stop(ctxs[i]);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* damon_check_reset_time_interval() - Check if a time interval is elapsed.
|
|
* @baseline: the time to check whether the interval has elapsed since
|
|
* @interval: the time interval (microseconds)
|
|
*
|
|
* See whether the given time interval has passed since the given baseline
|
|
* time. If so, it also updates the baseline to current time for next check.
|
|
*
|
|
* Return: true if the time interval has passed, or false otherwise.
|
|
*/
|
|
static bool damon_check_reset_time_interval(struct timespec64 *baseline,
|
|
unsigned long interval)
|
|
{
|
|
struct timespec64 now;
|
|
|
|
ktime_get_coarse_ts64(&now);
|
|
if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
|
|
interval * 1000)
|
|
return false;
|
|
*baseline = now;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check whether it is time to flush the aggregated information
|
|
*/
|
|
static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
|
|
{
|
|
return damon_check_reset_time_interval(&ctx->last_aggregation,
|
|
ctx->attrs.aggr_interval);
|
|
}
|
|
|
|
/*
|
|
* Reset the aggregated monitoring results ('nr_accesses' of each region).
|
|
*/
|
|
static void kdamond_reset_aggregated(struct damon_ctx *c)
|
|
{
|
|
struct damon_target *t;
|
|
unsigned int ti = 0; /* target's index */
|
|
|
|
damon_for_each_target(t, c) {
|
|
struct damon_region *r;
|
|
|
|
damon_for_each_region(r, t) {
|
|
trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
|
|
r->last_nr_accesses = r->nr_accesses;
|
|
r->nr_accesses = 0;
|
|
}
|
|
ti++;
|
|
}
|
|
}
|
|
|
|
static void damon_split_region_at(struct damon_target *t,
|
|
struct damon_region *r, unsigned long sz_r);
|
|
|
|
static bool __damos_valid_target(struct damon_region *r, struct damos *s)
|
|
{
|
|
unsigned long sz;
|
|
|
|
sz = damon_sz_region(r);
|
|
return s->pattern.min_sz_region <= sz &&
|
|
sz <= s->pattern.max_sz_region &&
|
|
s->pattern.min_nr_accesses <= r->nr_accesses &&
|
|
r->nr_accesses <= s->pattern.max_nr_accesses &&
|
|
s->pattern.min_age_region <= r->age &&
|
|
r->age <= s->pattern.max_age_region;
|
|
}
|
|
|
|
static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
|
|
struct damon_region *r, struct damos *s)
|
|
{
|
|
bool ret = __damos_valid_target(r, s);
|
|
|
|
if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
|
|
return ret;
|
|
|
|
return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
|
|
}
|
|
|
|
/*
|
|
* damos_skip_charged_region() - Check if the given region or starting part of
|
|
* it is already charged for the DAMOS quota.
|
|
* @t: The target of the region.
|
|
* @rp: The pointer to the region.
|
|
* @s: The scheme to be applied.
|
|
*
|
|
* If a quota of a scheme has exceeded in a quota charge window, the scheme's
|
|
* action would applied to only a part of the target access pattern fulfilling
|
|
* regions. To avoid applying the scheme action to only already applied
|
|
* regions, DAMON skips applying the scheme action to the regions that charged
|
|
* in the previous charge window.
|
|
*
|
|
* This function checks if a given region should be skipped or not for the
|
|
* reason. If only the starting part of the region has previously charged,
|
|
* this function splits the region into two so that the second one covers the
|
|
* area that not charged in the previous charge widnow and saves the second
|
|
* region in *rp and returns false, so that the caller can apply DAMON action
|
|
* to the second one.
|
|
*
|
|
* Return: true if the region should be entirely skipped, false otherwise.
|
|
*/
|
|
static bool damos_skip_charged_region(struct damon_target *t,
|
|
struct damon_region **rp, struct damos *s)
|
|
{
|
|
struct damon_region *r = *rp;
|
|
struct damos_quota *quota = &s->quota;
|
|
unsigned long sz_to_skip;
|
|
|
|
/* Skip previously charged regions */
|
|
if (quota->charge_target_from) {
|
|
if (t != quota->charge_target_from)
|
|
return true;
|
|
if (r == damon_last_region(t)) {
|
|
quota->charge_target_from = NULL;
|
|
quota->charge_addr_from = 0;
|
|
return true;
|
|
}
|
|
if (quota->charge_addr_from &&
|
|
r->ar.end <= quota->charge_addr_from)
|
|
return true;
|
|
|
|
if (quota->charge_addr_from && r->ar.start <
|
|
quota->charge_addr_from) {
|
|
sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
|
|
r->ar.start, DAMON_MIN_REGION);
|
|
if (!sz_to_skip) {
|
|
if (damon_sz_region(r) <= DAMON_MIN_REGION)
|
|
return true;
|
|
sz_to_skip = DAMON_MIN_REGION;
|
|
}
|
|
damon_split_region_at(t, r, sz_to_skip);
|
|
r = damon_next_region(r);
|
|
*rp = r;
|
|
}
|
|
quota->charge_target_from = NULL;
|
|
quota->charge_addr_from = 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void damos_update_stat(struct damos *s,
|
|
unsigned long sz_tried, unsigned long sz_applied)
|
|
{
|
|
s->stat.nr_tried++;
|
|
s->stat.sz_tried += sz_tried;
|
|
if (sz_applied)
|
|
s->stat.nr_applied++;
|
|
s->stat.sz_applied += sz_applied;
|
|
}
|
|
|
|
static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
|
|
struct damon_region *r, struct damos *s)
|
|
{
|
|
struct damos_quota *quota = &s->quota;
|
|
unsigned long sz = damon_sz_region(r);
|
|
struct timespec64 begin, end;
|
|
unsigned long sz_applied = 0;
|
|
int err = 0;
|
|
|
|
if (c->ops.apply_scheme) {
|
|
if (quota->esz && quota->charged_sz + sz > quota->esz) {
|
|
sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
|
|
DAMON_MIN_REGION);
|
|
if (!sz)
|
|
goto update_stat;
|
|
damon_split_region_at(t, r, sz);
|
|
}
|
|
ktime_get_coarse_ts64(&begin);
|
|
if (c->callback.before_damos_apply)
|
|
err = c->callback.before_damos_apply(c, t, r, s);
|
|
if (!err)
|
|
sz_applied = c->ops.apply_scheme(c, t, r, s);
|
|
ktime_get_coarse_ts64(&end);
|
|
quota->total_charged_ns += timespec64_to_ns(&end) -
|
|
timespec64_to_ns(&begin);
|
|
quota->charged_sz += sz;
|
|
if (quota->esz && quota->charged_sz >= quota->esz) {
|
|
quota->charge_target_from = t;
|
|
quota->charge_addr_from = r->ar.end + 1;
|
|
}
|
|
}
|
|
if (s->action != DAMOS_STAT)
|
|
r->age = 0;
|
|
|
|
update_stat:
|
|
damos_update_stat(s, sz, sz_applied);
|
|
}
|
|
|
|
static void damon_do_apply_schemes(struct damon_ctx *c,
|
|
struct damon_target *t,
|
|
struct damon_region *r)
|
|
{
|
|
struct damos *s;
|
|
|
|
damon_for_each_scheme(s, c) {
|
|
struct damos_quota *quota = &s->quota;
|
|
|
|
if (!s->wmarks.activated)
|
|
continue;
|
|
|
|
/* Check the quota */
|
|
if (quota->esz && quota->charged_sz >= quota->esz)
|
|
continue;
|
|
|
|
if (damos_skip_charged_region(t, &r, s))
|
|
continue;
|
|
|
|
if (!damos_valid_target(c, t, r, s))
|
|
continue;
|
|
|
|
damos_apply_scheme(c, t, r, s);
|
|
}
|
|
}
|
|
|
|
/* Shouldn't be called if quota->ms and quota->sz are zero */
|
|
static void damos_set_effective_quota(struct damos_quota *quota)
|
|
{
|
|
unsigned long throughput;
|
|
unsigned long esz;
|
|
|
|
if (!quota->ms) {
|
|
quota->esz = quota->sz;
|
|
return;
|
|
}
|
|
|
|
if (quota->total_charged_ns)
|
|
throughput = quota->total_charged_sz * 1000000 /
|
|
quota->total_charged_ns;
|
|
else
|
|
throughput = PAGE_SIZE * 1024;
|
|
esz = throughput * quota->ms;
|
|
|
|
if (quota->sz && quota->sz < esz)
|
|
esz = quota->sz;
|
|
quota->esz = esz;
|
|
}
|
|
|
|
static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
|
|
{
|
|
struct damos_quota *quota = &s->quota;
|
|
struct damon_target *t;
|
|
struct damon_region *r;
|
|
unsigned long cumulated_sz;
|
|
unsigned int score, max_score = 0;
|
|
|
|
if (!quota->ms && !quota->sz)
|
|
return;
|
|
|
|
/* New charge window starts */
|
|
if (time_after_eq(jiffies, quota->charged_from +
|
|
msecs_to_jiffies(quota->reset_interval))) {
|
|
if (quota->esz && quota->charged_sz >= quota->esz)
|
|
s->stat.qt_exceeds++;
|
|
quota->total_charged_sz += quota->charged_sz;
|
|
quota->charged_from = jiffies;
|
|
quota->charged_sz = 0;
|
|
damos_set_effective_quota(quota);
|
|
}
|
|
|
|
if (!c->ops.get_scheme_score)
|
|
return;
|
|
|
|
/* Fill up the score histogram */
|
|
memset(quota->histogram, 0, sizeof(quota->histogram));
|
|
damon_for_each_target(t, c) {
|
|
damon_for_each_region(r, t) {
|
|
if (!__damos_valid_target(r, s))
|
|
continue;
|
|
score = c->ops.get_scheme_score(c, t, r, s);
|
|
quota->histogram[score] += damon_sz_region(r);
|
|
if (score > max_score)
|
|
max_score = score;
|
|
}
|
|
}
|
|
|
|
/* Set the min score limit */
|
|
for (cumulated_sz = 0, score = max_score; ; score--) {
|
|
cumulated_sz += quota->histogram[score];
|
|
if (cumulated_sz >= quota->esz || !score)
|
|
break;
|
|
}
|
|
quota->min_score = score;
|
|
}
|
|
|
|
static void kdamond_apply_schemes(struct damon_ctx *c)
|
|
{
|
|
struct damon_target *t;
|
|
struct damon_region *r, *next_r;
|
|
struct damos *s;
|
|
|
|
damon_for_each_scheme(s, c) {
|
|
if (!s->wmarks.activated)
|
|
continue;
|
|
|
|
damos_adjust_quota(c, s);
|
|
}
|
|
|
|
damon_for_each_target(t, c) {
|
|
damon_for_each_region_safe(r, next_r, t)
|
|
damon_do_apply_schemes(c, t, r);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Merge two adjacent regions into one region
|
|
*/
|
|
static void damon_merge_two_regions(struct damon_target *t,
|
|
struct damon_region *l, struct damon_region *r)
|
|
{
|
|
unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
|
|
|
|
l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
|
|
(sz_l + sz_r);
|
|
l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
|
|
l->ar.end = r->ar.end;
|
|
damon_destroy_region(r, t);
|
|
}
|
|
|
|
/*
|
|
* Merge adjacent regions having similar access frequencies
|
|
*
|
|
* t target affected by this merge operation
|
|
* thres '->nr_accesses' diff threshold for the merge
|
|
* sz_limit size upper limit of each region
|
|
*/
|
|
static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
|
|
unsigned long sz_limit)
|
|
{
|
|
struct damon_region *r, *prev = NULL, *next;
|
|
|
|
damon_for_each_region_safe(r, next, t) {
|
|
if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
|
|
r->age = 0;
|
|
else
|
|
r->age++;
|
|
|
|
if (prev && prev->ar.end == r->ar.start &&
|
|
abs(prev->nr_accesses - r->nr_accesses) <= thres &&
|
|
damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
|
|
damon_merge_two_regions(t, prev, r);
|
|
else
|
|
prev = r;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Merge adjacent regions having similar access frequencies
|
|
*
|
|
* threshold '->nr_accesses' diff threshold for the merge
|
|
* sz_limit size upper limit of each region
|
|
*
|
|
* This function merges monitoring target regions which are adjacent and their
|
|
* access frequencies are similar. This is for minimizing the monitoring
|
|
* overhead under the dynamically changeable access pattern. If a merge was
|
|
* unnecessarily made, later 'kdamond_split_regions()' will revert it.
|
|
*/
|
|
static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
|
|
unsigned long sz_limit)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
damon_for_each_target(t, c)
|
|
damon_merge_regions_of(t, threshold, sz_limit);
|
|
}
|
|
|
|
/*
|
|
* Split a region in two
|
|
*
|
|
* r the region to be split
|
|
* sz_r size of the first sub-region that will be made
|
|
*/
|
|
static void damon_split_region_at(struct damon_target *t,
|
|
struct damon_region *r, unsigned long sz_r)
|
|
{
|
|
struct damon_region *new;
|
|
|
|
new = damon_new_region(r->ar.start + sz_r, r->ar.end);
|
|
if (!new)
|
|
return;
|
|
|
|
r->ar.end = new->ar.start;
|
|
|
|
new->age = r->age;
|
|
new->last_nr_accesses = r->last_nr_accesses;
|
|
|
|
damon_insert_region(new, r, damon_next_region(r), t);
|
|
}
|
|
|
|
/* Split every region in the given target into 'nr_subs' regions */
|
|
static void damon_split_regions_of(struct damon_target *t, int nr_subs)
|
|
{
|
|
struct damon_region *r, *next;
|
|
unsigned long sz_region, sz_sub = 0;
|
|
int i;
|
|
|
|
damon_for_each_region_safe(r, next, t) {
|
|
sz_region = damon_sz_region(r);
|
|
|
|
for (i = 0; i < nr_subs - 1 &&
|
|
sz_region > 2 * DAMON_MIN_REGION; i++) {
|
|
/*
|
|
* Randomly select size of left sub-region to be at
|
|
* least 10 percent and at most 90% of original region
|
|
*/
|
|
sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
|
|
sz_region / 10, DAMON_MIN_REGION);
|
|
/* Do not allow blank region */
|
|
if (sz_sub == 0 || sz_sub >= sz_region)
|
|
continue;
|
|
|
|
damon_split_region_at(t, r, sz_sub);
|
|
sz_region = sz_sub;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Split every target region into randomly-sized small regions
|
|
*
|
|
* This function splits every target region into random-sized small regions if
|
|
* current total number of the regions is equal or smaller than half of the
|
|
* user-specified maximum number of regions. This is for maximizing the
|
|
* monitoring accuracy under the dynamically changeable access patterns. If a
|
|
* split was unnecessarily made, later 'kdamond_merge_regions()' will revert
|
|
* it.
|
|
*/
|
|
static void kdamond_split_regions(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
unsigned int nr_regions = 0;
|
|
static unsigned int last_nr_regions;
|
|
int nr_subregions = 2;
|
|
|
|
damon_for_each_target(t, ctx)
|
|
nr_regions += damon_nr_regions(t);
|
|
|
|
if (nr_regions > ctx->attrs.max_nr_regions / 2)
|
|
return;
|
|
|
|
/* Maybe the middle of the region has different access frequency */
|
|
if (last_nr_regions == nr_regions &&
|
|
nr_regions < ctx->attrs.max_nr_regions / 3)
|
|
nr_subregions = 3;
|
|
|
|
damon_for_each_target(t, ctx)
|
|
damon_split_regions_of(t, nr_subregions);
|
|
|
|
last_nr_regions = nr_regions;
|
|
}
|
|
|
|
/*
|
|
* Check whether it is time to check and apply the operations-related data
|
|
* structures.
|
|
*
|
|
* Returns true if it is.
|
|
*/
|
|
static bool kdamond_need_update_operations(struct damon_ctx *ctx)
|
|
{
|
|
return damon_check_reset_time_interval(&ctx->last_ops_update,
|
|
ctx->attrs.ops_update_interval);
|
|
}
|
|
|
|
/*
|
|
* Check whether current monitoring should be stopped
|
|
*
|
|
* The monitoring is stopped when either the user requested to stop, or all
|
|
* monitoring targets are invalid.
|
|
*
|
|
* Returns true if need to stop current monitoring.
|
|
*/
|
|
static bool kdamond_need_stop(struct damon_ctx *ctx)
|
|
{
|
|
struct damon_target *t;
|
|
|
|
if (kthread_should_stop())
|
|
return true;
|
|
|
|
if (!ctx->ops.target_valid)
|
|
return false;
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
if (ctx->ops.target_valid(t))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
|
|
{
|
|
struct sysinfo i;
|
|
|
|
switch (metric) {
|
|
case DAMOS_WMARK_FREE_MEM_RATE:
|
|
si_meminfo(&i);
|
|
return i.freeram * 1000 / i.totalram;
|
|
default:
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Returns zero if the scheme is active. Else, returns time to wait for next
|
|
* watermark check in micro-seconds.
|
|
*/
|
|
static unsigned long damos_wmark_wait_us(struct damos *scheme)
|
|
{
|
|
unsigned long metric;
|
|
|
|
if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
|
|
return 0;
|
|
|
|
metric = damos_wmark_metric_value(scheme->wmarks.metric);
|
|
/* higher than high watermark or lower than low watermark */
|
|
if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
|
|
if (scheme->wmarks.activated)
|
|
pr_debug("deactivate a scheme (%d) for %s wmark\n",
|
|
scheme->action,
|
|
metric > scheme->wmarks.high ?
|
|
"high" : "low");
|
|
scheme->wmarks.activated = false;
|
|
return scheme->wmarks.interval;
|
|
}
|
|
|
|
/* inactive and higher than middle watermark */
|
|
if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
|
|
!scheme->wmarks.activated)
|
|
return scheme->wmarks.interval;
|
|
|
|
if (!scheme->wmarks.activated)
|
|
pr_debug("activate a scheme (%d)\n", scheme->action);
|
|
scheme->wmarks.activated = true;
|
|
return 0;
|
|
}
|
|
|
|
static void kdamond_usleep(unsigned long usecs)
|
|
{
|
|
/* See Documentation/timers/timers-howto.rst for the thresholds */
|
|
if (usecs > 20 * USEC_PER_MSEC)
|
|
schedule_timeout_idle(usecs_to_jiffies(usecs));
|
|
else
|
|
usleep_idle_range(usecs, usecs + 1);
|
|
}
|
|
|
|
/* Returns negative error code if it's not activated but should return */
|
|
static int kdamond_wait_activation(struct damon_ctx *ctx)
|
|
{
|
|
struct damos *s;
|
|
unsigned long wait_time;
|
|
unsigned long min_wait_time = 0;
|
|
bool init_wait_time = false;
|
|
|
|
while (!kdamond_need_stop(ctx)) {
|
|
damon_for_each_scheme(s, ctx) {
|
|
wait_time = damos_wmark_wait_us(s);
|
|
if (!init_wait_time || wait_time < min_wait_time) {
|
|
init_wait_time = true;
|
|
min_wait_time = wait_time;
|
|
}
|
|
}
|
|
if (!min_wait_time)
|
|
return 0;
|
|
|
|
kdamond_usleep(min_wait_time);
|
|
|
|
if (ctx->callback.after_wmarks_check &&
|
|
ctx->callback.after_wmarks_check(ctx))
|
|
break;
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* The monitoring daemon that runs as a kernel thread
|
|
*/
|
|
static int kdamond_fn(void *data)
|
|
{
|
|
struct damon_ctx *ctx = data;
|
|
struct damon_target *t;
|
|
struct damon_region *r, *next;
|
|
unsigned int max_nr_accesses = 0;
|
|
unsigned long sz_limit = 0;
|
|
|
|
pr_debug("kdamond (%d) starts\n", current->pid);
|
|
|
|
if (ctx->ops.init)
|
|
ctx->ops.init(ctx);
|
|
if (ctx->callback.before_start && ctx->callback.before_start(ctx))
|
|
goto done;
|
|
|
|
sz_limit = damon_region_sz_limit(ctx);
|
|
|
|
while (!kdamond_need_stop(ctx)) {
|
|
if (kdamond_wait_activation(ctx))
|
|
break;
|
|
|
|
if (ctx->ops.prepare_access_checks)
|
|
ctx->ops.prepare_access_checks(ctx);
|
|
if (ctx->callback.after_sampling &&
|
|
ctx->callback.after_sampling(ctx))
|
|
break;
|
|
|
|
kdamond_usleep(ctx->attrs.sample_interval);
|
|
|
|
if (ctx->ops.check_accesses)
|
|
max_nr_accesses = ctx->ops.check_accesses(ctx);
|
|
|
|
if (kdamond_aggregate_interval_passed(ctx)) {
|
|
kdamond_merge_regions(ctx,
|
|
max_nr_accesses / 10,
|
|
sz_limit);
|
|
if (ctx->callback.after_aggregation &&
|
|
ctx->callback.after_aggregation(ctx))
|
|
break;
|
|
if (!list_empty(&ctx->schemes))
|
|
kdamond_apply_schemes(ctx);
|
|
kdamond_reset_aggregated(ctx);
|
|
kdamond_split_regions(ctx);
|
|
if (ctx->ops.reset_aggregated)
|
|
ctx->ops.reset_aggregated(ctx);
|
|
}
|
|
|
|
if (kdamond_need_update_operations(ctx)) {
|
|
if (ctx->ops.update)
|
|
ctx->ops.update(ctx);
|
|
sz_limit = damon_region_sz_limit(ctx);
|
|
}
|
|
}
|
|
done:
|
|
damon_for_each_target(t, ctx) {
|
|
damon_for_each_region_safe(r, next, t)
|
|
damon_destroy_region(r, t);
|
|
}
|
|
|
|
if (ctx->callback.before_terminate)
|
|
ctx->callback.before_terminate(ctx);
|
|
if (ctx->ops.cleanup)
|
|
ctx->ops.cleanup(ctx);
|
|
|
|
pr_debug("kdamond (%d) finishes\n", current->pid);
|
|
mutex_lock(&ctx->kdamond_lock);
|
|
ctx->kdamond = NULL;
|
|
mutex_unlock(&ctx->kdamond_lock);
|
|
|
|
mutex_lock(&damon_lock);
|
|
nr_running_ctxs--;
|
|
if (!nr_running_ctxs && running_exclusive_ctxs)
|
|
running_exclusive_ctxs = false;
|
|
mutex_unlock(&damon_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* struct damon_system_ram_region - System RAM resource address region of
|
|
* [@start, @end).
|
|
* @start: Start address of the region (inclusive).
|
|
* @end: End address of the region (exclusive).
|
|
*/
|
|
struct damon_system_ram_region {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
};
|
|
|
|
static int walk_system_ram(struct resource *res, void *arg)
|
|
{
|
|
struct damon_system_ram_region *a = arg;
|
|
|
|
if (a->end - a->start < resource_size(res)) {
|
|
a->start = res->start;
|
|
a->end = res->end;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find biggest 'System RAM' resource and store its start and end address in
|
|
* @start and @end, respectively. If no System RAM is found, returns false.
|
|
*/
|
|
static bool damon_find_biggest_system_ram(unsigned long *start,
|
|
unsigned long *end)
|
|
|
|
{
|
|
struct damon_system_ram_region arg = {};
|
|
|
|
walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
|
|
if (arg.end <= arg.start)
|
|
return false;
|
|
|
|
*start = arg.start;
|
|
*end = arg.end;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* damon_set_region_biggest_system_ram_default() - Set the region of the given
|
|
* monitoring target as requested, or biggest 'System RAM'.
|
|
* @t: The monitoring target to set the region.
|
|
* @start: The pointer to the start address of the region.
|
|
* @end: The pointer to the end address of the region.
|
|
*
|
|
* This function sets the region of @t as requested by @start and @end. If the
|
|
* values of @start and @end are zero, however, this function finds the biggest
|
|
* 'System RAM' resource and sets the region to cover the resource. In the
|
|
* latter case, this function saves the start and end addresses of the resource
|
|
* in @start and @end, respectively.
|
|
*
|
|
* Return: 0 on success, negative error code otherwise.
|
|
*/
|
|
int damon_set_region_biggest_system_ram_default(struct damon_target *t,
|
|
unsigned long *start, unsigned long *end)
|
|
{
|
|
struct damon_addr_range addr_range;
|
|
|
|
if (*start > *end)
|
|
return -EINVAL;
|
|
|
|
if (!*start && !*end &&
|
|
!damon_find_biggest_system_ram(start, end))
|
|
return -EINVAL;
|
|
|
|
addr_range.start = *start;
|
|
addr_range.end = *end;
|
|
return damon_set_regions(t, &addr_range, 1);
|
|
}
|
|
|
|
static int __init damon_init(void)
|
|
{
|
|
damon_region_cache = KMEM_CACHE(damon_region, 0);
|
|
if (unlikely(!damon_region_cache)) {
|
|
pr_err("creating damon_region_cache fails\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(damon_init);
|
|
|
|
#include "core-test.h"
|