mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-11 00:04:33 +08:00
c4cf1acdb1
Use ASSERTs on the log intent item refcounts so that we fail noisily if anyone tries to double-free the item. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
532 lines
14 KiB
C
532 lines
14 KiB
C
/*
|
|
* Copyright (C) 2016 Oracle. All Rights Reserved.
|
|
*
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_rmap_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_rmap.h"
|
|
|
|
|
|
kmem_zone_t *xfs_rui_zone;
|
|
kmem_zone_t *xfs_rud_zone;
|
|
|
|
static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_rui_log_item, rui_item);
|
|
}
|
|
|
|
void
|
|
xfs_rui_item_free(
|
|
struct xfs_rui_log_item *ruip)
|
|
{
|
|
if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
|
|
kmem_free(ruip);
|
|
else
|
|
kmem_zone_free(xfs_rui_zone, ruip);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_rui_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
|
|
|
|
*nvecs += 1;
|
|
*nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given rui log item. We use only 1 iovec, and we point that
|
|
* at the rui_log_format structure embedded in the rui item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the rui item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_rui_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(atomic_read(&ruip->rui_next_extent) ==
|
|
ruip->rui_format.rui_nextents);
|
|
|
|
ruip->rui_format.rui_type = XFS_LI_RUI;
|
|
ruip->rui_format.rui_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
|
|
xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
|
|
}
|
|
|
|
/*
|
|
* Pinning has no meaning for an rui item, so just return.
|
|
*/
|
|
STATIC void
|
|
xfs_rui_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* The unpin operation is the last place an RUI is manipulated in the log. It is
|
|
* either inserted in the AIL or aborted in the event of a log I/O error. In
|
|
* either case, the RUI transaction has been successfully committed to make it
|
|
* this far. Therefore, we expect whoever committed the RUI to either construct
|
|
* and commit the RUD or drop the RUD's reference in the event of error. Simply
|
|
* drop the log's RUI reference now that the log is done with it.
|
|
*/
|
|
STATIC void
|
|
xfs_rui_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
|
|
|
|
xfs_rui_release(ruip);
|
|
}
|
|
|
|
/*
|
|
* RUI items have no locking or pushing. However, since RUIs are pulled from
|
|
* the AIL when their corresponding RUDs are committed to disk, their situation
|
|
* is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
|
|
* will eventually flush the log. This should help in getting the RUI out of
|
|
* the AIL.
|
|
*/
|
|
STATIC uint
|
|
xfs_rui_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
{
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
/*
|
|
* The RUI has been either committed or aborted if the transaction has been
|
|
* cancelled. If the transaction was cancelled, an RUD isn't going to be
|
|
* constructed and thus we free the RUI here directly.
|
|
*/
|
|
STATIC void
|
|
xfs_rui_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
if (lip->li_flags & XFS_LI_ABORTED)
|
|
xfs_rui_item_free(RUI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* The RUI is logged only once and cannot be moved in the log, so simply return
|
|
* the lsn at which it's been logged.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_rui_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* The RUI dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
STATIC void
|
|
xfs_rui_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all rui log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_rui_item_ops = {
|
|
.iop_size = xfs_rui_item_size,
|
|
.iop_format = xfs_rui_item_format,
|
|
.iop_pin = xfs_rui_item_pin,
|
|
.iop_unpin = xfs_rui_item_unpin,
|
|
.iop_unlock = xfs_rui_item_unlock,
|
|
.iop_committed = xfs_rui_item_committed,
|
|
.iop_push = xfs_rui_item_push,
|
|
.iop_committing = xfs_rui_item_committing,
|
|
};
|
|
|
|
/*
|
|
* Allocate and initialize an rui item with the given number of extents.
|
|
*/
|
|
struct xfs_rui_log_item *
|
|
xfs_rui_init(
|
|
struct xfs_mount *mp,
|
|
uint nextents)
|
|
|
|
{
|
|
struct xfs_rui_log_item *ruip;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
|
|
ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP);
|
|
else
|
|
ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
|
|
|
|
xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
|
|
ruip->rui_format.rui_nextents = nextents;
|
|
ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
|
|
atomic_set(&ruip->rui_next_extent, 0);
|
|
atomic_set(&ruip->rui_refcount, 2);
|
|
|
|
return ruip;
|
|
}
|
|
|
|
/*
|
|
* Copy an RUI format buffer from the given buf, and into the destination
|
|
* RUI format structure. The RUI/RUD items were designed not to need any
|
|
* special alignment handling.
|
|
*/
|
|
int
|
|
xfs_rui_copy_format(
|
|
struct xfs_log_iovec *buf,
|
|
struct xfs_rui_log_format *dst_rui_fmt)
|
|
{
|
|
struct xfs_rui_log_format *src_rui_fmt;
|
|
uint len;
|
|
|
|
src_rui_fmt = buf->i_addr;
|
|
len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);
|
|
|
|
if (buf->i_len != len)
|
|
return -EFSCORRUPTED;
|
|
|
|
memcpy(dst_rui_fmt, src_rui_fmt, len);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Freeing the RUI requires that we remove it from the AIL if it has already
|
|
* been placed there. However, the RUI may not yet have been placed in the AIL
|
|
* when called by xfs_rui_release() from RUD processing due to the ordering of
|
|
* committed vs unpin operations in bulk insert operations. Hence the reference
|
|
* count to ensure only the last caller frees the RUI.
|
|
*/
|
|
void
|
|
xfs_rui_release(
|
|
struct xfs_rui_log_item *ruip)
|
|
{
|
|
ASSERT(atomic_read(&ruip->rui_refcount) > 0);
|
|
if (atomic_dec_and_test(&ruip->rui_refcount)) {
|
|
xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
|
|
xfs_rui_item_free(ruip);
|
|
}
|
|
}
|
|
|
|
static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_rud_log_item, rud_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_rud_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
*nvecs += 1;
|
|
*nbytes += sizeof(struct xfs_rud_log_format);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given rud log item. We use only 1 iovec, and we point that
|
|
* at the rud_log_format structure embedded in the rud item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the rud item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_rud_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
rudp->rud_format.rud_type = XFS_LI_RUD;
|
|
rudp->rud_format.rud_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
|
|
sizeof(struct xfs_rud_log_format));
|
|
}
|
|
|
|
/*
|
|
* Pinning has no meaning for an rud item, so just return.
|
|
*/
|
|
STATIC void
|
|
xfs_rud_item_pin(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Since pinning has no meaning for an rud item, unpinning does
|
|
* not either.
|
|
*/
|
|
STATIC void
|
|
xfs_rud_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* There isn't much you can do to push on an rud item. It is simply stuck
|
|
* waiting for the log to be flushed to disk.
|
|
*/
|
|
STATIC uint
|
|
xfs_rud_item_push(
|
|
struct xfs_log_item *lip,
|
|
struct list_head *buffer_list)
|
|
{
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
/*
|
|
* The RUD is either committed or aborted if the transaction is cancelled. If
|
|
* the transaction is cancelled, drop our reference to the RUI and free the
|
|
* RUD.
|
|
*/
|
|
STATIC void
|
|
xfs_rud_item_unlock(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
|
|
|
|
if (lip->li_flags & XFS_LI_ABORTED) {
|
|
xfs_rui_release(rudp->rud_ruip);
|
|
kmem_zone_free(xfs_rud_zone, rudp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When the rud item is committed to disk, all we need to do is delete our
|
|
* reference to our partner rui item and then free ourselves. Since we're
|
|
* freeing ourselves we must return -1 to keep the transaction code from
|
|
* further referencing this item.
|
|
*/
|
|
STATIC xfs_lsn_t
|
|
xfs_rud_item_committed(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
|
|
|
|
/*
|
|
* Drop the RUI reference regardless of whether the RUD has been
|
|
* aborted. Once the RUD transaction is constructed, it is the sole
|
|
* responsibility of the RUD to release the RUI (even if the RUI is
|
|
* aborted due to log I/O error).
|
|
*/
|
|
xfs_rui_release(rudp->rud_ruip);
|
|
kmem_zone_free(xfs_rud_zone, rudp);
|
|
|
|
return (xfs_lsn_t)-1;
|
|
}
|
|
|
|
/*
|
|
* The RUD dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
STATIC void
|
|
xfs_rud_item_committing(
|
|
struct xfs_log_item *lip,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all rud log items.
|
|
*/
|
|
static const struct xfs_item_ops xfs_rud_item_ops = {
|
|
.iop_size = xfs_rud_item_size,
|
|
.iop_format = xfs_rud_item_format,
|
|
.iop_pin = xfs_rud_item_pin,
|
|
.iop_unpin = xfs_rud_item_unpin,
|
|
.iop_unlock = xfs_rud_item_unlock,
|
|
.iop_committed = xfs_rud_item_committed,
|
|
.iop_push = xfs_rud_item_push,
|
|
.iop_committing = xfs_rud_item_committing,
|
|
};
|
|
|
|
/*
|
|
* Allocate and initialize an rud item with the given number of extents.
|
|
*/
|
|
struct xfs_rud_log_item *
|
|
xfs_rud_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_rui_log_item *ruip)
|
|
|
|
{
|
|
struct xfs_rud_log_item *rudp;
|
|
|
|
rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
|
|
xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops);
|
|
rudp->rud_ruip = ruip;
|
|
rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
|
|
|
|
return rudp;
|
|
}
|
|
|
|
/*
|
|
* Process an rmap update intent item that was recovered from the log.
|
|
* We need to update the rmapbt.
|
|
*/
|
|
int
|
|
xfs_rui_recover(
|
|
struct xfs_mount *mp,
|
|
struct xfs_rui_log_item *ruip)
|
|
{
|
|
int i;
|
|
int error = 0;
|
|
struct xfs_map_extent *rmap;
|
|
xfs_fsblock_t startblock_fsb;
|
|
bool op_ok;
|
|
struct xfs_rud_log_item *rudp;
|
|
enum xfs_rmap_intent_type type;
|
|
int whichfork;
|
|
xfs_exntst_t state;
|
|
struct xfs_trans *tp;
|
|
struct xfs_btree_cur *rcur = NULL;
|
|
|
|
ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
|
|
|
|
/*
|
|
* First check the validity of the extents described by the
|
|
* RUI. If any are bad, then assume that all are bad and
|
|
* just toss the RUI.
|
|
*/
|
|
for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
|
|
rmap = &ruip->rui_format.rui_extents[i];
|
|
startblock_fsb = XFS_BB_TO_FSB(mp,
|
|
XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
|
|
switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
|
|
case XFS_RMAP_EXTENT_MAP:
|
|
case XFS_RMAP_EXTENT_MAP_SHARED:
|
|
case XFS_RMAP_EXTENT_UNMAP:
|
|
case XFS_RMAP_EXTENT_UNMAP_SHARED:
|
|
case XFS_RMAP_EXTENT_CONVERT:
|
|
case XFS_RMAP_EXTENT_CONVERT_SHARED:
|
|
case XFS_RMAP_EXTENT_ALLOC:
|
|
case XFS_RMAP_EXTENT_FREE:
|
|
op_ok = true;
|
|
break;
|
|
default:
|
|
op_ok = false;
|
|
break;
|
|
}
|
|
if (!op_ok || startblock_fsb == 0 ||
|
|
rmap->me_len == 0 ||
|
|
startblock_fsb >= mp->m_sb.sb_dblocks ||
|
|
rmap->me_len >= mp->m_sb.sb_agblocks ||
|
|
(rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
|
|
/*
|
|
* This will pull the RUI from the AIL and
|
|
* free the memory associated with it.
|
|
*/
|
|
set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
|
|
xfs_rui_release(ruip);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
rudp = xfs_trans_get_rud(tp, ruip);
|
|
|
|
for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
|
|
rmap = &ruip->rui_format.rui_extents[i];
|
|
state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
|
|
XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
|
|
whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
|
|
XFS_ATTR_FORK : XFS_DATA_FORK;
|
|
switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
|
|
case XFS_RMAP_EXTENT_MAP:
|
|
type = XFS_RMAP_MAP;
|
|
break;
|
|
case XFS_RMAP_EXTENT_MAP_SHARED:
|
|
type = XFS_RMAP_MAP_SHARED;
|
|
break;
|
|
case XFS_RMAP_EXTENT_UNMAP:
|
|
type = XFS_RMAP_UNMAP;
|
|
break;
|
|
case XFS_RMAP_EXTENT_UNMAP_SHARED:
|
|
type = XFS_RMAP_UNMAP_SHARED;
|
|
break;
|
|
case XFS_RMAP_EXTENT_CONVERT:
|
|
type = XFS_RMAP_CONVERT;
|
|
break;
|
|
case XFS_RMAP_EXTENT_CONVERT_SHARED:
|
|
type = XFS_RMAP_CONVERT_SHARED;
|
|
break;
|
|
case XFS_RMAP_EXTENT_ALLOC:
|
|
type = XFS_RMAP_ALLOC;
|
|
break;
|
|
case XFS_RMAP_EXTENT_FREE:
|
|
type = XFS_RMAP_FREE;
|
|
break;
|
|
default:
|
|
error = -EFSCORRUPTED;
|
|
goto abort_error;
|
|
}
|
|
error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
|
|
rmap->me_owner, whichfork,
|
|
rmap->me_startoff, rmap->me_startblock,
|
|
rmap->me_len, state, &rcur);
|
|
if (error)
|
|
goto abort_error;
|
|
|
|
}
|
|
|
|
xfs_rmap_finish_one_cleanup(tp, rcur, error);
|
|
set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
|
|
error = xfs_trans_commit(tp);
|
|
return error;
|
|
|
|
abort_error:
|
|
xfs_rmap_finish_one_cleanup(tp, rcur, error);
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|