mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-01 19:34:35 +08:00
f96a8a0b78
This patch adds new initialization functions and device support for i210 and i211 devices. Signed-off-by: Carolyn Wyborny <carolyn.wyborny@intel.com> Tested-by: Jeff Pieper <jeffrey.e.pieper@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
604 lines
16 KiB
C
604 lines
16 KiB
C
/*******************************************************************************
|
|
|
|
Intel(R) Gigabit Ethernet Linux driver
|
|
Copyright(c) 2007-2012 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
******************************************************************************/
|
|
|
|
/* e1000_i210
|
|
* e1000_i211
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/if_ether.h>
|
|
|
|
#include "e1000_hw.h"
|
|
#include "e1000_i210.h"
|
|
|
|
static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw);
|
|
static void igb_put_hw_semaphore_i210(struct e1000_hw *hw);
|
|
static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data);
|
|
static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw);
|
|
|
|
/**
|
|
* igb_acquire_nvm_i210 - Request for access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the necessary semaphores for exclusive access to the EEPROM.
|
|
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
* Return successful if access grant bit set, else clear the request for
|
|
* EEPROM access and return -E1000_ERR_NVM (-1).
|
|
**/
|
|
s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
|
|
{
|
|
return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
|
|
}
|
|
|
|
/**
|
|
* igb_release_nvm_i210 - Release exclusive access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
|
|
* then release the semaphores acquired.
|
|
**/
|
|
void igb_release_nvm_i210(struct e1000_hw *hw)
|
|
{
|
|
igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
|
|
}
|
|
|
|
/**
|
|
* igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
|
|
* will also specify which port we're acquiring the lock for.
|
|
**/
|
|
s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
u32 swmask = mask;
|
|
u32 fwmask = mask << 16;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
|
|
|
|
while (i < timeout) {
|
|
if (igb_get_hw_semaphore_i210(hw)) {
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
goto out;
|
|
}
|
|
|
|
swfw_sync = rd32(E1000_SW_FW_SYNC);
|
|
if (!(swfw_sync & fwmask))
|
|
break;
|
|
|
|
/*
|
|
* Firmware currently using resource (fwmask)
|
|
*/
|
|
igb_put_hw_semaphore_i210(hw);
|
|
mdelay(5);
|
|
i++;
|
|
}
|
|
|
|
if (i == timeout) {
|
|
hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
goto out;
|
|
}
|
|
|
|
swfw_sync |= swmask;
|
|
wr32(E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
igb_put_hw_semaphore_i210(hw);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_release_swfw_sync_i210 - Release SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
|
|
* will also specify which port we're releasing the lock for.
|
|
**/
|
|
void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
|
|
while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
|
|
; /* Empty */
|
|
|
|
swfw_sync = rd32(E1000_SW_FW_SYNC);
|
|
swfw_sync &= ~mask;
|
|
wr32(E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
igb_put_hw_semaphore_i210(hw);
|
|
}
|
|
|
|
/**
|
|
* igb_get_hw_semaphore_i210 - Acquire hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the HW semaphore to access the PHY or NVM
|
|
**/
|
|
static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
s32 timeout = hw->nvm.word_size + 1;
|
|
s32 i = 0;
|
|
|
|
/* Get the FW semaphore. */
|
|
for (i = 0; i < timeout; i++) {
|
|
swsm = rd32(E1000_SWSM);
|
|
wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
|
|
|
|
/* Semaphore acquired if bit latched */
|
|
if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
|
|
break;
|
|
|
|
udelay(50);
|
|
}
|
|
|
|
if (i == timeout) {
|
|
/* Release semaphores */
|
|
igb_put_hw_semaphore(hw);
|
|
hw_dbg("Driver can't access the NVM\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_put_hw_semaphore_i210 - Release hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Release hardware semaphore used to access the PHY or NVM
|
|
**/
|
|
static void igb_put_hw_semaphore_i210(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
|
|
swsm = rd32(E1000_SWSM);
|
|
|
|
swsm &= ~E1000_SWSM_SWESMBI;
|
|
|
|
wr32(E1000_SWSM, swsm);
|
|
}
|
|
|
|
/**
|
|
* igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of word in the Shadow Ram to read
|
|
* @words: number of words to read
|
|
* @data: word read from the Shadow Ram
|
|
*
|
|
* Reads a 16 bit word from the Shadow Ram using the EERD register.
|
|
* Uses necessary synchronization semaphores.
|
|
**/
|
|
s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
u16 i, count;
|
|
|
|
/* We cannot hold synchronization semaphores for too long,
|
|
* because of forceful takeover procedure. However it is more efficient
|
|
* to read in bursts than synchronizing access for each word. */
|
|
for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
|
|
count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
|
|
E1000_EERD_EEWR_MAX_COUNT : (words - i);
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
status = igb_read_nvm_eerd(hw, offset, count,
|
|
data + i);
|
|
hw->nvm.ops.release(hw);
|
|
} else {
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
if (status != E1000_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the Shadow RAM to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the Shadow RAM
|
|
*
|
|
* Writes data to Shadow RAM at offset using EEWR register.
|
|
*
|
|
* If e1000_update_nvm_checksum is not called after this function , the
|
|
* data will not be committed to FLASH and also Shadow RAM will most likely
|
|
* contain an invalid checksum.
|
|
*
|
|
* If error code is returned, data and Shadow RAM may be inconsistent - buffer
|
|
* partially written.
|
|
**/
|
|
s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
u16 i, count;
|
|
|
|
/* We cannot hold synchronization semaphores for too long,
|
|
* because of forceful takeover procedure. However it is more efficient
|
|
* to write in bursts than synchronizing access for each word. */
|
|
for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
|
|
count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
|
|
E1000_EERD_EEWR_MAX_COUNT : (words - i);
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
status = igb_write_nvm_srwr(hw, offset, count,
|
|
data + i);
|
|
hw->nvm.ops.release(hw);
|
|
} else {
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
if (status != E1000_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* igb_write_nvm_srwr - Write to Shadow Ram using EEWR
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the Shadow Ram to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the Shadow Ram
|
|
*
|
|
* Writes data to Shadow Ram at offset using EEWR register.
|
|
*
|
|
* If igb_update_nvm_checksum is not called after this function , the
|
|
* Shadow Ram will most likely contain an invalid checksum.
|
|
**/
|
|
static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 i, k, eewr = 0;
|
|
u32 attempts = 100000;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
/*
|
|
* A check for invalid values: offset too large, too many words,
|
|
* too many words for the offset, and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
hw_dbg("nvm parameter(s) out of bounds\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < words; i++) {
|
|
eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
|
|
(data[i] << E1000_NVM_RW_REG_DATA) |
|
|
E1000_NVM_RW_REG_START;
|
|
|
|
wr32(E1000_SRWR, eewr);
|
|
|
|
for (k = 0; k < attempts; k++) {
|
|
if (E1000_NVM_RW_REG_DONE &
|
|
rd32(E1000_SRWR)) {
|
|
ret_val = E1000_SUCCESS;
|
|
break;
|
|
}
|
|
udelay(5);
|
|
}
|
|
|
|
if (ret_val != E1000_SUCCESS) {
|
|
hw_dbg("Shadow RAM write EEWR timed out\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_read_nvm_i211 - Read NVM wrapper function for I211
|
|
* @hw: pointer to the HW structure
|
|
* @address: the word address (aka eeprom offset) to read
|
|
* @data: pointer to the data read
|
|
*
|
|
* Wrapper function to return data formerly found in the NVM.
|
|
**/
|
|
s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
/* Only the MAC addr is required to be present in the iNVM */
|
|
switch (offset) {
|
|
case NVM_MAC_ADDR:
|
|
ret_val = igb_read_invm_i211(hw, offset, &data[0]);
|
|
ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]);
|
|
ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]);
|
|
if (ret_val != E1000_SUCCESS)
|
|
hw_dbg("MAC Addr not found in iNVM\n");
|
|
break;
|
|
case NVM_ID_LED_SETTINGS:
|
|
case NVM_INIT_CTRL_2:
|
|
case NVM_INIT_CTRL_4:
|
|
case NVM_LED_1_CFG:
|
|
case NVM_LED_0_2_CFG:
|
|
igb_read_invm_i211(hw, offset, data);
|
|
break;
|
|
case NVM_COMPAT:
|
|
*data = ID_LED_DEFAULT_I210;
|
|
break;
|
|
case NVM_SUB_DEV_ID:
|
|
*data = hw->subsystem_device_id;
|
|
break;
|
|
case NVM_SUB_VEN_ID:
|
|
*data = hw->subsystem_vendor_id;
|
|
break;
|
|
case NVM_DEV_ID:
|
|
*data = hw->device_id;
|
|
break;
|
|
case NVM_VEN_ID:
|
|
*data = hw->vendor_id;
|
|
break;
|
|
default:
|
|
hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
|
|
*data = NVM_RESERVED_WORD;
|
|
break;
|
|
}
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_read_invm_i211 - Reads OTP
|
|
* @hw: pointer to the HW structure
|
|
* @address: the word address (aka eeprom offset) to read
|
|
* @data: pointer to the data read
|
|
*
|
|
* Reads 16-bit words from the OTP. Return error when the word is not
|
|
* stored in OTP.
|
|
**/
|
|
s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data)
|
|
{
|
|
s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
|
|
u32 invm_dword;
|
|
u16 i;
|
|
u8 record_type, word_address;
|
|
|
|
for (i = 0; i < E1000_INVM_SIZE; i++) {
|
|
invm_dword = rd32(E1000_INVM_DATA_REG(i));
|
|
/* Get record type */
|
|
record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
|
|
if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
|
|
break;
|
|
if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
|
|
i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
|
|
if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
|
|
i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
|
|
if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
|
|
word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
|
|
if (word_address == (u8)address) {
|
|
*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
|
|
hw_dbg("Read INVM Word 0x%02x = %x",
|
|
address, *data);
|
|
status = E1000_SUCCESS;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (status != E1000_SUCCESS)
|
|
hw_dbg("Requested word 0x%02x not found in OTP\n", address);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
**/
|
|
s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
|
|
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
|
|
/*
|
|
* Replace the read function with semaphore grabbing with
|
|
* the one that skips this for a while.
|
|
* We have semaphore taken already here.
|
|
*/
|
|
read_op_ptr = hw->nvm.ops.read;
|
|
hw->nvm.ops.read = igb_read_nvm_eerd;
|
|
|
|
status = igb_validate_nvm_checksum(hw);
|
|
|
|
/* Revert original read operation. */
|
|
hw->nvm.ops.read = read_op_ptr;
|
|
|
|
hw->nvm.ops.release(hw);
|
|
} else {
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/**
|
|
* igb_update_nvm_checksum_i210 - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
* value to the EEPROM. Next commit EEPROM data onto the Flash.
|
|
**/
|
|
s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
/*
|
|
* Read the first word from the EEPROM. If this times out or fails, do
|
|
* not continue or we could be in for a very long wait while every
|
|
* EEPROM read fails
|
|
*/
|
|
ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
|
|
if (ret_val != E1000_SUCCESS) {
|
|
hw_dbg("EEPROM read failed\n");
|
|
goto out;
|
|
}
|
|
|
|
if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
|
|
/*
|
|
* Do not use hw->nvm.ops.write, hw->nvm.ops.read
|
|
* because we do not want to take the synchronization
|
|
* semaphores twice here.
|
|
*/
|
|
|
|
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
|
|
ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
hw->nvm.ops.release(hw);
|
|
hw_dbg("NVM Read Error while updating checksum.\n");
|
|
goto out;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
checksum = (u16) NVM_SUM - checksum;
|
|
ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
|
|
&checksum);
|
|
if (ret_val != E1000_SUCCESS) {
|
|
hw->nvm.ops.release(hw);
|
|
hw_dbg("NVM Write Error while updating checksum.\n");
|
|
goto out;
|
|
}
|
|
|
|
hw->nvm.ops.release(hw);
|
|
|
|
ret_val = igb_update_flash_i210(hw);
|
|
} else {
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
}
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_update_flash_i210 - Commit EEPROM to the flash
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
**/
|
|
s32 igb_update_flash_i210(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 flup;
|
|
|
|
ret_val = igb_pool_flash_update_done_i210(hw);
|
|
if (ret_val == -E1000_ERR_NVM) {
|
|
hw_dbg("Flash update time out\n");
|
|
goto out;
|
|
}
|
|
|
|
flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
|
|
wr32(E1000_EECD, flup);
|
|
|
|
ret_val = igb_pool_flash_update_done_i210(hw);
|
|
if (ret_val == E1000_SUCCESS)
|
|
hw_dbg("Flash update complete\n");
|
|
else
|
|
hw_dbg("Flash update time out\n");
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_pool_flash_update_done_i210 - Pool FLUDONE status.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
**/
|
|
s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
u32 i, reg;
|
|
|
|
for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
|
|
reg = rd32(E1000_EECD);
|
|
if (reg & E1000_EECD_FLUDONE_I210) {
|
|
ret_val = E1000_SUCCESS;
|
|
break;
|
|
}
|
|
udelay(5);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_valid_led_default_i210 - Verify a valid default LED config
|
|
* @hw: pointer to the HW structure
|
|
* @data: pointer to the NVM (EEPROM)
|
|
*
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
**/
|
|
s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_internal_serdes:
|
|
*data = ID_LED_DEFAULT_I210_SERDES;
|
|
break;
|
|
case e1000_media_type_copper:
|
|
default:
|
|
*data = ID_LED_DEFAULT_I210;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
return ret_val;
|
|
}
|