linux/virt/kvm/arm/vgic/vgic-mmio-v2.c
Eric Auger f94591e2e6 KVM: arm/arm64: vgic-new: vgic_kvm_device: access to VGIC registers
This patch implements the switches for KVM_DEV_ARM_VGIC_GRP_DIST_REGS
and KVM_DEV_ARM_VGIC_GRP_CPU_REGS API which allows the userspace to
access VGIC registers.

Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-05-20 15:40:02 +02:00

299 lines
7.6 KiB
C

/*
* VGICv2 MMIO handling functions
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/irqchip/arm-gic.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/iodev.h>
#include <kvm/arm_vgic.h>
#include "vgic.h"
#include "vgic-mmio.h"
static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 value;
switch (addr & 0x0c) {
case GIC_DIST_CTRL:
value = vcpu->kvm->arch.vgic.enabled ? GICD_ENABLE : 0;
break;
case GIC_DIST_CTR:
value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
value = (value >> 5) - 1;
value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
break;
case GIC_DIST_IIDR:
value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
break;
default:
return 0;
}
return value;
}
static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
bool was_enabled = dist->enabled;
switch (addr & 0x0c) {
case GIC_DIST_CTRL:
dist->enabled = val & GICD_ENABLE;
if (!was_enabled && dist->enabled)
vgic_kick_vcpus(vcpu->kvm);
break;
case GIC_DIST_CTR:
case GIC_DIST_IIDR:
/* Nothing to do */
return;
}
}
static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
int intid = val & 0xf;
int targets = (val >> 16) & 0xff;
int mode = (val >> 24) & 0x03;
int c;
struct kvm_vcpu *vcpu;
switch (mode) {
case 0x0: /* as specified by targets */
break;
case 0x1:
targets = (1U << nr_vcpus) - 1; /* all, ... */
targets &= ~(1U << source_vcpu->vcpu_id); /* but self */
break;
case 0x2: /* this very vCPU only */
targets = (1U << source_vcpu->vcpu_id);
break;
case 0x3: /* reserved */
return;
}
kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
struct vgic_irq *irq;
if (!(targets & (1U << c)))
continue;
irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
spin_lock(&irq->irq_lock);
irq->pending = true;
irq->source |= 1U << source_vcpu->vcpu_id;
vgic_queue_irq_unlock(source_vcpu->kvm, irq);
}
}
static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
int i;
u64 val = 0;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
val |= (u64)irq->targets << (i * 8);
}
return val;
}
static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
int i;
/* GICD_ITARGETSR[0-7] are read-only */
if (intid < VGIC_NR_PRIVATE_IRQS)
return;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
int target;
spin_lock(&irq->irq_lock);
irq->targets = (val >> (i * 8)) & 0xff;
target = irq->targets ? __ffs(irq->targets) : 0;
irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
spin_unlock(&irq->irq_lock);
}
}
static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
u32 intid = addr & 0x0f;
int i;
u64 val = 0;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
val |= (u64)irq->source << (i * 8);
}
return val;
}
static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = addr & 0x0f;
int i;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
irq->source &= ~((val >> (i * 8)) & 0xff);
if (!irq->source)
irq->pending = false;
spin_unlock(&irq->irq_lock);
}
}
static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
u32 intid = addr & 0x0f;
int i;
for (i = 0; i < len; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock);
irq->source |= (val >> (i * 8)) & 0xff;
if (irq->source) {
irq->pending = true;
vgic_queue_irq_unlock(vcpu->kvm, irq);
} else {
spin_unlock(&irq->irq_lock);
}
}
}
static const struct vgic_register_region vgic_v2_dist_registers[] = {
REGISTER_DESC_WITH_LENGTH(GIC_DIST_CTRL,
vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc, 12,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
vgic_mmio_read_target, vgic_mmio_write_target, 8,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
vgic_mmio_read_config, vgic_mmio_write_config, 2,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
};
unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
{
dev->regions = vgic_v2_dist_registers;
dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
return SZ_4K;
}
int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int nr_irqs = dev->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
const struct vgic_register_region *regions;
gpa_t addr;
int nr_regions, i, len;
addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
regions = vgic_v2_dist_registers;
nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
break;
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
return -ENXIO; /* TODO: describe CPU i/f regs also */
default:
return -ENXIO;
}
/* We only support aligned 32-bit accesses. */
if (addr & 3)
return -ENXIO;
for (i = 0; i < nr_regions; i++) {
if (regions[i].bits_per_irq)
len = (regions[i].bits_per_irq * nr_irqs) / 8;
else
len = regions[i].len;
if (regions[i].reg_offset <= addr &&
regions[i].reg_offset + len > addr)
return 0;
}
return -ENXIO;
}