linux/fs/f2fs/xattr.c
Linus Torvalds 7d6beb71da idmapped-mounts-v5.12
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
 ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
 4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
 =yPaw
 -----END PGP SIGNATURE-----

Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull idmapped mounts from Christian Brauner:
 "This introduces idmapped mounts which has been in the making for some
  time. Simply put, different mounts can expose the same file or
  directory with different ownership. This initial implementation comes
  with ports for fat, ext4 and with Christoph's port for xfs with more
  filesystems being actively worked on by independent people and
  maintainers.

  Idmapping mounts handle a wide range of long standing use-cases. Here
  are just a few:

   - Idmapped mounts make it possible to easily share files between
     multiple users or multiple machines especially in complex
     scenarios. For example, idmapped mounts will be used in the
     implementation of portable home directories in
     systemd-homed.service(8) where they allow users to move their home
     directory to an external storage device and use it on multiple
     computers where they are assigned different uids and gids. This
     effectively makes it possible to assign random uids and gids at
     login time.

   - It is possible to share files from the host with unprivileged
     containers without having to change ownership permanently through
     chown(2).

   - It is possible to idmap a container's rootfs and without having to
     mangle every file. For example, Chromebooks use it to share the
     user's Download folder with their unprivileged containers in their
     Linux subsystem.

   - It is possible to share files between containers with
     non-overlapping idmappings.

   - Filesystem that lack a proper concept of ownership such as fat can
     use idmapped mounts to implement discretionary access (DAC)
     permission checking.

   - They allow users to efficiently changing ownership on a per-mount
     basis without having to (recursively) chown(2) all files. In
     contrast to chown (2) changing ownership of large sets of files is
     instantenous with idmapped mounts. This is especially useful when
     ownership of a whole root filesystem of a virtual machine or
     container is changed. With idmapped mounts a single syscall
     mount_setattr syscall will be sufficient to change the ownership of
     all files.

   - Idmapped mounts always take the current ownership into account as
     idmappings specify what a given uid or gid is supposed to be mapped
     to. This contrasts with the chown(2) syscall which cannot by itself
     take the current ownership of the files it changes into account. It
     simply changes the ownership to the specified uid and gid. This is
     especially problematic when recursively chown(2)ing a large set of
     files which is commong with the aforementioned portable home
     directory and container and vm scenario.

   - Idmapped mounts allow to change ownership locally, restricting it
     to specific mounts, and temporarily as the ownership changes only
     apply as long as the mount exists.

  Several userspace projects have either already put up patches and
  pull-requests for this feature or will do so should you decide to pull
  this:

   - systemd: In a wide variety of scenarios but especially right away
     in their implementation of portable home directories.

         https://systemd.io/HOME_DIRECTORY/

   - container runtimes: containerd, runC, LXD:To share data between
     host and unprivileged containers, unprivileged and privileged
     containers, etc. The pull request for idmapped mounts support in
     containerd, the default Kubernetes runtime is already up for quite
     a while now: https://github.com/containerd/containerd/pull/4734

   - The virtio-fs developers and several users have expressed interest
     in using this feature with virtual machines once virtio-fs is
     ported.

   - ChromeOS: Sharing host-directories with unprivileged containers.

  I've tightly synced with all those projects and all of those listed
  here have also expressed their need/desire for this feature on the
  mailing list. For more info on how people use this there's a bunch of
  talks about this too. Here's just two recent ones:

      https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
      https://fosdem.org/2021/schedule/event/containers_idmap/

  This comes with an extensive xfstests suite covering both ext4 and
  xfs:

      https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts

  It covers truncation, creation, opening, xattrs, vfscaps, setid
  execution, setgid inheritance and more both with idmapped and
  non-idmapped mounts. It already helped to discover an unrelated xfs
  setgid inheritance bug which has since been fixed in mainline. It will
  be sent for inclusion with the xfstests project should you decide to
  merge this.

  In order to support per-mount idmappings vfsmounts are marked with
  user namespaces. The idmapping of the user namespace will be used to
  map the ids of vfs objects when they are accessed through that mount.
  By default all vfsmounts are marked with the initial user namespace.
  The initial user namespace is used to indicate that a mount is not
  idmapped. All operations behave as before and this is verified in the
  testsuite.

  Based on prior discussions we want to attach the whole user namespace
  and not just a dedicated idmapping struct. This allows us to reuse all
  the helpers that already exist for dealing with idmappings instead of
  introducing a whole new range of helpers. In addition, if we decide in
  the future that we are confident enough to enable unprivileged users
  to setup idmapped mounts the permission checking can take into account
  whether the caller is privileged in the user namespace the mount is
  currently marked with.

  The user namespace the mount will be marked with can be specified by
  passing a file descriptor refering to the user namespace as an
  argument to the new mount_setattr() syscall together with the new
  MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
  of extensibility.

  The following conditions must be met in order to create an idmapped
  mount:

   - The caller must currently have the CAP_SYS_ADMIN capability in the
     user namespace the underlying filesystem has been mounted in.

   - The underlying filesystem must support idmapped mounts.

   - The mount must not already be idmapped. This also implies that the
     idmapping of a mount cannot be altered once it has been idmapped.

   - The mount must be a detached/anonymous mount, i.e. it must have
     been created by calling open_tree() with the OPEN_TREE_CLONE flag
     and it must not already have been visible in the filesystem.

  The last two points guarantee easier semantics for userspace and the
  kernel and make the implementation significantly simpler.

  By default vfsmounts are marked with the initial user namespace and no
  behavioral or performance changes are observed.

  The manpage with a detailed description can be found here:

      1d7b902e28

  In order to support idmapped mounts, filesystems need to be changed
  and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
  patches to convert individual filesystem are not very large or
  complicated overall as can be seen from the included fat, ext4, and
  xfs ports. Patches for other filesystems are actively worked on and
  will be sent out separately. The xfstestsuite can be used to verify
  that port has been done correctly.

  The mount_setattr() syscall is motivated independent of the idmapped
  mounts patches and it's been around since July 2019. One of the most
  valuable features of the new mount api is the ability to perform
  mounts based on file descriptors only.

  Together with the lookup restrictions available in the openat2()
  RESOLVE_* flag namespace which we added in v5.6 this is the first time
  we are close to hardened and race-free (e.g. symlinks) mounting and
  path resolution.

  While userspace has started porting to the new mount api to mount
  proper filesystems and create new bind-mounts it is currently not
  possible to change mount options of an already existing bind mount in
  the new mount api since the mount_setattr() syscall is missing.

  With the addition of the mount_setattr() syscall we remove this last
  restriction and userspace can now fully port to the new mount api,
  covering every use-case the old mount api could. We also add the
  crucial ability to recursively change mount options for a whole mount
  tree, both removing and adding mount options at the same time. This
  syscall has been requested multiple times by various people and
  projects.

  There is a simple tool available at

      https://github.com/brauner/mount-idmapped

  that allows to create idmapped mounts so people can play with this
  patch series. I'll add support for the regular mount binary should you
  decide to pull this in the following weeks:

  Here's an example to a simple idmapped mount of another user's home
  directory:

	u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt

	u1001@f2-vm:/$ ls -al /home/ubuntu/
	total 28
	drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
	drwxr-xr-x 4 root   root   4096 Oct 28 04:00 ..
	-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
	-rw-r--r-- 1 ubuntu ubuntu  220 Feb 25  2020 .bash_logout
	-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25  2020 .bashrc
	-rw-r--r-- 1 ubuntu ubuntu  807 Feb 25  2020 .profile
	-rw-r--r-- 1 ubuntu ubuntu    0 Oct 16 16:11 .sudo_as_admin_successful
	-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo

	u1001@f2-vm:/$ ls -al /mnt/
	total 28
	drwxr-xr-x  2 u1001 u1001 4096 Oct 28 22:07 .
	drwxr-xr-x 29 root  root  4096 Oct 28 22:01 ..
	-rw-------  1 u1001 u1001 3154 Oct 28 22:12 .bash_history
	-rw-r--r--  1 u1001 u1001  220 Feb 25  2020 .bash_logout
	-rw-r--r--  1 u1001 u1001 3771 Feb 25  2020 .bashrc
	-rw-r--r--  1 u1001 u1001  807 Feb 25  2020 .profile
	-rw-r--r--  1 u1001 u1001    0 Oct 16 16:11 .sudo_as_admin_successful
	-rw-------  1 u1001 u1001 1144 Oct 28 00:43 .viminfo

	u1001@f2-vm:/$ touch /mnt/my-file

	u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file

	u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file

	u1001@f2-vm:/$ ls -al /mnt/my-file
	-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file

	u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
	-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file

	u1001@f2-vm:/$ getfacl /mnt/my-file
	getfacl: Removing leading '/' from absolute path names
	# file: mnt/my-file
	# owner: u1001
	# group: u1001
	user::rw-
	user:u1001:rwx
	group::rw-
	mask::rwx
	other::r--

	u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
	getfacl: Removing leading '/' from absolute path names
	# file: home/ubuntu/my-file
	# owner: ubuntu
	# group: ubuntu
	user::rw-
	user:ubuntu:rwx
	group::rw-
	mask::rwx
	other::r--"

* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
  xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
  xfs: support idmapped mounts
  ext4: support idmapped mounts
  fat: handle idmapped mounts
  tests: add mount_setattr() selftests
  fs: introduce MOUNT_ATTR_IDMAP
  fs: add mount_setattr()
  fs: add attr_flags_to_mnt_flags helper
  fs: split out functions to hold writers
  namespace: only take read lock in do_reconfigure_mnt()
  mount: make {lock,unlock}_mount_hash() static
  namespace: take lock_mount_hash() directly when changing flags
  nfs: do not export idmapped mounts
  overlayfs: do not mount on top of idmapped mounts
  ecryptfs: do not mount on top of idmapped mounts
  ima: handle idmapped mounts
  apparmor: handle idmapped mounts
  fs: make helpers idmap mount aware
  exec: handle idmapped mounts
  would_dump: handle idmapped mounts
  ...
2021-02-23 13:39:45 -08:00

816 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/xattr.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* Portions of this code from linux/fs/ext2/xattr.c
*
* Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
*
* Fix by Harrison Xing <harrison@mountainviewdata.com>.
* Extended attributes for symlinks and special files added per
* suggestion of Luka Renko <luka.renko@hermes.si>.
* xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
* Red Hat Inc.
*/
#include <linux/rwsem.h>
#include <linux/f2fs_fs.h>
#include <linux/security.h>
#include <linux/posix_acl_xattr.h>
#include "f2fs.h"
#include "xattr.h"
#include "segment.h"
static void *xattr_alloc(struct f2fs_sb_info *sbi, int size, bool *is_inline)
{
if (likely(size == sbi->inline_xattr_slab_size)) {
*is_inline = true;
return kmem_cache_zalloc(sbi->inline_xattr_slab, GFP_NOFS);
}
*is_inline = false;
return f2fs_kzalloc(sbi, size, GFP_NOFS);
}
static void xattr_free(struct f2fs_sb_info *sbi, void *xattr_addr,
bool is_inline)
{
if (is_inline)
kmem_cache_free(sbi->inline_xattr_slab, xattr_addr);
else
kfree(xattr_addr);
}
static int f2fs_xattr_generic_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
switch (handler->flags) {
case F2FS_XATTR_INDEX_USER:
if (!test_opt(sbi, XATTR_USER))
return -EOPNOTSUPP;
break;
case F2FS_XATTR_INDEX_TRUSTED:
case F2FS_XATTR_INDEX_SECURITY:
break;
default:
return -EINVAL;
}
return f2fs_getxattr(inode, handler->flags, name,
buffer, size, NULL);
}
static int f2fs_xattr_generic_set(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
switch (handler->flags) {
case F2FS_XATTR_INDEX_USER:
if (!test_opt(sbi, XATTR_USER))
return -EOPNOTSUPP;
break;
case F2FS_XATTR_INDEX_TRUSTED:
case F2FS_XATTR_INDEX_SECURITY:
break;
default:
return -EINVAL;
}
return f2fs_setxattr(inode, handler->flags, name,
value, size, NULL, flags);
}
static bool f2fs_xattr_user_list(struct dentry *dentry)
{
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
return test_opt(sbi, XATTR_USER);
}
static bool f2fs_xattr_trusted_list(struct dentry *dentry)
{
return capable(CAP_SYS_ADMIN);
}
static int f2fs_xattr_advise_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
if (buffer)
*((char *)buffer) = F2FS_I(inode)->i_advise;
return sizeof(char);
}
static int f2fs_xattr_advise_set(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
unsigned char old_advise = F2FS_I(inode)->i_advise;
unsigned char new_advise;
if (!inode_owner_or_capable(&init_user_ns, inode))
return -EPERM;
if (value == NULL)
return -EINVAL;
new_advise = *(char *)value;
if (new_advise & ~FADVISE_MODIFIABLE_BITS)
return -EINVAL;
new_advise = new_advise & FADVISE_MODIFIABLE_BITS;
new_advise |= old_advise & ~FADVISE_MODIFIABLE_BITS;
F2FS_I(inode)->i_advise = new_advise;
f2fs_mark_inode_dirty_sync(inode, true);
return 0;
}
#ifdef CONFIG_F2FS_FS_SECURITY
static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
void *page)
{
const struct xattr *xattr;
int err = 0;
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY,
xattr->name, xattr->value,
xattr->value_len, (struct page *)page, 0);
if (err < 0)
break;
}
return err;
}
int f2fs_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr, struct page *ipage)
{
return security_inode_init_security(inode, dir, qstr,
&f2fs_initxattrs, ipage);
}
#endif
const struct xattr_handler f2fs_xattr_user_handler = {
.prefix = XATTR_USER_PREFIX,
.flags = F2FS_XATTR_INDEX_USER,
.list = f2fs_xattr_user_list,
.get = f2fs_xattr_generic_get,
.set = f2fs_xattr_generic_set,
};
const struct xattr_handler f2fs_xattr_trusted_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.flags = F2FS_XATTR_INDEX_TRUSTED,
.list = f2fs_xattr_trusted_list,
.get = f2fs_xattr_generic_get,
.set = f2fs_xattr_generic_set,
};
const struct xattr_handler f2fs_xattr_advise_handler = {
.name = F2FS_SYSTEM_ADVISE_NAME,
.flags = F2FS_XATTR_INDEX_ADVISE,
.get = f2fs_xattr_advise_get,
.set = f2fs_xattr_advise_set,
};
const struct xattr_handler f2fs_xattr_security_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.flags = F2FS_XATTR_INDEX_SECURITY,
.get = f2fs_xattr_generic_get,
.set = f2fs_xattr_generic_set,
};
static const struct xattr_handler *f2fs_xattr_handler_map[] = {
[F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
#ifdef CONFIG_F2FS_FS_POSIX_ACL
[F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler,
[F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler,
#endif
[F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
#ifdef CONFIG_F2FS_FS_SECURITY
[F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler,
#endif
[F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
};
const struct xattr_handler *f2fs_xattr_handlers[] = {
&f2fs_xattr_user_handler,
#ifdef CONFIG_F2FS_FS_POSIX_ACL
&posix_acl_access_xattr_handler,
&posix_acl_default_xattr_handler,
#endif
&f2fs_xattr_trusted_handler,
#ifdef CONFIG_F2FS_FS_SECURITY
&f2fs_xattr_security_handler,
#endif
&f2fs_xattr_advise_handler,
NULL,
};
static inline const struct xattr_handler *f2fs_xattr_handler(int index)
{
const struct xattr_handler *handler = NULL;
if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map))
handler = f2fs_xattr_handler_map[index];
return handler;
}
static struct f2fs_xattr_entry *__find_xattr(void *base_addr,
void *last_base_addr, int index,
size_t len, const char *name)
{
struct f2fs_xattr_entry *entry;
list_for_each_xattr(entry, base_addr) {
if ((void *)(entry) + sizeof(__u32) > last_base_addr ||
(void *)XATTR_NEXT_ENTRY(entry) > last_base_addr)
return NULL;
if (entry->e_name_index != index)
continue;
if (entry->e_name_len != len)
continue;
if (!memcmp(entry->e_name, name, len))
break;
}
return entry;
}
static struct f2fs_xattr_entry *__find_inline_xattr(struct inode *inode,
void *base_addr, void **last_addr, int index,
size_t len, const char *name)
{
struct f2fs_xattr_entry *entry;
unsigned int inline_size = inline_xattr_size(inode);
void *max_addr = base_addr + inline_size;
list_for_each_xattr(entry, base_addr) {
if ((void *)entry + sizeof(__u32) > max_addr ||
(void *)XATTR_NEXT_ENTRY(entry) > max_addr) {
*last_addr = entry;
return NULL;
}
if (entry->e_name_index != index)
continue;
if (entry->e_name_len != len)
continue;
if (!memcmp(entry->e_name, name, len))
break;
}
/* inline xattr header or entry across max inline xattr size */
if (IS_XATTR_LAST_ENTRY(entry) &&
(void *)entry + sizeof(__u32) > max_addr) {
*last_addr = entry;
return NULL;
}
return entry;
}
static int read_inline_xattr(struct inode *inode, struct page *ipage,
void *txattr_addr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int inline_size = inline_xattr_size(inode);
struct page *page = NULL;
void *inline_addr;
if (ipage) {
inline_addr = inline_xattr_addr(inode, ipage);
} else {
page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(page))
return PTR_ERR(page);
inline_addr = inline_xattr_addr(inode, page);
}
memcpy(txattr_addr, inline_addr, inline_size);
f2fs_put_page(page, 1);
return 0;
}
static int read_xattr_block(struct inode *inode, void *txattr_addr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
unsigned int inline_size = inline_xattr_size(inode);
struct page *xpage;
void *xattr_addr;
/* The inode already has an extended attribute block. */
xpage = f2fs_get_node_page(sbi, xnid);
if (IS_ERR(xpage))
return PTR_ERR(xpage);
xattr_addr = page_address(xpage);
memcpy(txattr_addr + inline_size, xattr_addr, VALID_XATTR_BLOCK_SIZE);
f2fs_put_page(xpage, 1);
return 0;
}
static int lookup_all_xattrs(struct inode *inode, struct page *ipage,
unsigned int index, unsigned int len,
const char *name, struct f2fs_xattr_entry **xe,
void **base_addr, int *base_size,
bool *is_inline)
{
void *cur_addr, *txattr_addr, *last_txattr_addr;
void *last_addr = NULL;
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
unsigned int inline_size = inline_xattr_size(inode);
int err;
if (!xnid && !inline_size)
return -ENODATA;
*base_size = XATTR_SIZE(inode) + XATTR_PADDING_SIZE;
txattr_addr = xattr_alloc(F2FS_I_SB(inode), *base_size, is_inline);
if (!txattr_addr)
return -ENOMEM;
last_txattr_addr = (void *)txattr_addr + XATTR_SIZE(inode);
/* read from inline xattr */
if (inline_size) {
err = read_inline_xattr(inode, ipage, txattr_addr);
if (err)
goto out;
*xe = __find_inline_xattr(inode, txattr_addr, &last_addr,
index, len, name);
if (*xe) {
*base_size = inline_size;
goto check;
}
}
/* read from xattr node block */
if (xnid) {
err = read_xattr_block(inode, txattr_addr);
if (err)
goto out;
}
if (last_addr)
cur_addr = XATTR_HDR(last_addr) - 1;
else
cur_addr = txattr_addr;
*xe = __find_xattr(cur_addr, last_txattr_addr, index, len, name);
if (!*xe) {
f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr",
inode->i_ino);
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
err = -EFSCORRUPTED;
goto out;
}
check:
if (IS_XATTR_LAST_ENTRY(*xe)) {
err = -ENODATA;
goto out;
}
*base_addr = txattr_addr;
return 0;
out:
xattr_free(F2FS_I_SB(inode), txattr_addr, *is_inline);
return err;
}
static int read_all_xattrs(struct inode *inode, struct page *ipage,
void **base_addr)
{
struct f2fs_xattr_header *header;
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
unsigned int size = VALID_XATTR_BLOCK_SIZE;
unsigned int inline_size = inline_xattr_size(inode);
void *txattr_addr;
int err;
txattr_addr = f2fs_kzalloc(F2FS_I_SB(inode),
inline_size + size + XATTR_PADDING_SIZE, GFP_NOFS);
if (!txattr_addr)
return -ENOMEM;
/* read from inline xattr */
if (inline_size) {
err = read_inline_xattr(inode, ipage, txattr_addr);
if (err)
goto fail;
}
/* read from xattr node block */
if (xnid) {
err = read_xattr_block(inode, txattr_addr);
if (err)
goto fail;
}
header = XATTR_HDR(txattr_addr);
/* never been allocated xattrs */
if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
header->h_refcount = cpu_to_le32(1);
}
*base_addr = txattr_addr;
return 0;
fail:
kfree(txattr_addr);
return err;
}
static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
void *txattr_addr, struct page *ipage)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
size_t inline_size = inline_xattr_size(inode);
struct page *in_page = NULL;
void *xattr_addr;
void *inline_addr = NULL;
struct page *xpage;
nid_t new_nid = 0;
int err = 0;
if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
if (!f2fs_alloc_nid(sbi, &new_nid))
return -ENOSPC;
/* write to inline xattr */
if (inline_size) {
if (ipage) {
inline_addr = inline_xattr_addr(inode, ipage);
} else {
in_page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(in_page)) {
f2fs_alloc_nid_failed(sbi, new_nid);
return PTR_ERR(in_page);
}
inline_addr = inline_xattr_addr(inode, in_page);
}
f2fs_wait_on_page_writeback(ipage ? ipage : in_page,
NODE, true, true);
/* no need to use xattr node block */
if (hsize <= inline_size) {
err = f2fs_truncate_xattr_node(inode);
f2fs_alloc_nid_failed(sbi, new_nid);
if (err) {
f2fs_put_page(in_page, 1);
return err;
}
memcpy(inline_addr, txattr_addr, inline_size);
set_page_dirty(ipage ? ipage : in_page);
goto in_page_out;
}
}
/* write to xattr node block */
if (F2FS_I(inode)->i_xattr_nid) {
xpage = f2fs_get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
if (IS_ERR(xpage)) {
err = PTR_ERR(xpage);
f2fs_alloc_nid_failed(sbi, new_nid);
goto in_page_out;
}
f2fs_bug_on(sbi, new_nid);
f2fs_wait_on_page_writeback(xpage, NODE, true, true);
} else {
struct dnode_of_data dn;
set_new_dnode(&dn, inode, NULL, NULL, new_nid);
xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
if (IS_ERR(xpage)) {
err = PTR_ERR(xpage);
f2fs_alloc_nid_failed(sbi, new_nid);
goto in_page_out;
}
f2fs_alloc_nid_done(sbi, new_nid);
}
xattr_addr = page_address(xpage);
if (inline_size)
memcpy(inline_addr, txattr_addr, inline_size);
memcpy(xattr_addr, txattr_addr + inline_size, VALID_XATTR_BLOCK_SIZE);
if (inline_size)
set_page_dirty(ipage ? ipage : in_page);
set_page_dirty(xpage);
f2fs_put_page(xpage, 1);
in_page_out:
f2fs_put_page(in_page, 1);
return err;
}
int f2fs_getxattr(struct inode *inode, int index, const char *name,
void *buffer, size_t buffer_size, struct page *ipage)
{
struct f2fs_xattr_entry *entry = NULL;
int error;
unsigned int size, len;
void *base_addr = NULL;
int base_size;
bool is_inline;
if (name == NULL)
return -EINVAL;
len = strlen(name);
if (len > F2FS_NAME_LEN)
return -ERANGE;
down_read(&F2FS_I(inode)->i_xattr_sem);
error = lookup_all_xattrs(inode, ipage, index, len, name,
&entry, &base_addr, &base_size, &is_inline);
up_read(&F2FS_I(inode)->i_xattr_sem);
if (error)
return error;
size = le16_to_cpu(entry->e_value_size);
if (buffer && size > buffer_size) {
error = -ERANGE;
goto out;
}
if (buffer) {
char *pval = entry->e_name + entry->e_name_len;
if (base_size - (pval - (char *)base_addr) < size) {
error = -ERANGE;
goto out;
}
memcpy(buffer, pval, size);
}
error = size;
out:
xattr_free(F2FS_I_SB(inode), base_addr, is_inline);
return error;
}
ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
{
struct inode *inode = d_inode(dentry);
struct f2fs_xattr_entry *entry;
void *base_addr, *last_base_addr;
int error;
size_t rest = buffer_size;
down_read(&F2FS_I(inode)->i_xattr_sem);
error = read_all_xattrs(inode, NULL, &base_addr);
up_read(&F2FS_I(inode)->i_xattr_sem);
if (error)
return error;
last_base_addr = (void *)base_addr + XATTR_SIZE(inode);
list_for_each_xattr(entry, base_addr) {
const struct xattr_handler *handler =
f2fs_xattr_handler(entry->e_name_index);
const char *prefix;
size_t prefix_len;
size_t size;
if ((void *)(entry) + sizeof(__u32) > last_base_addr ||
(void *)XATTR_NEXT_ENTRY(entry) > last_base_addr) {
f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr",
inode->i_ino);
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
error = -EFSCORRUPTED;
goto cleanup;
}
if (!handler || (handler->list && !handler->list(dentry)))
continue;
prefix = xattr_prefix(handler);
prefix_len = strlen(prefix);
size = prefix_len + entry->e_name_len + 1;
if (buffer) {
if (size > rest) {
error = -ERANGE;
goto cleanup;
}
memcpy(buffer, prefix, prefix_len);
buffer += prefix_len;
memcpy(buffer, entry->e_name, entry->e_name_len);
buffer += entry->e_name_len;
*buffer++ = 0;
}
rest -= size;
}
error = buffer_size - rest;
cleanup:
kfree(base_addr);
return error;
}
static bool f2fs_xattr_value_same(struct f2fs_xattr_entry *entry,
const void *value, size_t size)
{
void *pval = entry->e_name + entry->e_name_len;
return (le16_to_cpu(entry->e_value_size) == size) &&
!memcmp(pval, value, size);
}
static int __f2fs_setxattr(struct inode *inode, int index,
const char *name, const void *value, size_t size,
struct page *ipage, int flags)
{
struct f2fs_xattr_entry *here, *last;
void *base_addr, *last_base_addr;
int found, newsize;
size_t len;
__u32 new_hsize;
int error;
if (name == NULL)
return -EINVAL;
if (value == NULL)
size = 0;
len = strlen(name);
if (len > F2FS_NAME_LEN)
return -ERANGE;
if (size > MAX_VALUE_LEN(inode))
return -E2BIG;
error = read_all_xattrs(inode, ipage, &base_addr);
if (error)
return error;
last_base_addr = (void *)base_addr + XATTR_SIZE(inode);
/* find entry with wanted name. */
here = __find_xattr(base_addr, last_base_addr, index, len, name);
if (!here) {
f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr",
inode->i_ino);
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
error = -EFSCORRUPTED;
goto exit;
}
found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1;
if (found) {
if ((flags & XATTR_CREATE)) {
error = -EEXIST;
goto exit;
}
if (value && f2fs_xattr_value_same(here, value, size))
goto same;
} else if ((flags & XATTR_REPLACE)) {
error = -ENODATA;
goto exit;
}
last = here;
while (!IS_XATTR_LAST_ENTRY(last))
last = XATTR_NEXT_ENTRY(last);
newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size);
/* 1. Check space */
if (value) {
int free;
/*
* If value is NULL, it is remove operation.
* In case of update operation, we calculate free.
*/
free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr);
if (found)
free = free + ENTRY_SIZE(here);
if (unlikely(free < newsize)) {
error = -E2BIG;
goto exit;
}
}
/* 2. Remove old entry */
if (found) {
/*
* If entry is found, remove old entry.
* If not found, remove operation is not needed.
*/
struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
int oldsize = ENTRY_SIZE(here);
memmove(here, next, (char *)last - (char *)next);
last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
memset(last, 0, oldsize);
}
new_hsize = (char *)last - (char *)base_addr;
/* 3. Write new entry */
if (value) {
char *pval;
/*
* Before we come here, old entry is removed.
* We just write new entry.
*/
last->e_name_index = index;
last->e_name_len = len;
memcpy(last->e_name, name, len);
pval = last->e_name + len;
memcpy(pval, value, size);
last->e_value_size = cpu_to_le16(size);
new_hsize += newsize;
}
error = write_all_xattrs(inode, new_hsize, base_addr, ipage);
if (error)
goto exit;
if (index == F2FS_XATTR_INDEX_ENCRYPTION &&
!strcmp(name, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT))
f2fs_set_encrypted_inode(inode);
f2fs_mark_inode_dirty_sync(inode, true);
if (!error && S_ISDIR(inode->i_mode))
set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_CP);
same:
if (is_inode_flag_set(inode, FI_ACL_MODE)) {
inode->i_mode = F2FS_I(inode)->i_acl_mode;
inode->i_ctime = current_time(inode);
clear_inode_flag(inode, FI_ACL_MODE);
}
exit:
kfree(base_addr);
return error;
}
int f2fs_setxattr(struct inode *inode, int index, const char *name,
const void *value, size_t size,
struct page *ipage, int flags)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int err;
if (unlikely(f2fs_cp_error(sbi)))
return -EIO;
if (!f2fs_is_checkpoint_ready(sbi))
return -ENOSPC;
err = dquot_initialize(inode);
if (err)
return err;
/* this case is only from f2fs_init_inode_metadata */
if (ipage)
return __f2fs_setxattr(inode, index, name, value,
size, ipage, flags);
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
down_write(&F2FS_I(inode)->i_xattr_sem);
err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags);
up_write(&F2FS_I(inode)->i_xattr_sem);
f2fs_unlock_op(sbi);
f2fs_update_time(sbi, REQ_TIME);
return err;
}
int f2fs_init_xattr_caches(struct f2fs_sb_info *sbi)
{
dev_t dev = sbi->sb->s_bdev->bd_dev;
char slab_name[32];
sprintf(slab_name, "f2fs_xattr_entry-%u:%u", MAJOR(dev), MINOR(dev));
sbi->inline_xattr_slab_size = F2FS_OPTION(sbi).inline_xattr_size *
sizeof(__le32) + XATTR_PADDING_SIZE;
sbi->inline_xattr_slab = f2fs_kmem_cache_create(slab_name,
sbi->inline_xattr_slab_size);
if (!sbi->inline_xattr_slab)
return -ENOMEM;
return 0;
}
void f2fs_destroy_xattr_caches(struct f2fs_sb_info *sbi)
{
kmem_cache_destroy(sbi->inline_xattr_slab);
}