mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-15 18:34:47 +08:00
1b2a7ddeaa
[ Upstream commit b40130b23c
]
We have been hitting the following lockdep splat with btrfs/187 recently
WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30
-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);
*** DEADLOCK ***
7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of
reloc tree -> normal tree
for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.
However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of
normal tree -> reloc tree
which is why lockdep complains.
Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.
Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.
This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of
normal tree -> reloc tree
We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.
With this patch we no longer have the lockdep splat in btrfs/187.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
380 lines
9.7 KiB
C
380 lines
9.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2008 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/page-flags.h>
|
|
#include <asm/bug.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "extent_io.h"
|
|
#include "locking.h"
|
|
|
|
/*
|
|
* Lockdep class keys for extent_buffer->lock's in this root. For a given
|
|
* eb, the lockdep key is determined by the btrfs_root it belongs to and
|
|
* the level the eb occupies in the tree.
|
|
*
|
|
* Different roots are used for different purposes and may nest inside each
|
|
* other and they require separate keysets. As lockdep keys should be
|
|
* static, assign keysets according to the purpose of the root as indicated
|
|
* by btrfs_root->root_key.objectid. This ensures that all special purpose
|
|
* roots have separate keysets.
|
|
*
|
|
* Lock-nesting across peer nodes is always done with the immediate parent
|
|
* node locked thus preventing deadlock. As lockdep doesn't know this, use
|
|
* subclass to avoid triggering lockdep warning in such cases.
|
|
*
|
|
* The key is set by the readpage_end_io_hook after the buffer has passed
|
|
* csum validation but before the pages are unlocked. It is also set by
|
|
* btrfs_init_new_buffer on freshly allocated blocks.
|
|
*
|
|
* We also add a check to make sure the highest level of the tree is the
|
|
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
|
|
* needs update as well.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
#if BTRFS_MAX_LEVEL != 8
|
|
#error
|
|
#endif
|
|
|
|
#define DEFINE_LEVEL(stem, level) \
|
|
.names[level] = "btrfs-" stem "-0" #level,
|
|
|
|
#define DEFINE_NAME(stem) \
|
|
DEFINE_LEVEL(stem, 0) \
|
|
DEFINE_LEVEL(stem, 1) \
|
|
DEFINE_LEVEL(stem, 2) \
|
|
DEFINE_LEVEL(stem, 3) \
|
|
DEFINE_LEVEL(stem, 4) \
|
|
DEFINE_LEVEL(stem, 5) \
|
|
DEFINE_LEVEL(stem, 6) \
|
|
DEFINE_LEVEL(stem, 7)
|
|
|
|
static struct btrfs_lockdep_keyset {
|
|
u64 id; /* root objectid */
|
|
/* Longest entry: btrfs-free-space-00 */
|
|
char names[BTRFS_MAX_LEVEL][20];
|
|
struct lock_class_key keys[BTRFS_MAX_LEVEL];
|
|
} btrfs_lockdep_keysets[] = {
|
|
{ .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
|
|
{ .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
|
|
{ .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
|
|
{ .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
|
|
{ .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
|
|
{ .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
|
|
{ .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
|
|
{ .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
|
|
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
|
|
{ .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
|
|
{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
|
|
{ .id = 0, DEFINE_NAME("tree") },
|
|
};
|
|
|
|
#undef DEFINE_LEVEL
|
|
#undef DEFINE_NAME
|
|
|
|
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
|
|
{
|
|
struct btrfs_lockdep_keyset *ks;
|
|
|
|
BUG_ON(level >= ARRAY_SIZE(ks->keys));
|
|
|
|
/* Find the matching keyset, id 0 is the default entry */
|
|
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
|
|
if (ks->id == objectid)
|
|
break;
|
|
|
|
lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
|
|
}
|
|
|
|
void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
|
|
{
|
|
if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
|
|
btrfs_set_buffer_lockdep_class(root->root_key.objectid,
|
|
eb, btrfs_header_level(eb));
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Extent buffer locking
|
|
* =====================
|
|
*
|
|
* We use a rw_semaphore for tree locking, and the semantics are exactly the
|
|
* same:
|
|
*
|
|
* - reader/writer exclusion
|
|
* - writer/writer exclusion
|
|
* - reader/reader sharing
|
|
* - try-lock semantics for readers and writers
|
|
*
|
|
* The rwsem implementation does opportunistic spinning which reduces number of
|
|
* times the locking task needs to sleep.
|
|
*/
|
|
|
|
/*
|
|
* __btrfs_tree_read_lock - lock extent buffer for read
|
|
* @eb: the eb to be locked
|
|
* @nest: the nesting level to be used for lockdep
|
|
*
|
|
* This takes the read lock on the extent buffer, using the specified nesting
|
|
* level for lockdep purposes.
|
|
*/
|
|
void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
|
|
{
|
|
u64 start_ns = 0;
|
|
|
|
if (trace_btrfs_tree_read_lock_enabled())
|
|
start_ns = ktime_get_ns();
|
|
|
|
down_read_nested(&eb->lock, nest);
|
|
trace_btrfs_tree_read_lock(eb, start_ns);
|
|
}
|
|
|
|
void btrfs_tree_read_lock(struct extent_buffer *eb)
|
|
{
|
|
__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
|
|
}
|
|
|
|
/*
|
|
* Try-lock for read.
|
|
*
|
|
* Return 1 if the rwlock has been taken, 0 otherwise
|
|
*/
|
|
int btrfs_try_tree_read_lock(struct extent_buffer *eb)
|
|
{
|
|
if (down_read_trylock(&eb->lock)) {
|
|
trace_btrfs_try_tree_read_lock(eb);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try-lock for write.
|
|
*
|
|
* Return 1 if the rwlock has been taken, 0 otherwise
|
|
*/
|
|
int btrfs_try_tree_write_lock(struct extent_buffer *eb)
|
|
{
|
|
if (down_write_trylock(&eb->lock)) {
|
|
eb->lock_owner = current->pid;
|
|
trace_btrfs_try_tree_write_lock(eb);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release read lock.
|
|
*/
|
|
void btrfs_tree_read_unlock(struct extent_buffer *eb)
|
|
{
|
|
trace_btrfs_tree_read_unlock(eb);
|
|
up_read(&eb->lock);
|
|
}
|
|
|
|
/*
|
|
* __btrfs_tree_lock - lock eb for write
|
|
* @eb: the eb to lock
|
|
* @nest: the nesting to use for the lock
|
|
*
|
|
* Returns with the eb->lock write locked.
|
|
*/
|
|
void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
|
|
__acquires(&eb->lock)
|
|
{
|
|
u64 start_ns = 0;
|
|
|
|
if (trace_btrfs_tree_lock_enabled())
|
|
start_ns = ktime_get_ns();
|
|
|
|
down_write_nested(&eb->lock, nest);
|
|
eb->lock_owner = current->pid;
|
|
trace_btrfs_tree_lock(eb, start_ns);
|
|
}
|
|
|
|
void btrfs_tree_lock(struct extent_buffer *eb)
|
|
{
|
|
__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
|
|
}
|
|
|
|
/*
|
|
* Release the write lock.
|
|
*/
|
|
void btrfs_tree_unlock(struct extent_buffer *eb)
|
|
{
|
|
trace_btrfs_tree_unlock(eb);
|
|
eb->lock_owner = 0;
|
|
up_write(&eb->lock);
|
|
}
|
|
|
|
/*
|
|
* This releases any locks held in the path starting at level and going all the
|
|
* way up to the root.
|
|
*
|
|
* btrfs_search_slot will keep the lock held on higher nodes in a few corner
|
|
* cases, such as COW of the block at slot zero in the node. This ignores
|
|
* those rules, and it should only be called when there are no more updates to
|
|
* be done higher up in the tree.
|
|
*/
|
|
void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
|
|
{
|
|
int i;
|
|
|
|
if (path->keep_locks)
|
|
return;
|
|
|
|
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
|
|
if (!path->nodes[i])
|
|
continue;
|
|
if (!path->locks[i])
|
|
continue;
|
|
btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
|
|
path->locks[i] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Loop around taking references on and locking the root node of the tree until
|
|
* we end up with a lock on the root node.
|
|
*
|
|
* Return: root extent buffer with write lock held
|
|
*/
|
|
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
|
|
{
|
|
struct extent_buffer *eb;
|
|
|
|
while (1) {
|
|
eb = btrfs_root_node(root);
|
|
|
|
btrfs_maybe_reset_lockdep_class(root, eb);
|
|
btrfs_tree_lock(eb);
|
|
if (eb == root->node)
|
|
break;
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
return eb;
|
|
}
|
|
|
|
/*
|
|
* Loop around taking references on and locking the root node of the tree until
|
|
* we end up with a lock on the root node.
|
|
*
|
|
* Return: root extent buffer with read lock held
|
|
*/
|
|
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
|
|
{
|
|
struct extent_buffer *eb;
|
|
|
|
while (1) {
|
|
eb = btrfs_root_node(root);
|
|
|
|
btrfs_maybe_reset_lockdep_class(root, eb);
|
|
btrfs_tree_read_lock(eb);
|
|
if (eb == root->node)
|
|
break;
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
return eb;
|
|
}
|
|
|
|
/*
|
|
* DREW locks
|
|
* ==========
|
|
*
|
|
* DREW stands for double-reader-writer-exclusion lock. It's used in situation
|
|
* where you want to provide A-B exclusion but not AA or BB.
|
|
*
|
|
* Currently implementation gives more priority to reader. If a reader and a
|
|
* writer both race to acquire their respective sides of the lock the writer
|
|
* would yield its lock as soon as it detects a concurrent reader. Additionally
|
|
* if there are pending readers no new writers would be allowed to come in and
|
|
* acquire the lock.
|
|
*/
|
|
|
|
int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
|
|
{
|
|
int ret;
|
|
|
|
ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
atomic_set(&lock->readers, 0);
|
|
init_waitqueue_head(&lock->pending_readers);
|
|
init_waitqueue_head(&lock->pending_writers);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
|
|
{
|
|
percpu_counter_destroy(&lock->writers);
|
|
}
|
|
|
|
/* Return true if acquisition is successful, false otherwise */
|
|
bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
|
|
{
|
|
if (atomic_read(&lock->readers))
|
|
return false;
|
|
|
|
percpu_counter_inc(&lock->writers);
|
|
|
|
/* Ensure writers count is updated before we check for pending readers */
|
|
smp_mb();
|
|
if (atomic_read(&lock->readers)) {
|
|
btrfs_drew_write_unlock(lock);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
|
|
{
|
|
while (true) {
|
|
if (btrfs_drew_try_write_lock(lock))
|
|
return;
|
|
wait_event(lock->pending_writers, !atomic_read(&lock->readers));
|
|
}
|
|
}
|
|
|
|
void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
|
|
{
|
|
percpu_counter_dec(&lock->writers);
|
|
cond_wake_up(&lock->pending_readers);
|
|
}
|
|
|
|
void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
|
|
{
|
|
atomic_inc(&lock->readers);
|
|
|
|
/*
|
|
* Ensure the pending reader count is perceieved BEFORE this reader
|
|
* goes to sleep in case of active writers. This guarantees new writers
|
|
* won't be allowed and that the current reader will be woken up when
|
|
* the last active writer finishes its jobs.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
|
|
wait_event(lock->pending_readers,
|
|
percpu_counter_sum(&lock->writers) == 0);
|
|
}
|
|
|
|
void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
|
|
{
|
|
/*
|
|
* atomic_dec_and_test implies a full barrier, so woken up writers
|
|
* are guaranteed to see the decrement
|
|
*/
|
|
if (atomic_dec_and_test(&lock->readers))
|
|
wake_up(&lock->pending_writers);
|
|
}
|