mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 09:34:12 +08:00
fbc90c042c
walkers") is known to cause a performance regression (https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff). Yu has a fix which I'll send along later via the hotfixes branch. - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Is anyone reading this stuff? If so, email me! - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3 xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8= =z0Lf -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. * tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits) mm/mglru: fix ineffective protection calculation mm/zswap: fix a white space issue mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio mm/hugetlb: fix possible recursive locking detected warning mm/gup: clear the LRU flag of a page before adding to LRU batch mm/numa_balancing: teach mpol_to_str about the balancing mode mm: memcg1: convert charge move flags to unsigned long long alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting lib: reuse page_ext_data() to obtain codetag_ref lib: add missing newline character in the warning message mm/mglru: fix overshooting shrinker memory mm/mglru: fix div-by-zero in vmpressure_calc_level() mm/kmemleak: replace strncpy() with strscpy() mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB mm: ignore data-race in __swap_writepage hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr mm: shmem: rename mTHP shmem counters mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async() mm/migrate: putback split folios when numa hint migration fails ...
2446 lines
62 KiB
C
2446 lines
62 KiB
C
/*
|
|
* An async IO implementation for Linux
|
|
* Written by Benjamin LaHaise <bcrl@kvack.org>
|
|
*
|
|
* Implements an efficient asynchronous io interface.
|
|
*
|
|
* Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
|
|
* Copyright 2018 Christoph Hellwig.
|
|
*
|
|
* See ../COPYING for licensing terms.
|
|
*/
|
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/time.h>
|
|
#include <linux/aio_abi.h>
|
|
#include <linux/export.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/aio.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/security.h>
|
|
#include <linux/eventfd.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/ramfs.h>
|
|
#include <linux/percpu-refcount.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pseudo_fs.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/nospec.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define KIOCB_KEY 0
|
|
|
|
#define AIO_RING_MAGIC 0xa10a10a1
|
|
#define AIO_RING_COMPAT_FEATURES 1
|
|
#define AIO_RING_INCOMPAT_FEATURES 0
|
|
struct aio_ring {
|
|
unsigned id; /* kernel internal index number */
|
|
unsigned nr; /* number of io_events */
|
|
unsigned head; /* Written to by userland or under ring_lock
|
|
* mutex by aio_read_events_ring(). */
|
|
unsigned tail;
|
|
|
|
unsigned magic;
|
|
unsigned compat_features;
|
|
unsigned incompat_features;
|
|
unsigned header_length; /* size of aio_ring */
|
|
|
|
|
|
struct io_event io_events[];
|
|
}; /* 128 bytes + ring size */
|
|
|
|
/*
|
|
* Plugging is meant to work with larger batches of IOs. If we don't
|
|
* have more than the below, then don't bother setting up a plug.
|
|
*/
|
|
#define AIO_PLUG_THRESHOLD 2
|
|
|
|
#define AIO_RING_PAGES 8
|
|
|
|
struct kioctx_table {
|
|
struct rcu_head rcu;
|
|
unsigned nr;
|
|
struct kioctx __rcu *table[] __counted_by(nr);
|
|
};
|
|
|
|
struct kioctx_cpu {
|
|
unsigned reqs_available;
|
|
};
|
|
|
|
struct ctx_rq_wait {
|
|
struct completion comp;
|
|
atomic_t count;
|
|
};
|
|
|
|
struct kioctx {
|
|
struct percpu_ref users;
|
|
atomic_t dead;
|
|
|
|
struct percpu_ref reqs;
|
|
|
|
unsigned long user_id;
|
|
|
|
struct __percpu kioctx_cpu *cpu;
|
|
|
|
/*
|
|
* For percpu reqs_available, number of slots we move to/from global
|
|
* counter at a time:
|
|
*/
|
|
unsigned req_batch;
|
|
/*
|
|
* This is what userspace passed to io_setup(), it's not used for
|
|
* anything but counting against the global max_reqs quota.
|
|
*
|
|
* The real limit is nr_events - 1, which will be larger (see
|
|
* aio_setup_ring())
|
|
*/
|
|
unsigned max_reqs;
|
|
|
|
/* Size of ringbuffer, in units of struct io_event */
|
|
unsigned nr_events;
|
|
|
|
unsigned long mmap_base;
|
|
unsigned long mmap_size;
|
|
|
|
struct folio **ring_folios;
|
|
long nr_pages;
|
|
|
|
struct rcu_work free_rwork; /* see free_ioctx() */
|
|
|
|
/*
|
|
* signals when all in-flight requests are done
|
|
*/
|
|
struct ctx_rq_wait *rq_wait;
|
|
|
|
struct {
|
|
/*
|
|
* This counts the number of available slots in the ringbuffer,
|
|
* so we avoid overflowing it: it's decremented (if positive)
|
|
* when allocating a kiocb and incremented when the resulting
|
|
* io_event is pulled off the ringbuffer.
|
|
*
|
|
* We batch accesses to it with a percpu version.
|
|
*/
|
|
atomic_t reqs_available;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
struct {
|
|
spinlock_t ctx_lock;
|
|
struct list_head active_reqs; /* used for cancellation */
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
struct {
|
|
struct mutex ring_lock;
|
|
wait_queue_head_t wait;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
struct {
|
|
unsigned tail;
|
|
unsigned completed_events;
|
|
spinlock_t completion_lock;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
struct folio *internal_folios[AIO_RING_PAGES];
|
|
struct file *aio_ring_file;
|
|
|
|
unsigned id;
|
|
};
|
|
|
|
/*
|
|
* First field must be the file pointer in all the
|
|
* iocb unions! See also 'struct kiocb' in <linux/fs.h>
|
|
*/
|
|
struct fsync_iocb {
|
|
struct file *file;
|
|
struct work_struct work;
|
|
bool datasync;
|
|
struct cred *creds;
|
|
};
|
|
|
|
struct poll_iocb {
|
|
struct file *file;
|
|
struct wait_queue_head *head;
|
|
__poll_t events;
|
|
bool cancelled;
|
|
bool work_scheduled;
|
|
bool work_need_resched;
|
|
struct wait_queue_entry wait;
|
|
struct work_struct work;
|
|
};
|
|
|
|
/*
|
|
* NOTE! Each of the iocb union members has the file pointer
|
|
* as the first entry in their struct definition. So you can
|
|
* access the file pointer through any of the sub-structs,
|
|
* or directly as just 'ki_filp' in this struct.
|
|
*/
|
|
struct aio_kiocb {
|
|
union {
|
|
struct file *ki_filp;
|
|
struct kiocb rw;
|
|
struct fsync_iocb fsync;
|
|
struct poll_iocb poll;
|
|
};
|
|
|
|
struct kioctx *ki_ctx;
|
|
kiocb_cancel_fn *ki_cancel;
|
|
|
|
struct io_event ki_res;
|
|
|
|
struct list_head ki_list; /* the aio core uses this
|
|
* for cancellation */
|
|
refcount_t ki_refcnt;
|
|
|
|
/*
|
|
* If the aio_resfd field of the userspace iocb is not zero,
|
|
* this is the underlying eventfd context to deliver events to.
|
|
*/
|
|
struct eventfd_ctx *ki_eventfd;
|
|
};
|
|
|
|
/*------ sysctl variables----*/
|
|
static DEFINE_SPINLOCK(aio_nr_lock);
|
|
static unsigned long aio_nr; /* current system wide number of aio requests */
|
|
static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
|
|
/*----end sysctl variables---*/
|
|
#ifdef CONFIG_SYSCTL
|
|
static struct ctl_table aio_sysctls[] = {
|
|
{
|
|
.procname = "aio-nr",
|
|
.data = &aio_nr,
|
|
.maxlen = sizeof(aio_nr),
|
|
.mode = 0444,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
{
|
|
.procname = "aio-max-nr",
|
|
.data = &aio_max_nr,
|
|
.maxlen = sizeof(aio_max_nr),
|
|
.mode = 0644,
|
|
.proc_handler = proc_doulongvec_minmax,
|
|
},
|
|
};
|
|
|
|
static void __init aio_sysctl_init(void)
|
|
{
|
|
register_sysctl_init("fs", aio_sysctls);
|
|
}
|
|
#else
|
|
#define aio_sysctl_init() do { } while (0)
|
|
#endif
|
|
|
|
static struct kmem_cache *kiocb_cachep;
|
|
static struct kmem_cache *kioctx_cachep;
|
|
|
|
static struct vfsmount *aio_mnt;
|
|
|
|
static const struct file_operations aio_ring_fops;
|
|
static const struct address_space_operations aio_ctx_aops;
|
|
|
|
static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
|
|
{
|
|
struct file *file;
|
|
struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
|
|
if (IS_ERR(inode))
|
|
return ERR_CAST(inode);
|
|
|
|
inode->i_mapping->a_ops = &aio_ctx_aops;
|
|
inode->i_mapping->i_private_data = ctx;
|
|
inode->i_size = PAGE_SIZE * nr_pages;
|
|
|
|
file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
|
|
O_RDWR, &aio_ring_fops);
|
|
if (IS_ERR(file))
|
|
iput(inode);
|
|
return file;
|
|
}
|
|
|
|
static int aio_init_fs_context(struct fs_context *fc)
|
|
{
|
|
if (!init_pseudo(fc, AIO_RING_MAGIC))
|
|
return -ENOMEM;
|
|
fc->s_iflags |= SB_I_NOEXEC;
|
|
return 0;
|
|
}
|
|
|
|
/* aio_setup
|
|
* Creates the slab caches used by the aio routines, panic on
|
|
* failure as this is done early during the boot sequence.
|
|
*/
|
|
static int __init aio_setup(void)
|
|
{
|
|
static struct file_system_type aio_fs = {
|
|
.name = "aio",
|
|
.init_fs_context = aio_init_fs_context,
|
|
.kill_sb = kill_anon_super,
|
|
};
|
|
aio_mnt = kern_mount(&aio_fs);
|
|
if (IS_ERR(aio_mnt))
|
|
panic("Failed to create aio fs mount.");
|
|
|
|
kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
|
|
kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
|
|
aio_sysctl_init();
|
|
return 0;
|
|
}
|
|
__initcall(aio_setup);
|
|
|
|
static void put_aio_ring_file(struct kioctx *ctx)
|
|
{
|
|
struct file *aio_ring_file = ctx->aio_ring_file;
|
|
struct address_space *i_mapping;
|
|
|
|
if (aio_ring_file) {
|
|
truncate_setsize(file_inode(aio_ring_file), 0);
|
|
|
|
/* Prevent further access to the kioctx from migratepages */
|
|
i_mapping = aio_ring_file->f_mapping;
|
|
spin_lock(&i_mapping->i_private_lock);
|
|
i_mapping->i_private_data = NULL;
|
|
ctx->aio_ring_file = NULL;
|
|
spin_unlock(&i_mapping->i_private_lock);
|
|
|
|
fput(aio_ring_file);
|
|
}
|
|
}
|
|
|
|
static void aio_free_ring(struct kioctx *ctx)
|
|
{
|
|
int i;
|
|
|
|
/* Disconnect the kiotx from the ring file. This prevents future
|
|
* accesses to the kioctx from page migration.
|
|
*/
|
|
put_aio_ring_file(ctx);
|
|
|
|
for (i = 0; i < ctx->nr_pages; i++) {
|
|
struct folio *folio = ctx->ring_folios[i];
|
|
|
|
if (!folio)
|
|
continue;
|
|
|
|
pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
|
|
folio_ref_count(folio));
|
|
ctx->ring_folios[i] = NULL;
|
|
folio_put(folio);
|
|
}
|
|
|
|
if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) {
|
|
kfree(ctx->ring_folios);
|
|
ctx->ring_folios = NULL;
|
|
}
|
|
}
|
|
|
|
static int aio_ring_mremap(struct vm_area_struct *vma)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct kioctx_table *table;
|
|
int i, res = -EINVAL;
|
|
|
|
spin_lock(&mm->ioctx_lock);
|
|
rcu_read_lock();
|
|
table = rcu_dereference(mm->ioctx_table);
|
|
if (!table)
|
|
goto out_unlock;
|
|
|
|
for (i = 0; i < table->nr; i++) {
|
|
struct kioctx *ctx;
|
|
|
|
ctx = rcu_dereference(table->table[i]);
|
|
if (ctx && ctx->aio_ring_file == file) {
|
|
if (!atomic_read(&ctx->dead)) {
|
|
ctx->user_id = ctx->mmap_base = vma->vm_start;
|
|
res = 0;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
spin_unlock(&mm->ioctx_lock);
|
|
return res;
|
|
}
|
|
|
|
static const struct vm_operations_struct aio_ring_vm_ops = {
|
|
.mremap = aio_ring_mremap,
|
|
#if IS_ENABLED(CONFIG_MMU)
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = filemap_page_mkwrite,
|
|
#endif
|
|
};
|
|
|
|
static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
vm_flags_set(vma, VM_DONTEXPAND);
|
|
vma->vm_ops = &aio_ring_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations aio_ring_fops = {
|
|
.mmap = aio_ring_mmap,
|
|
};
|
|
|
|
#if IS_ENABLED(CONFIG_MIGRATION)
|
|
static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
|
|
struct folio *src, enum migrate_mode mode)
|
|
{
|
|
struct kioctx *ctx;
|
|
unsigned long flags;
|
|
pgoff_t idx;
|
|
int rc = 0;
|
|
|
|
/* mapping->i_private_lock here protects against the kioctx teardown. */
|
|
spin_lock(&mapping->i_private_lock);
|
|
ctx = mapping->i_private_data;
|
|
if (!ctx) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* The ring_lock mutex. The prevents aio_read_events() from writing
|
|
* to the ring's head, and prevents page migration from mucking in
|
|
* a partially initialized kiotx.
|
|
*/
|
|
if (!mutex_trylock(&ctx->ring_lock)) {
|
|
rc = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
idx = src->index;
|
|
if (idx < (pgoff_t)ctx->nr_pages) {
|
|
/* Make sure the old folio hasn't already been changed */
|
|
if (ctx->ring_folios[idx] != src)
|
|
rc = -EAGAIN;
|
|
} else
|
|
rc = -EINVAL;
|
|
|
|
if (rc != 0)
|
|
goto out_unlock;
|
|
|
|
/* Writeback must be complete */
|
|
BUG_ON(folio_test_writeback(src));
|
|
folio_get(dst);
|
|
|
|
rc = folio_migrate_mapping(mapping, dst, src, 1);
|
|
if (rc != MIGRATEPAGE_SUCCESS) {
|
|
folio_put(dst);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Take completion_lock to prevent other writes to the ring buffer
|
|
* while the old folio is copied to the new. This prevents new
|
|
* events from being lost.
|
|
*/
|
|
spin_lock_irqsave(&ctx->completion_lock, flags);
|
|
folio_copy(dst, src);
|
|
folio_migrate_flags(dst, src);
|
|
BUG_ON(ctx->ring_folios[idx] != src);
|
|
ctx->ring_folios[idx] = dst;
|
|
spin_unlock_irqrestore(&ctx->completion_lock, flags);
|
|
|
|
/* The old folio is no longer accessible. */
|
|
folio_put(src);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ctx->ring_lock);
|
|
out:
|
|
spin_unlock(&mapping->i_private_lock);
|
|
return rc;
|
|
}
|
|
#else
|
|
#define aio_migrate_folio NULL
|
|
#endif
|
|
|
|
static const struct address_space_operations aio_ctx_aops = {
|
|
.dirty_folio = noop_dirty_folio,
|
|
.migrate_folio = aio_migrate_folio,
|
|
};
|
|
|
|
static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
|
|
{
|
|
struct aio_ring *ring;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long size, unused;
|
|
int nr_pages;
|
|
int i;
|
|
struct file *file;
|
|
|
|
/* Compensate for the ring buffer's head/tail overlap entry */
|
|
nr_events += 2; /* 1 is required, 2 for good luck */
|
|
|
|
size = sizeof(struct aio_ring);
|
|
size += sizeof(struct io_event) * nr_events;
|
|
|
|
nr_pages = PFN_UP(size);
|
|
if (nr_pages < 0)
|
|
return -EINVAL;
|
|
|
|
file = aio_private_file(ctx, nr_pages);
|
|
if (IS_ERR(file)) {
|
|
ctx->aio_ring_file = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ctx->aio_ring_file = file;
|
|
nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
|
|
/ sizeof(struct io_event);
|
|
|
|
ctx->ring_folios = ctx->internal_folios;
|
|
if (nr_pages > AIO_RING_PAGES) {
|
|
ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *),
|
|
GFP_KERNEL);
|
|
if (!ctx->ring_folios) {
|
|
put_aio_ring_file(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct folio *folio;
|
|
|
|
folio = __filemap_get_folio(file->f_mapping, i,
|
|
FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
|
|
GFP_USER | __GFP_ZERO);
|
|
if (IS_ERR(folio))
|
|
break;
|
|
|
|
pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
|
|
folio_ref_count(folio));
|
|
folio_end_read(folio, true);
|
|
|
|
ctx->ring_folios[i] = folio;
|
|
}
|
|
ctx->nr_pages = i;
|
|
|
|
if (unlikely(i != nr_pages)) {
|
|
aio_free_ring(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ctx->mmap_size = nr_pages * PAGE_SIZE;
|
|
pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
|
|
|
|
if (mmap_write_lock_killable(mm)) {
|
|
ctx->mmap_size = 0;
|
|
aio_free_ring(ctx);
|
|
return -EINTR;
|
|
}
|
|
|
|
ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED, 0, 0, &unused, NULL);
|
|
mmap_write_unlock(mm);
|
|
if (IS_ERR((void *)ctx->mmap_base)) {
|
|
ctx->mmap_size = 0;
|
|
aio_free_ring(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
|
|
|
|
ctx->user_id = ctx->mmap_base;
|
|
ctx->nr_events = nr_events; /* trusted copy */
|
|
|
|
ring = folio_address(ctx->ring_folios[0]);
|
|
ring->nr = nr_events; /* user copy */
|
|
ring->id = ~0U;
|
|
ring->head = ring->tail = 0;
|
|
ring->magic = AIO_RING_MAGIC;
|
|
ring->compat_features = AIO_RING_COMPAT_FEATURES;
|
|
ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
|
|
ring->header_length = sizeof(struct aio_ring);
|
|
flush_dcache_folio(ctx->ring_folios[0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
|
|
#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
|
|
#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
|
|
|
|
void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
|
|
{
|
|
struct aio_kiocb *req;
|
|
struct kioctx *ctx;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* kiocb didn't come from aio or is neither a read nor a write, hence
|
|
* ignore it.
|
|
*/
|
|
if (!(iocb->ki_flags & IOCB_AIO_RW))
|
|
return;
|
|
|
|
req = container_of(iocb, struct aio_kiocb, rw);
|
|
|
|
if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
|
|
return;
|
|
|
|
ctx = req->ki_ctx;
|
|
|
|
spin_lock_irqsave(&ctx->ctx_lock, flags);
|
|
list_add_tail(&req->ki_list, &ctx->active_reqs);
|
|
req->ki_cancel = cancel;
|
|
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(kiocb_set_cancel_fn);
|
|
|
|
/*
|
|
* free_ioctx() should be RCU delayed to synchronize against the RCU
|
|
* protected lookup_ioctx() and also needs process context to call
|
|
* aio_free_ring(). Use rcu_work.
|
|
*/
|
|
static void free_ioctx(struct work_struct *work)
|
|
{
|
|
struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
|
|
free_rwork);
|
|
pr_debug("freeing %p\n", ctx);
|
|
|
|
aio_free_ring(ctx);
|
|
free_percpu(ctx->cpu);
|
|
percpu_ref_exit(&ctx->reqs);
|
|
percpu_ref_exit(&ctx->users);
|
|
kmem_cache_free(kioctx_cachep, ctx);
|
|
}
|
|
|
|
static void free_ioctx_reqs(struct percpu_ref *ref)
|
|
{
|
|
struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
|
|
|
|
/* At this point we know that there are no any in-flight requests */
|
|
if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
|
|
complete(&ctx->rq_wait->comp);
|
|
|
|
/* Synchronize against RCU protected table->table[] dereferences */
|
|
INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
|
|
queue_rcu_work(system_wq, &ctx->free_rwork);
|
|
}
|
|
|
|
/*
|
|
* When this function runs, the kioctx has been removed from the "hash table"
|
|
* and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
|
|
* now it's safe to cancel any that need to be.
|
|
*/
|
|
static void free_ioctx_users(struct percpu_ref *ref)
|
|
{
|
|
struct kioctx *ctx = container_of(ref, struct kioctx, users);
|
|
struct aio_kiocb *req;
|
|
|
|
spin_lock_irq(&ctx->ctx_lock);
|
|
|
|
while (!list_empty(&ctx->active_reqs)) {
|
|
req = list_first_entry(&ctx->active_reqs,
|
|
struct aio_kiocb, ki_list);
|
|
req->ki_cancel(&req->rw);
|
|
list_del_init(&req->ki_list);
|
|
}
|
|
|
|
spin_unlock_irq(&ctx->ctx_lock);
|
|
|
|
percpu_ref_kill(&ctx->reqs);
|
|
percpu_ref_put(&ctx->reqs);
|
|
}
|
|
|
|
static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
|
|
{
|
|
unsigned i, new_nr;
|
|
struct kioctx_table *table, *old;
|
|
struct aio_ring *ring;
|
|
|
|
spin_lock(&mm->ioctx_lock);
|
|
table = rcu_dereference_raw(mm->ioctx_table);
|
|
|
|
while (1) {
|
|
if (table)
|
|
for (i = 0; i < table->nr; i++)
|
|
if (!rcu_access_pointer(table->table[i])) {
|
|
ctx->id = i;
|
|
rcu_assign_pointer(table->table[i], ctx);
|
|
spin_unlock(&mm->ioctx_lock);
|
|
|
|
/* While kioctx setup is in progress,
|
|
* we are protected from page migration
|
|
* changes ring_folios by ->ring_lock.
|
|
*/
|
|
ring = folio_address(ctx->ring_folios[0]);
|
|
ring->id = ctx->id;
|
|
return 0;
|
|
}
|
|
|
|
new_nr = (table ? table->nr : 1) * 4;
|
|
spin_unlock(&mm->ioctx_lock);
|
|
|
|
table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
table->nr = new_nr;
|
|
|
|
spin_lock(&mm->ioctx_lock);
|
|
old = rcu_dereference_raw(mm->ioctx_table);
|
|
|
|
if (!old) {
|
|
rcu_assign_pointer(mm->ioctx_table, table);
|
|
} else if (table->nr > old->nr) {
|
|
memcpy(table->table, old->table,
|
|
old->nr * sizeof(struct kioctx *));
|
|
|
|
rcu_assign_pointer(mm->ioctx_table, table);
|
|
kfree_rcu(old, rcu);
|
|
} else {
|
|
kfree(table);
|
|
table = old;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void aio_nr_sub(unsigned nr)
|
|
{
|
|
spin_lock(&aio_nr_lock);
|
|
if (WARN_ON(aio_nr - nr > aio_nr))
|
|
aio_nr = 0;
|
|
else
|
|
aio_nr -= nr;
|
|
spin_unlock(&aio_nr_lock);
|
|
}
|
|
|
|
/* ioctx_alloc
|
|
* Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
|
|
*/
|
|
static struct kioctx *ioctx_alloc(unsigned nr_events)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct kioctx *ctx;
|
|
int err = -ENOMEM;
|
|
|
|
/*
|
|
* Store the original nr_events -- what userspace passed to io_setup(),
|
|
* for counting against the global limit -- before it changes.
|
|
*/
|
|
unsigned int max_reqs = nr_events;
|
|
|
|
/*
|
|
* We keep track of the number of available ringbuffer slots, to prevent
|
|
* overflow (reqs_available), and we also use percpu counters for this.
|
|
*
|
|
* So since up to half the slots might be on other cpu's percpu counters
|
|
* and unavailable, double nr_events so userspace sees what they
|
|
* expected: additionally, we move req_batch slots to/from percpu
|
|
* counters at a time, so make sure that isn't 0:
|
|
*/
|
|
nr_events = max(nr_events, num_possible_cpus() * 4);
|
|
nr_events *= 2;
|
|
|
|
/* Prevent overflows */
|
|
if (nr_events > (0x10000000U / sizeof(struct io_event))) {
|
|
pr_debug("ENOMEM: nr_events too high\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
|
|
return ERR_PTR(-EAGAIN);
|
|
|
|
ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
|
|
if (!ctx)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ctx->max_reqs = max_reqs;
|
|
|
|
spin_lock_init(&ctx->ctx_lock);
|
|
spin_lock_init(&ctx->completion_lock);
|
|
mutex_init(&ctx->ring_lock);
|
|
/* Protect against page migration throughout kiotx setup by keeping
|
|
* the ring_lock mutex held until setup is complete. */
|
|
mutex_lock(&ctx->ring_lock);
|
|
init_waitqueue_head(&ctx->wait);
|
|
|
|
INIT_LIST_HEAD(&ctx->active_reqs);
|
|
|
|
if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
|
|
goto err;
|
|
|
|
if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
|
|
goto err;
|
|
|
|
ctx->cpu = alloc_percpu(struct kioctx_cpu);
|
|
if (!ctx->cpu)
|
|
goto err;
|
|
|
|
err = aio_setup_ring(ctx, nr_events);
|
|
if (err < 0)
|
|
goto err;
|
|
|
|
atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
|
|
ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
|
|
if (ctx->req_batch < 1)
|
|
ctx->req_batch = 1;
|
|
|
|
/* limit the number of system wide aios */
|
|
spin_lock(&aio_nr_lock);
|
|
if (aio_nr + ctx->max_reqs > aio_max_nr ||
|
|
aio_nr + ctx->max_reqs < aio_nr) {
|
|
spin_unlock(&aio_nr_lock);
|
|
err = -EAGAIN;
|
|
goto err_ctx;
|
|
}
|
|
aio_nr += ctx->max_reqs;
|
|
spin_unlock(&aio_nr_lock);
|
|
|
|
percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
|
|
percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
|
|
|
|
err = ioctx_add_table(ctx, mm);
|
|
if (err)
|
|
goto err_cleanup;
|
|
|
|
/* Release the ring_lock mutex now that all setup is complete. */
|
|
mutex_unlock(&ctx->ring_lock);
|
|
|
|
pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
|
|
ctx, ctx->user_id, mm, ctx->nr_events);
|
|
return ctx;
|
|
|
|
err_cleanup:
|
|
aio_nr_sub(ctx->max_reqs);
|
|
err_ctx:
|
|
atomic_set(&ctx->dead, 1);
|
|
if (ctx->mmap_size)
|
|
vm_munmap(ctx->mmap_base, ctx->mmap_size);
|
|
aio_free_ring(ctx);
|
|
err:
|
|
mutex_unlock(&ctx->ring_lock);
|
|
free_percpu(ctx->cpu);
|
|
percpu_ref_exit(&ctx->reqs);
|
|
percpu_ref_exit(&ctx->users);
|
|
kmem_cache_free(kioctx_cachep, ctx);
|
|
pr_debug("error allocating ioctx %d\n", err);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* kill_ioctx
|
|
* Cancels all outstanding aio requests on an aio context. Used
|
|
* when the processes owning a context have all exited to encourage
|
|
* the rapid destruction of the kioctx.
|
|
*/
|
|
static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
|
|
struct ctx_rq_wait *wait)
|
|
{
|
|
struct kioctx_table *table;
|
|
|
|
spin_lock(&mm->ioctx_lock);
|
|
if (atomic_xchg(&ctx->dead, 1)) {
|
|
spin_unlock(&mm->ioctx_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
table = rcu_dereference_raw(mm->ioctx_table);
|
|
WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
|
|
RCU_INIT_POINTER(table->table[ctx->id], NULL);
|
|
spin_unlock(&mm->ioctx_lock);
|
|
|
|
/* free_ioctx_reqs() will do the necessary RCU synchronization */
|
|
wake_up_all(&ctx->wait);
|
|
|
|
/*
|
|
* It'd be more correct to do this in free_ioctx(), after all
|
|
* the outstanding kiocbs have finished - but by then io_destroy
|
|
* has already returned, so io_setup() could potentially return
|
|
* -EAGAIN with no ioctxs actually in use (as far as userspace
|
|
* could tell).
|
|
*/
|
|
aio_nr_sub(ctx->max_reqs);
|
|
|
|
if (ctx->mmap_size)
|
|
vm_munmap(ctx->mmap_base, ctx->mmap_size);
|
|
|
|
ctx->rq_wait = wait;
|
|
percpu_ref_kill(&ctx->users);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* exit_aio: called when the last user of mm goes away. At this point, there is
|
|
* no way for any new requests to be submited or any of the io_* syscalls to be
|
|
* called on the context.
|
|
*
|
|
* There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
|
|
* them.
|
|
*/
|
|
void exit_aio(struct mm_struct *mm)
|
|
{
|
|
struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
|
|
struct ctx_rq_wait wait;
|
|
int i, skipped;
|
|
|
|
if (!table)
|
|
return;
|
|
|
|
atomic_set(&wait.count, table->nr);
|
|
init_completion(&wait.comp);
|
|
|
|
skipped = 0;
|
|
for (i = 0; i < table->nr; ++i) {
|
|
struct kioctx *ctx =
|
|
rcu_dereference_protected(table->table[i], true);
|
|
|
|
if (!ctx) {
|
|
skipped++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We don't need to bother with munmap() here - exit_mmap(mm)
|
|
* is coming and it'll unmap everything. And we simply can't,
|
|
* this is not necessarily our ->mm.
|
|
* Since kill_ioctx() uses non-zero ->mmap_size as indicator
|
|
* that it needs to unmap the area, just set it to 0.
|
|
*/
|
|
ctx->mmap_size = 0;
|
|
kill_ioctx(mm, ctx, &wait);
|
|
}
|
|
|
|
if (!atomic_sub_and_test(skipped, &wait.count)) {
|
|
/* Wait until all IO for the context are done. */
|
|
wait_for_completion(&wait.comp);
|
|
}
|
|
|
|
RCU_INIT_POINTER(mm->ioctx_table, NULL);
|
|
kfree(table);
|
|
}
|
|
|
|
static void put_reqs_available(struct kioctx *ctx, unsigned nr)
|
|
{
|
|
struct kioctx_cpu *kcpu;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
kcpu = this_cpu_ptr(ctx->cpu);
|
|
kcpu->reqs_available += nr;
|
|
|
|
while (kcpu->reqs_available >= ctx->req_batch * 2) {
|
|
kcpu->reqs_available -= ctx->req_batch;
|
|
atomic_add(ctx->req_batch, &ctx->reqs_available);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static bool __get_reqs_available(struct kioctx *ctx)
|
|
{
|
|
struct kioctx_cpu *kcpu;
|
|
bool ret = false;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
kcpu = this_cpu_ptr(ctx->cpu);
|
|
if (!kcpu->reqs_available) {
|
|
int avail = atomic_read(&ctx->reqs_available);
|
|
|
|
do {
|
|
if (avail < ctx->req_batch)
|
|
goto out;
|
|
} while (!atomic_try_cmpxchg(&ctx->reqs_available,
|
|
&avail, avail - ctx->req_batch));
|
|
|
|
kcpu->reqs_available += ctx->req_batch;
|
|
}
|
|
|
|
ret = true;
|
|
kcpu->reqs_available--;
|
|
out:
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/* refill_reqs_available
|
|
* Updates the reqs_available reference counts used for tracking the
|
|
* number of free slots in the completion ring. This can be called
|
|
* from aio_complete() (to optimistically update reqs_available) or
|
|
* from aio_get_req() (the we're out of events case). It must be
|
|
* called holding ctx->completion_lock.
|
|
*/
|
|
static void refill_reqs_available(struct kioctx *ctx, unsigned head,
|
|
unsigned tail)
|
|
{
|
|
unsigned events_in_ring, completed;
|
|
|
|
/* Clamp head since userland can write to it. */
|
|
head %= ctx->nr_events;
|
|
if (head <= tail)
|
|
events_in_ring = tail - head;
|
|
else
|
|
events_in_ring = ctx->nr_events - (head - tail);
|
|
|
|
completed = ctx->completed_events;
|
|
if (events_in_ring < completed)
|
|
completed -= events_in_ring;
|
|
else
|
|
completed = 0;
|
|
|
|
if (!completed)
|
|
return;
|
|
|
|
ctx->completed_events -= completed;
|
|
put_reqs_available(ctx, completed);
|
|
}
|
|
|
|
/* user_refill_reqs_available
|
|
* Called to refill reqs_available when aio_get_req() encounters an
|
|
* out of space in the completion ring.
|
|
*/
|
|
static void user_refill_reqs_available(struct kioctx *ctx)
|
|
{
|
|
spin_lock_irq(&ctx->completion_lock);
|
|
if (ctx->completed_events) {
|
|
struct aio_ring *ring;
|
|
unsigned head;
|
|
|
|
/* Access of ring->head may race with aio_read_events_ring()
|
|
* here, but that's okay since whether we read the old version
|
|
* or the new version, and either will be valid. The important
|
|
* part is that head cannot pass tail since we prevent
|
|
* aio_complete() from updating tail by holding
|
|
* ctx->completion_lock. Even if head is invalid, the check
|
|
* against ctx->completed_events below will make sure we do the
|
|
* safe/right thing.
|
|
*/
|
|
ring = folio_address(ctx->ring_folios[0]);
|
|
head = ring->head;
|
|
|
|
refill_reqs_available(ctx, head, ctx->tail);
|
|
}
|
|
|
|
spin_unlock_irq(&ctx->completion_lock);
|
|
}
|
|
|
|
static bool get_reqs_available(struct kioctx *ctx)
|
|
{
|
|
if (__get_reqs_available(ctx))
|
|
return true;
|
|
user_refill_reqs_available(ctx);
|
|
return __get_reqs_available(ctx);
|
|
}
|
|
|
|
/* aio_get_req
|
|
* Allocate a slot for an aio request.
|
|
* Returns NULL if no requests are free.
|
|
*
|
|
* The refcount is initialized to 2 - one for the async op completion,
|
|
* one for the synchronous code that does this.
|
|
*/
|
|
static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
|
|
{
|
|
struct aio_kiocb *req;
|
|
|
|
req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
|
|
if (unlikely(!req))
|
|
return NULL;
|
|
|
|
if (unlikely(!get_reqs_available(ctx))) {
|
|
kmem_cache_free(kiocb_cachep, req);
|
|
return NULL;
|
|
}
|
|
|
|
percpu_ref_get(&ctx->reqs);
|
|
req->ki_ctx = ctx;
|
|
INIT_LIST_HEAD(&req->ki_list);
|
|
refcount_set(&req->ki_refcnt, 2);
|
|
req->ki_eventfd = NULL;
|
|
return req;
|
|
}
|
|
|
|
static struct kioctx *lookup_ioctx(unsigned long ctx_id)
|
|
{
|
|
struct aio_ring __user *ring = (void __user *)ctx_id;
|
|
struct mm_struct *mm = current->mm;
|
|
struct kioctx *ctx, *ret = NULL;
|
|
struct kioctx_table *table;
|
|
unsigned id;
|
|
|
|
if (get_user(id, &ring->id))
|
|
return NULL;
|
|
|
|
rcu_read_lock();
|
|
table = rcu_dereference(mm->ioctx_table);
|
|
|
|
if (!table || id >= table->nr)
|
|
goto out;
|
|
|
|
id = array_index_nospec(id, table->nr);
|
|
ctx = rcu_dereference(table->table[id]);
|
|
if (ctx && ctx->user_id == ctx_id) {
|
|
if (percpu_ref_tryget_live(&ctx->users))
|
|
ret = ctx;
|
|
}
|
|
out:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static inline void iocb_destroy(struct aio_kiocb *iocb)
|
|
{
|
|
if (iocb->ki_eventfd)
|
|
eventfd_ctx_put(iocb->ki_eventfd);
|
|
if (iocb->ki_filp)
|
|
fput(iocb->ki_filp);
|
|
percpu_ref_put(&iocb->ki_ctx->reqs);
|
|
kmem_cache_free(kiocb_cachep, iocb);
|
|
}
|
|
|
|
struct aio_waiter {
|
|
struct wait_queue_entry w;
|
|
size_t min_nr;
|
|
};
|
|
|
|
/* aio_complete
|
|
* Called when the io request on the given iocb is complete.
|
|
*/
|
|
static void aio_complete(struct aio_kiocb *iocb)
|
|
{
|
|
struct kioctx *ctx = iocb->ki_ctx;
|
|
struct aio_ring *ring;
|
|
struct io_event *ev_page, *event;
|
|
unsigned tail, pos, head, avail;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Add a completion event to the ring buffer. Must be done holding
|
|
* ctx->completion_lock to prevent other code from messing with the tail
|
|
* pointer since we might be called from irq context.
|
|
*/
|
|
spin_lock_irqsave(&ctx->completion_lock, flags);
|
|
|
|
tail = ctx->tail;
|
|
pos = tail + AIO_EVENTS_OFFSET;
|
|
|
|
if (++tail >= ctx->nr_events)
|
|
tail = 0;
|
|
|
|
ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
|
|
event = ev_page + pos % AIO_EVENTS_PER_PAGE;
|
|
|
|
*event = iocb->ki_res;
|
|
|
|
flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
|
|
|
|
pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
|
|
(void __user *)(unsigned long)iocb->ki_res.obj,
|
|
iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
|
|
|
|
/* after flagging the request as done, we
|
|
* must never even look at it again
|
|
*/
|
|
smp_wmb(); /* make event visible before updating tail */
|
|
|
|
ctx->tail = tail;
|
|
|
|
ring = folio_address(ctx->ring_folios[0]);
|
|
head = ring->head;
|
|
ring->tail = tail;
|
|
flush_dcache_folio(ctx->ring_folios[0]);
|
|
|
|
ctx->completed_events++;
|
|
if (ctx->completed_events > 1)
|
|
refill_reqs_available(ctx, head, tail);
|
|
|
|
avail = tail > head
|
|
? tail - head
|
|
: tail + ctx->nr_events - head;
|
|
spin_unlock_irqrestore(&ctx->completion_lock, flags);
|
|
|
|
pr_debug("added to ring %p at [%u]\n", iocb, tail);
|
|
|
|
/*
|
|
* Check if the user asked us to deliver the result through an
|
|
* eventfd. The eventfd_signal() function is safe to be called
|
|
* from IRQ context.
|
|
*/
|
|
if (iocb->ki_eventfd)
|
|
eventfd_signal(iocb->ki_eventfd);
|
|
|
|
/*
|
|
* We have to order our ring_info tail store above and test
|
|
* of the wait list below outside the wait lock. This is
|
|
* like in wake_up_bit() where clearing a bit has to be
|
|
* ordered with the unlocked test.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (waitqueue_active(&ctx->wait)) {
|
|
struct aio_waiter *curr, *next;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ctx->wait.lock, flags);
|
|
list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
|
|
if (avail >= curr->min_nr) {
|
|
wake_up_process(curr->w.private);
|
|
list_del_init_careful(&curr->w.entry);
|
|
}
|
|
spin_unlock_irqrestore(&ctx->wait.lock, flags);
|
|
}
|
|
}
|
|
|
|
static inline void iocb_put(struct aio_kiocb *iocb)
|
|
{
|
|
if (refcount_dec_and_test(&iocb->ki_refcnt)) {
|
|
aio_complete(iocb);
|
|
iocb_destroy(iocb);
|
|
}
|
|
}
|
|
|
|
/* aio_read_events_ring
|
|
* Pull an event off of the ioctx's event ring. Returns the number of
|
|
* events fetched
|
|
*/
|
|
static long aio_read_events_ring(struct kioctx *ctx,
|
|
struct io_event __user *event, long nr)
|
|
{
|
|
struct aio_ring *ring;
|
|
unsigned head, tail, pos;
|
|
long ret = 0;
|
|
int copy_ret;
|
|
|
|
/*
|
|
* The mutex can block and wake us up and that will cause
|
|
* wait_event_interruptible_hrtimeout() to schedule without sleeping
|
|
* and repeat. This should be rare enough that it doesn't cause
|
|
* peformance issues. See the comment in read_events() for more detail.
|
|
*/
|
|
sched_annotate_sleep();
|
|
mutex_lock(&ctx->ring_lock);
|
|
|
|
/* Access to ->ring_folios here is protected by ctx->ring_lock. */
|
|
ring = folio_address(ctx->ring_folios[0]);
|
|
head = ring->head;
|
|
tail = ring->tail;
|
|
|
|
/*
|
|
* Ensure that once we've read the current tail pointer, that
|
|
* we also see the events that were stored up to the tail.
|
|
*/
|
|
smp_rmb();
|
|
|
|
pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
|
|
|
|
if (head == tail)
|
|
goto out;
|
|
|
|
head %= ctx->nr_events;
|
|
tail %= ctx->nr_events;
|
|
|
|
while (ret < nr) {
|
|
long avail;
|
|
struct io_event *ev;
|
|
struct folio *folio;
|
|
|
|
avail = (head <= tail ? tail : ctx->nr_events) - head;
|
|
if (head == tail)
|
|
break;
|
|
|
|
pos = head + AIO_EVENTS_OFFSET;
|
|
folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE];
|
|
pos %= AIO_EVENTS_PER_PAGE;
|
|
|
|
avail = min(avail, nr - ret);
|
|
avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
|
|
|
|
ev = folio_address(folio);
|
|
copy_ret = copy_to_user(event + ret, ev + pos,
|
|
sizeof(*ev) * avail);
|
|
|
|
if (unlikely(copy_ret)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret += avail;
|
|
head += avail;
|
|
head %= ctx->nr_events;
|
|
}
|
|
|
|
ring = folio_address(ctx->ring_folios[0]);
|
|
ring->head = head;
|
|
flush_dcache_folio(ctx->ring_folios[0]);
|
|
|
|
pr_debug("%li h%u t%u\n", ret, head, tail);
|
|
out:
|
|
mutex_unlock(&ctx->ring_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
|
|
struct io_event __user *event, long *i)
|
|
{
|
|
long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
|
|
|
|
if (ret > 0)
|
|
*i += ret;
|
|
|
|
if (unlikely(atomic_read(&ctx->dead)))
|
|
ret = -EINVAL;
|
|
|
|
if (!*i)
|
|
*i = ret;
|
|
|
|
return ret < 0 || *i >= min_nr;
|
|
}
|
|
|
|
static long read_events(struct kioctx *ctx, long min_nr, long nr,
|
|
struct io_event __user *event,
|
|
ktime_t until)
|
|
{
|
|
struct hrtimer_sleeper t;
|
|
struct aio_waiter w;
|
|
long ret = 0, ret2 = 0;
|
|
|
|
/*
|
|
* Note that aio_read_events() is being called as the conditional - i.e.
|
|
* we're calling it after prepare_to_wait() has set task state to
|
|
* TASK_INTERRUPTIBLE.
|
|
*
|
|
* But aio_read_events() can block, and if it blocks it's going to flip
|
|
* the task state back to TASK_RUNNING.
|
|
*
|
|
* This should be ok, provided it doesn't flip the state back to
|
|
* TASK_RUNNING and return 0 too much - that causes us to spin. That
|
|
* will only happen if the mutex_lock() call blocks, and we then find
|
|
* the ringbuffer empty. So in practice we should be ok, but it's
|
|
* something to be aware of when touching this code.
|
|
*/
|
|
aio_read_events(ctx, min_nr, nr, event, &ret);
|
|
if (until == 0 || ret < 0 || ret >= min_nr)
|
|
return ret;
|
|
|
|
hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
if (until != KTIME_MAX) {
|
|
hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
|
|
hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
|
|
}
|
|
|
|
init_wait(&w.w);
|
|
|
|
while (1) {
|
|
unsigned long nr_got = ret;
|
|
|
|
w.min_nr = min_nr - ret;
|
|
|
|
ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
|
|
if (!ret2 && !t.task)
|
|
ret2 = -ETIME;
|
|
|
|
if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
|
|
break;
|
|
|
|
if (nr_got == ret)
|
|
schedule();
|
|
}
|
|
|
|
finish_wait(&ctx->wait, &w.w);
|
|
hrtimer_cancel(&t.timer);
|
|
destroy_hrtimer_on_stack(&t.timer);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* sys_io_setup:
|
|
* Create an aio_context capable of receiving at least nr_events.
|
|
* ctxp must not point to an aio_context that already exists, and
|
|
* must be initialized to 0 prior to the call. On successful
|
|
* creation of the aio_context, *ctxp is filled in with the resulting
|
|
* handle. May fail with -EINVAL if *ctxp is not initialized,
|
|
* if the specified nr_events exceeds internal limits. May fail
|
|
* with -EAGAIN if the specified nr_events exceeds the user's limit
|
|
* of available events. May fail with -ENOMEM if insufficient kernel
|
|
* resources are available. May fail with -EFAULT if an invalid
|
|
* pointer is passed for ctxp. Will fail with -ENOSYS if not
|
|
* implemented.
|
|
*/
|
|
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
|
|
{
|
|
struct kioctx *ioctx = NULL;
|
|
unsigned long ctx;
|
|
long ret;
|
|
|
|
ret = get_user(ctx, ctxp);
|
|
if (unlikely(ret))
|
|
goto out;
|
|
|
|
ret = -EINVAL;
|
|
if (unlikely(ctx || nr_events == 0)) {
|
|
pr_debug("EINVAL: ctx %lu nr_events %u\n",
|
|
ctx, nr_events);
|
|
goto out;
|
|
}
|
|
|
|
ioctx = ioctx_alloc(nr_events);
|
|
ret = PTR_ERR(ioctx);
|
|
if (!IS_ERR(ioctx)) {
|
|
ret = put_user(ioctx->user_id, ctxp);
|
|
if (ret)
|
|
kill_ioctx(current->mm, ioctx, NULL);
|
|
percpu_ref_put(&ioctx->users);
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
|
|
{
|
|
struct kioctx *ioctx = NULL;
|
|
unsigned long ctx;
|
|
long ret;
|
|
|
|
ret = get_user(ctx, ctx32p);
|
|
if (unlikely(ret))
|
|
goto out;
|
|
|
|
ret = -EINVAL;
|
|
if (unlikely(ctx || nr_events == 0)) {
|
|
pr_debug("EINVAL: ctx %lu nr_events %u\n",
|
|
ctx, nr_events);
|
|
goto out;
|
|
}
|
|
|
|
ioctx = ioctx_alloc(nr_events);
|
|
ret = PTR_ERR(ioctx);
|
|
if (!IS_ERR(ioctx)) {
|
|
/* truncating is ok because it's a user address */
|
|
ret = put_user((u32)ioctx->user_id, ctx32p);
|
|
if (ret)
|
|
kill_ioctx(current->mm, ioctx, NULL);
|
|
percpu_ref_put(&ioctx->users);
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* sys_io_destroy:
|
|
* Destroy the aio_context specified. May cancel any outstanding
|
|
* AIOs and block on completion. Will fail with -ENOSYS if not
|
|
* implemented. May fail with -EINVAL if the context pointed to
|
|
* is invalid.
|
|
*/
|
|
SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
|
|
{
|
|
struct kioctx *ioctx = lookup_ioctx(ctx);
|
|
if (likely(NULL != ioctx)) {
|
|
struct ctx_rq_wait wait;
|
|
int ret;
|
|
|
|
init_completion(&wait.comp);
|
|
atomic_set(&wait.count, 1);
|
|
|
|
/* Pass requests_done to kill_ioctx() where it can be set
|
|
* in a thread-safe way. If we try to set it here then we have
|
|
* a race condition if two io_destroy() called simultaneously.
|
|
*/
|
|
ret = kill_ioctx(current->mm, ioctx, &wait);
|
|
percpu_ref_put(&ioctx->users);
|
|
|
|
/* Wait until all IO for the context are done. Otherwise kernel
|
|
* keep using user-space buffers even if user thinks the context
|
|
* is destroyed.
|
|
*/
|
|
if (!ret)
|
|
wait_for_completion(&wait.comp);
|
|
|
|
return ret;
|
|
}
|
|
pr_debug("EINVAL: invalid context id\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void aio_remove_iocb(struct aio_kiocb *iocb)
|
|
{
|
|
struct kioctx *ctx = iocb->ki_ctx;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ctx->ctx_lock, flags);
|
|
list_del(&iocb->ki_list);
|
|
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
|
|
}
|
|
|
|
static void aio_complete_rw(struct kiocb *kiocb, long res)
|
|
{
|
|
struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
|
|
|
|
if (!list_empty_careful(&iocb->ki_list))
|
|
aio_remove_iocb(iocb);
|
|
|
|
if (kiocb->ki_flags & IOCB_WRITE) {
|
|
struct inode *inode = file_inode(kiocb->ki_filp);
|
|
|
|
if (S_ISREG(inode->i_mode))
|
|
kiocb_end_write(kiocb);
|
|
}
|
|
|
|
iocb->ki_res.res = res;
|
|
iocb->ki_res.res2 = 0;
|
|
iocb_put(iocb);
|
|
}
|
|
|
|
static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb, int rw_type)
|
|
{
|
|
int ret;
|
|
|
|
req->ki_complete = aio_complete_rw;
|
|
req->private = NULL;
|
|
req->ki_pos = iocb->aio_offset;
|
|
req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
|
|
if (iocb->aio_flags & IOCB_FLAG_RESFD)
|
|
req->ki_flags |= IOCB_EVENTFD;
|
|
if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
|
|
/*
|
|
* If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
|
|
* aio_reqprio is interpreted as an I/O scheduling
|
|
* class and priority.
|
|
*/
|
|
ret = ioprio_check_cap(iocb->aio_reqprio);
|
|
if (ret) {
|
|
pr_debug("aio ioprio check cap error: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
req->ki_ioprio = iocb->aio_reqprio;
|
|
} else
|
|
req->ki_ioprio = get_current_ioprio();
|
|
|
|
ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags, rw_type);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
|
|
struct iovec **iovec, bool vectored, bool compat,
|
|
struct iov_iter *iter)
|
|
{
|
|
void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
|
|
size_t len = iocb->aio_nbytes;
|
|
|
|
if (!vectored) {
|
|
ssize_t ret = import_ubuf(rw, buf, len, iter);
|
|
*iovec = NULL;
|
|
return ret;
|
|
}
|
|
|
|
return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
|
|
}
|
|
|
|
static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
|
|
{
|
|
switch (ret) {
|
|
case -EIOCBQUEUED:
|
|
break;
|
|
case -ERESTARTSYS:
|
|
case -ERESTARTNOINTR:
|
|
case -ERESTARTNOHAND:
|
|
case -ERESTART_RESTARTBLOCK:
|
|
/*
|
|
* There's no easy way to restart the syscall since other AIO's
|
|
* may be already running. Just fail this IO with EINTR.
|
|
*/
|
|
ret = -EINTR;
|
|
fallthrough;
|
|
default:
|
|
req->ki_complete(req, ret);
|
|
}
|
|
}
|
|
|
|
static int aio_read(struct kiocb *req, const struct iocb *iocb,
|
|
bool vectored, bool compat)
|
|
{
|
|
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
|
|
struct iov_iter iter;
|
|
struct file *file;
|
|
int ret;
|
|
|
|
ret = aio_prep_rw(req, iocb, READ);
|
|
if (ret)
|
|
return ret;
|
|
file = req->ki_filp;
|
|
if (unlikely(!(file->f_mode & FMODE_READ)))
|
|
return -EBADF;
|
|
if (unlikely(!file->f_op->read_iter))
|
|
return -EINVAL;
|
|
|
|
ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
|
|
if (!ret)
|
|
aio_rw_done(req, file->f_op->read_iter(req, &iter));
|
|
kfree(iovec);
|
|
return ret;
|
|
}
|
|
|
|
static int aio_write(struct kiocb *req, const struct iocb *iocb,
|
|
bool vectored, bool compat)
|
|
{
|
|
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
|
|
struct iov_iter iter;
|
|
struct file *file;
|
|
int ret;
|
|
|
|
ret = aio_prep_rw(req, iocb, WRITE);
|
|
if (ret)
|
|
return ret;
|
|
file = req->ki_filp;
|
|
|
|
if (unlikely(!(file->f_mode & FMODE_WRITE)))
|
|
return -EBADF;
|
|
if (unlikely(!file->f_op->write_iter))
|
|
return -EINVAL;
|
|
|
|
ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
|
|
if (!ret) {
|
|
if (S_ISREG(file_inode(file)->i_mode))
|
|
kiocb_start_write(req);
|
|
req->ki_flags |= IOCB_WRITE;
|
|
aio_rw_done(req, file->f_op->write_iter(req, &iter));
|
|
}
|
|
kfree(iovec);
|
|
return ret;
|
|
}
|
|
|
|
static void aio_fsync_work(struct work_struct *work)
|
|
{
|
|
struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
|
|
const struct cred *old_cred = override_creds(iocb->fsync.creds);
|
|
|
|
iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
|
|
revert_creds(old_cred);
|
|
put_cred(iocb->fsync.creds);
|
|
iocb_put(iocb);
|
|
}
|
|
|
|
static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
|
|
bool datasync)
|
|
{
|
|
if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
|
|
iocb->aio_rw_flags))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(!req->file->f_op->fsync))
|
|
return -EINVAL;
|
|
|
|
req->creds = prepare_creds();
|
|
if (!req->creds)
|
|
return -ENOMEM;
|
|
|
|
req->datasync = datasync;
|
|
INIT_WORK(&req->work, aio_fsync_work);
|
|
schedule_work(&req->work);
|
|
return 0;
|
|
}
|
|
|
|
static void aio_poll_put_work(struct work_struct *work)
|
|
{
|
|
struct poll_iocb *req = container_of(work, struct poll_iocb, work);
|
|
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
|
|
|
|
iocb_put(iocb);
|
|
}
|
|
|
|
/*
|
|
* Safely lock the waitqueue which the request is on, synchronizing with the
|
|
* case where the ->poll() provider decides to free its waitqueue early.
|
|
*
|
|
* Returns true on success, meaning that req->head->lock was locked, req->wait
|
|
* is on req->head, and an RCU read lock was taken. Returns false if the
|
|
* request was already removed from its waitqueue (which might no longer exist).
|
|
*/
|
|
static bool poll_iocb_lock_wq(struct poll_iocb *req)
|
|
{
|
|
wait_queue_head_t *head;
|
|
|
|
/*
|
|
* While we hold the waitqueue lock and the waitqueue is nonempty,
|
|
* wake_up_pollfree() will wait for us. However, taking the waitqueue
|
|
* lock in the first place can race with the waitqueue being freed.
|
|
*
|
|
* We solve this as eventpoll does: by taking advantage of the fact that
|
|
* all users of wake_up_pollfree() will RCU-delay the actual free. If
|
|
* we enter rcu_read_lock() and see that the pointer to the queue is
|
|
* non-NULL, we can then lock it without the memory being freed out from
|
|
* under us, then check whether the request is still on the queue.
|
|
*
|
|
* Keep holding rcu_read_lock() as long as we hold the queue lock, in
|
|
* case the caller deletes the entry from the queue, leaving it empty.
|
|
* In that case, only RCU prevents the queue memory from being freed.
|
|
*/
|
|
rcu_read_lock();
|
|
head = smp_load_acquire(&req->head);
|
|
if (head) {
|
|
spin_lock(&head->lock);
|
|
if (!list_empty(&req->wait.entry))
|
|
return true;
|
|
spin_unlock(&head->lock);
|
|
}
|
|
rcu_read_unlock();
|
|
return false;
|
|
}
|
|
|
|
static void poll_iocb_unlock_wq(struct poll_iocb *req)
|
|
{
|
|
spin_unlock(&req->head->lock);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void aio_poll_complete_work(struct work_struct *work)
|
|
{
|
|
struct poll_iocb *req = container_of(work, struct poll_iocb, work);
|
|
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
|
|
struct poll_table_struct pt = { ._key = req->events };
|
|
struct kioctx *ctx = iocb->ki_ctx;
|
|
__poll_t mask = 0;
|
|
|
|
if (!READ_ONCE(req->cancelled))
|
|
mask = vfs_poll(req->file, &pt) & req->events;
|
|
|
|
/*
|
|
* Note that ->ki_cancel callers also delete iocb from active_reqs after
|
|
* calling ->ki_cancel. We need the ctx_lock roundtrip here to
|
|
* synchronize with them. In the cancellation case the list_del_init
|
|
* itself is not actually needed, but harmless so we keep it in to
|
|
* avoid further branches in the fast path.
|
|
*/
|
|
spin_lock_irq(&ctx->ctx_lock);
|
|
if (poll_iocb_lock_wq(req)) {
|
|
if (!mask && !READ_ONCE(req->cancelled)) {
|
|
/*
|
|
* The request isn't actually ready to be completed yet.
|
|
* Reschedule completion if another wakeup came in.
|
|
*/
|
|
if (req->work_need_resched) {
|
|
schedule_work(&req->work);
|
|
req->work_need_resched = false;
|
|
} else {
|
|
req->work_scheduled = false;
|
|
}
|
|
poll_iocb_unlock_wq(req);
|
|
spin_unlock_irq(&ctx->ctx_lock);
|
|
return;
|
|
}
|
|
list_del_init(&req->wait.entry);
|
|
poll_iocb_unlock_wq(req);
|
|
} /* else, POLLFREE has freed the waitqueue, so we must complete */
|
|
list_del_init(&iocb->ki_list);
|
|
iocb->ki_res.res = mangle_poll(mask);
|
|
spin_unlock_irq(&ctx->ctx_lock);
|
|
|
|
iocb_put(iocb);
|
|
}
|
|
|
|
/* assumes we are called with irqs disabled */
|
|
static int aio_poll_cancel(struct kiocb *iocb)
|
|
{
|
|
struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
|
|
struct poll_iocb *req = &aiocb->poll;
|
|
|
|
if (poll_iocb_lock_wq(req)) {
|
|
WRITE_ONCE(req->cancelled, true);
|
|
if (!req->work_scheduled) {
|
|
schedule_work(&aiocb->poll.work);
|
|
req->work_scheduled = true;
|
|
}
|
|
poll_iocb_unlock_wq(req);
|
|
} /* else, the request was force-cancelled by POLLFREE already */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
|
|
void *key)
|
|
{
|
|
struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
|
|
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
|
|
__poll_t mask = key_to_poll(key);
|
|
unsigned long flags;
|
|
|
|
/* for instances that support it check for an event match first: */
|
|
if (mask && !(mask & req->events))
|
|
return 0;
|
|
|
|
/*
|
|
* Complete the request inline if possible. This requires that three
|
|
* conditions be met:
|
|
* 1. An event mask must have been passed. If a plain wakeup was done
|
|
* instead, then mask == 0 and we have to call vfs_poll() to get
|
|
* the events, so inline completion isn't possible.
|
|
* 2. The completion work must not have already been scheduled.
|
|
* 3. ctx_lock must not be busy. We have to use trylock because we
|
|
* already hold the waitqueue lock, so this inverts the normal
|
|
* locking order. Use irqsave/irqrestore because not all
|
|
* filesystems (e.g. fuse) call this function with IRQs disabled,
|
|
* yet IRQs have to be disabled before ctx_lock is obtained.
|
|
*/
|
|
if (mask && !req->work_scheduled &&
|
|
spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
|
|
struct kioctx *ctx = iocb->ki_ctx;
|
|
|
|
list_del_init(&req->wait.entry);
|
|
list_del(&iocb->ki_list);
|
|
iocb->ki_res.res = mangle_poll(mask);
|
|
if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
|
|
iocb = NULL;
|
|
INIT_WORK(&req->work, aio_poll_put_work);
|
|
schedule_work(&req->work);
|
|
}
|
|
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
|
|
if (iocb)
|
|
iocb_put(iocb);
|
|
} else {
|
|
/*
|
|
* Schedule the completion work if needed. If it was already
|
|
* scheduled, record that another wakeup came in.
|
|
*
|
|
* Don't remove the request from the waitqueue here, as it might
|
|
* not actually be complete yet (we won't know until vfs_poll()
|
|
* is called), and we must not miss any wakeups. POLLFREE is an
|
|
* exception to this; see below.
|
|
*/
|
|
if (req->work_scheduled) {
|
|
req->work_need_resched = true;
|
|
} else {
|
|
schedule_work(&req->work);
|
|
req->work_scheduled = true;
|
|
}
|
|
|
|
/*
|
|
* If the waitqueue is being freed early but we can't complete
|
|
* the request inline, we have to tear down the request as best
|
|
* we can. That means immediately removing the request from its
|
|
* waitqueue and preventing all further accesses to the
|
|
* waitqueue via the request. We also need to schedule the
|
|
* completion work (done above). Also mark the request as
|
|
* cancelled, to potentially skip an unneeded call to ->poll().
|
|
*/
|
|
if (mask & POLLFREE) {
|
|
WRITE_ONCE(req->cancelled, true);
|
|
list_del_init(&req->wait.entry);
|
|
|
|
/*
|
|
* Careful: this *must* be the last step, since as soon
|
|
* as req->head is NULL'ed out, the request can be
|
|
* completed and freed, since aio_poll_complete_work()
|
|
* will no longer need to take the waitqueue lock.
|
|
*/
|
|
smp_store_release(&req->head, NULL);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
struct aio_poll_table {
|
|
struct poll_table_struct pt;
|
|
struct aio_kiocb *iocb;
|
|
bool queued;
|
|
int error;
|
|
};
|
|
|
|
static void
|
|
aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
|
|
struct poll_table_struct *p)
|
|
{
|
|
struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
|
|
|
|
/* multiple wait queues per file are not supported */
|
|
if (unlikely(pt->queued)) {
|
|
pt->error = -EINVAL;
|
|
return;
|
|
}
|
|
|
|
pt->queued = true;
|
|
pt->error = 0;
|
|
pt->iocb->poll.head = head;
|
|
add_wait_queue(head, &pt->iocb->poll.wait);
|
|
}
|
|
|
|
static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
|
|
{
|
|
struct kioctx *ctx = aiocb->ki_ctx;
|
|
struct poll_iocb *req = &aiocb->poll;
|
|
struct aio_poll_table apt;
|
|
bool cancel = false;
|
|
__poll_t mask;
|
|
|
|
/* reject any unknown events outside the normal event mask. */
|
|
if ((u16)iocb->aio_buf != iocb->aio_buf)
|
|
return -EINVAL;
|
|
/* reject fields that are not defined for poll */
|
|
if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
|
|
return -EINVAL;
|
|
|
|
INIT_WORK(&req->work, aio_poll_complete_work);
|
|
req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
|
|
|
|
req->head = NULL;
|
|
req->cancelled = false;
|
|
req->work_scheduled = false;
|
|
req->work_need_resched = false;
|
|
|
|
apt.pt._qproc = aio_poll_queue_proc;
|
|
apt.pt._key = req->events;
|
|
apt.iocb = aiocb;
|
|
apt.queued = false;
|
|
apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
|
|
|
|
/* initialized the list so that we can do list_empty checks */
|
|
INIT_LIST_HEAD(&req->wait.entry);
|
|
init_waitqueue_func_entry(&req->wait, aio_poll_wake);
|
|
|
|
mask = vfs_poll(req->file, &apt.pt) & req->events;
|
|
spin_lock_irq(&ctx->ctx_lock);
|
|
if (likely(apt.queued)) {
|
|
bool on_queue = poll_iocb_lock_wq(req);
|
|
|
|
if (!on_queue || req->work_scheduled) {
|
|
/*
|
|
* aio_poll_wake() already either scheduled the async
|
|
* completion work, or completed the request inline.
|
|
*/
|
|
if (apt.error) /* unsupported case: multiple queues */
|
|
cancel = true;
|
|
apt.error = 0;
|
|
mask = 0;
|
|
}
|
|
if (mask || apt.error) {
|
|
/* Steal to complete synchronously. */
|
|
list_del_init(&req->wait.entry);
|
|
} else if (cancel) {
|
|
/* Cancel if possible (may be too late though). */
|
|
WRITE_ONCE(req->cancelled, true);
|
|
} else if (on_queue) {
|
|
/*
|
|
* Actually waiting for an event, so add the request to
|
|
* active_reqs so that it can be cancelled if needed.
|
|
*/
|
|
list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
|
|
aiocb->ki_cancel = aio_poll_cancel;
|
|
}
|
|
if (on_queue)
|
|
poll_iocb_unlock_wq(req);
|
|
}
|
|
if (mask) { /* no async, we'd stolen it */
|
|
aiocb->ki_res.res = mangle_poll(mask);
|
|
apt.error = 0;
|
|
}
|
|
spin_unlock_irq(&ctx->ctx_lock);
|
|
if (mask)
|
|
iocb_put(aiocb);
|
|
return apt.error;
|
|
}
|
|
|
|
static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
|
|
struct iocb __user *user_iocb, struct aio_kiocb *req,
|
|
bool compat)
|
|
{
|
|
req->ki_filp = fget(iocb->aio_fildes);
|
|
if (unlikely(!req->ki_filp))
|
|
return -EBADF;
|
|
|
|
if (iocb->aio_flags & IOCB_FLAG_RESFD) {
|
|
struct eventfd_ctx *eventfd;
|
|
/*
|
|
* If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
|
|
* instance of the file* now. The file descriptor must be
|
|
* an eventfd() fd, and will be signaled for each completed
|
|
* event using the eventfd_signal() function.
|
|
*/
|
|
eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
|
|
if (IS_ERR(eventfd))
|
|
return PTR_ERR(eventfd);
|
|
|
|
req->ki_eventfd = eventfd;
|
|
}
|
|
|
|
if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
|
|
pr_debug("EFAULT: aio_key\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
req->ki_res.obj = (u64)(unsigned long)user_iocb;
|
|
req->ki_res.data = iocb->aio_data;
|
|
req->ki_res.res = 0;
|
|
req->ki_res.res2 = 0;
|
|
|
|
switch (iocb->aio_lio_opcode) {
|
|
case IOCB_CMD_PREAD:
|
|
return aio_read(&req->rw, iocb, false, compat);
|
|
case IOCB_CMD_PWRITE:
|
|
return aio_write(&req->rw, iocb, false, compat);
|
|
case IOCB_CMD_PREADV:
|
|
return aio_read(&req->rw, iocb, true, compat);
|
|
case IOCB_CMD_PWRITEV:
|
|
return aio_write(&req->rw, iocb, true, compat);
|
|
case IOCB_CMD_FSYNC:
|
|
return aio_fsync(&req->fsync, iocb, false);
|
|
case IOCB_CMD_FDSYNC:
|
|
return aio_fsync(&req->fsync, iocb, true);
|
|
case IOCB_CMD_POLL:
|
|
return aio_poll(req, iocb);
|
|
default:
|
|
pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
|
|
bool compat)
|
|
{
|
|
struct aio_kiocb *req;
|
|
struct iocb iocb;
|
|
int err;
|
|
|
|
if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
|
|
return -EFAULT;
|
|
|
|
/* enforce forwards compatibility on users */
|
|
if (unlikely(iocb.aio_reserved2)) {
|
|
pr_debug("EINVAL: reserve field set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* prevent overflows */
|
|
if (unlikely(
|
|
(iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
|
|
(iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
|
|
((ssize_t)iocb.aio_nbytes < 0)
|
|
)) {
|
|
pr_debug("EINVAL: overflow check\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
req = aio_get_req(ctx);
|
|
if (unlikely(!req))
|
|
return -EAGAIN;
|
|
|
|
err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
|
|
|
|
/* Done with the synchronous reference */
|
|
iocb_put(req);
|
|
|
|
/*
|
|
* If err is 0, we'd either done aio_complete() ourselves or have
|
|
* arranged for that to be done asynchronously. Anything non-zero
|
|
* means that we need to destroy req ourselves.
|
|
*/
|
|
if (unlikely(err)) {
|
|
iocb_destroy(req);
|
|
put_reqs_available(ctx, 1);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* sys_io_submit:
|
|
* Queue the nr iocbs pointed to by iocbpp for processing. Returns
|
|
* the number of iocbs queued. May return -EINVAL if the aio_context
|
|
* specified by ctx_id is invalid, if nr is < 0, if the iocb at
|
|
* *iocbpp[0] is not properly initialized, if the operation specified
|
|
* is invalid for the file descriptor in the iocb. May fail with
|
|
* -EFAULT if any of the data structures point to invalid data. May
|
|
* fail with -EBADF if the file descriptor specified in the first
|
|
* iocb is invalid. May fail with -EAGAIN if insufficient resources
|
|
* are available to queue any iocbs. Will return 0 if nr is 0. Will
|
|
* fail with -ENOSYS if not implemented.
|
|
*/
|
|
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
|
|
struct iocb __user * __user *, iocbpp)
|
|
{
|
|
struct kioctx *ctx;
|
|
long ret = 0;
|
|
int i = 0;
|
|
struct blk_plug plug;
|
|
|
|
if (unlikely(nr < 0))
|
|
return -EINVAL;
|
|
|
|
ctx = lookup_ioctx(ctx_id);
|
|
if (unlikely(!ctx)) {
|
|
pr_debug("EINVAL: invalid context id\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nr > ctx->nr_events)
|
|
nr = ctx->nr_events;
|
|
|
|
if (nr > AIO_PLUG_THRESHOLD)
|
|
blk_start_plug(&plug);
|
|
for (i = 0; i < nr; i++) {
|
|
struct iocb __user *user_iocb;
|
|
|
|
if (unlikely(get_user(user_iocb, iocbpp + i))) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
ret = io_submit_one(ctx, user_iocb, false);
|
|
if (ret)
|
|
break;
|
|
}
|
|
if (nr > AIO_PLUG_THRESHOLD)
|
|
blk_finish_plug(&plug);
|
|
|
|
percpu_ref_put(&ctx->users);
|
|
return i ? i : ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
|
|
int, nr, compat_uptr_t __user *, iocbpp)
|
|
{
|
|
struct kioctx *ctx;
|
|
long ret = 0;
|
|
int i = 0;
|
|
struct blk_plug plug;
|
|
|
|
if (unlikely(nr < 0))
|
|
return -EINVAL;
|
|
|
|
ctx = lookup_ioctx(ctx_id);
|
|
if (unlikely(!ctx)) {
|
|
pr_debug("EINVAL: invalid context id\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nr > ctx->nr_events)
|
|
nr = ctx->nr_events;
|
|
|
|
if (nr > AIO_PLUG_THRESHOLD)
|
|
blk_start_plug(&plug);
|
|
for (i = 0; i < nr; i++) {
|
|
compat_uptr_t user_iocb;
|
|
|
|
if (unlikely(get_user(user_iocb, iocbpp + i))) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
|
|
if (ret)
|
|
break;
|
|
}
|
|
if (nr > AIO_PLUG_THRESHOLD)
|
|
blk_finish_plug(&plug);
|
|
|
|
percpu_ref_put(&ctx->users);
|
|
return i ? i : ret;
|
|
}
|
|
#endif
|
|
|
|
/* sys_io_cancel:
|
|
* Attempts to cancel an iocb previously passed to io_submit. If
|
|
* the operation is successfully cancelled, the resulting event is
|
|
* copied into the memory pointed to by result without being placed
|
|
* into the completion queue and 0 is returned. May fail with
|
|
* -EFAULT if any of the data structures pointed to are invalid.
|
|
* May fail with -EINVAL if aio_context specified by ctx_id is
|
|
* invalid. May fail with -EAGAIN if the iocb specified was not
|
|
* cancelled. Will fail with -ENOSYS if not implemented.
|
|
*/
|
|
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
|
|
struct io_event __user *, result)
|
|
{
|
|
struct kioctx *ctx;
|
|
struct aio_kiocb *kiocb;
|
|
int ret = -EINVAL;
|
|
u32 key;
|
|
u64 obj = (u64)(unsigned long)iocb;
|
|
|
|
if (unlikely(get_user(key, &iocb->aio_key)))
|
|
return -EFAULT;
|
|
if (unlikely(key != KIOCB_KEY))
|
|
return -EINVAL;
|
|
|
|
ctx = lookup_ioctx(ctx_id);
|
|
if (unlikely(!ctx))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(&ctx->ctx_lock);
|
|
/* TODO: use a hash or array, this sucks. */
|
|
list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
|
|
if (kiocb->ki_res.obj == obj) {
|
|
ret = kiocb->ki_cancel(&kiocb->rw);
|
|
list_del_init(&kiocb->ki_list);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irq(&ctx->ctx_lock);
|
|
|
|
if (!ret) {
|
|
/*
|
|
* The result argument is no longer used - the io_event is
|
|
* always delivered via the ring buffer. -EINPROGRESS indicates
|
|
* cancellation is progress:
|
|
*/
|
|
ret = -EINPROGRESS;
|
|
}
|
|
|
|
percpu_ref_put(&ctx->users);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long do_io_getevents(aio_context_t ctx_id,
|
|
long min_nr,
|
|
long nr,
|
|
struct io_event __user *events,
|
|
struct timespec64 *ts)
|
|
{
|
|
ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
|
|
struct kioctx *ioctx = lookup_ioctx(ctx_id);
|
|
long ret = -EINVAL;
|
|
|
|
if (likely(ioctx)) {
|
|
if (likely(min_nr <= nr && min_nr >= 0))
|
|
ret = read_events(ioctx, min_nr, nr, events, until);
|
|
percpu_ref_put(&ioctx->users);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* io_getevents:
|
|
* Attempts to read at least min_nr events and up to nr events from
|
|
* the completion queue for the aio_context specified by ctx_id. If
|
|
* it succeeds, the number of read events is returned. May fail with
|
|
* -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
|
|
* out of range, if timeout is out of range. May fail with -EFAULT
|
|
* if any of the memory specified is invalid. May return 0 or
|
|
* < min_nr if the timeout specified by timeout has elapsed
|
|
* before sufficient events are available, where timeout == NULL
|
|
* specifies an infinite timeout. Note that the timeout pointed to by
|
|
* timeout is relative. Will fail with -ENOSYS if not implemented.
|
|
*/
|
|
#ifdef CONFIG_64BIT
|
|
|
|
SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
|
|
long, min_nr,
|
|
long, nr,
|
|
struct io_event __user *, events,
|
|
struct __kernel_timespec __user *, timeout)
|
|
{
|
|
struct timespec64 ts;
|
|
int ret;
|
|
|
|
if (timeout && unlikely(get_timespec64(&ts, timeout)))
|
|
return -EFAULT;
|
|
|
|
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
|
|
if (!ret && signal_pending(current))
|
|
ret = -EINTR;
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
struct __aio_sigset {
|
|
const sigset_t __user *sigmask;
|
|
size_t sigsetsize;
|
|
};
|
|
|
|
SYSCALL_DEFINE6(io_pgetevents,
|
|
aio_context_t, ctx_id,
|
|
long, min_nr,
|
|
long, nr,
|
|
struct io_event __user *, events,
|
|
struct __kernel_timespec __user *, timeout,
|
|
const struct __aio_sigset __user *, usig)
|
|
{
|
|
struct __aio_sigset ksig = { NULL, };
|
|
struct timespec64 ts;
|
|
bool interrupted;
|
|
int ret;
|
|
|
|
if (timeout && unlikely(get_timespec64(&ts, timeout)))
|
|
return -EFAULT;
|
|
|
|
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
|
|
return -EFAULT;
|
|
|
|
ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
|
|
|
|
interrupted = signal_pending(current);
|
|
restore_saved_sigmask_unless(interrupted);
|
|
if (interrupted && !ret)
|
|
ret = -ERESTARTNOHAND;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
|
|
|
|
SYSCALL_DEFINE6(io_pgetevents_time32,
|
|
aio_context_t, ctx_id,
|
|
long, min_nr,
|
|
long, nr,
|
|
struct io_event __user *, events,
|
|
struct old_timespec32 __user *, timeout,
|
|
const struct __aio_sigset __user *, usig)
|
|
{
|
|
struct __aio_sigset ksig = { NULL, };
|
|
struct timespec64 ts;
|
|
bool interrupted;
|
|
int ret;
|
|
|
|
if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
|
|
return -EFAULT;
|
|
|
|
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
|
|
return -EFAULT;
|
|
|
|
|
|
ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
|
|
|
|
interrupted = signal_pending(current);
|
|
restore_saved_sigmask_unless(interrupted);
|
|
if (interrupted && !ret)
|
|
ret = -ERESTARTNOHAND;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(CONFIG_COMPAT_32BIT_TIME)
|
|
|
|
SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
|
|
__s32, min_nr,
|
|
__s32, nr,
|
|
struct io_event __user *, events,
|
|
struct old_timespec32 __user *, timeout)
|
|
{
|
|
struct timespec64 t;
|
|
int ret;
|
|
|
|
if (timeout && get_old_timespec32(&t, timeout))
|
|
return -EFAULT;
|
|
|
|
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
|
|
if (!ret && signal_pending(current))
|
|
ret = -EINTR;
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
struct __compat_aio_sigset {
|
|
compat_uptr_t sigmask;
|
|
compat_size_t sigsetsize;
|
|
};
|
|
|
|
#if defined(CONFIG_COMPAT_32BIT_TIME)
|
|
|
|
COMPAT_SYSCALL_DEFINE6(io_pgetevents,
|
|
compat_aio_context_t, ctx_id,
|
|
compat_long_t, min_nr,
|
|
compat_long_t, nr,
|
|
struct io_event __user *, events,
|
|
struct old_timespec32 __user *, timeout,
|
|
const struct __compat_aio_sigset __user *, usig)
|
|
{
|
|
struct __compat_aio_sigset ksig = { 0, };
|
|
struct timespec64 t;
|
|
bool interrupted;
|
|
int ret;
|
|
|
|
if (timeout && get_old_timespec32(&t, timeout))
|
|
return -EFAULT;
|
|
|
|
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
|
|
return -EFAULT;
|
|
|
|
ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
|
|
|
|
interrupted = signal_pending(current);
|
|
restore_saved_sigmask_unless(interrupted);
|
|
if (interrupted && !ret)
|
|
ret = -ERESTARTNOHAND;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
|
|
compat_aio_context_t, ctx_id,
|
|
compat_long_t, min_nr,
|
|
compat_long_t, nr,
|
|
struct io_event __user *, events,
|
|
struct __kernel_timespec __user *, timeout,
|
|
const struct __compat_aio_sigset __user *, usig)
|
|
{
|
|
struct __compat_aio_sigset ksig = { 0, };
|
|
struct timespec64 t;
|
|
bool interrupted;
|
|
int ret;
|
|
|
|
if (timeout && get_timespec64(&t, timeout))
|
|
return -EFAULT;
|
|
|
|
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
|
|
return -EFAULT;
|
|
|
|
ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
|
|
|
|
interrupted = signal_pending(current);
|
|
restore_saved_sigmask_unless(interrupted);
|
|
if (interrupted && !ret)
|
|
ret = -ERESTARTNOHAND;
|
|
|
|
return ret;
|
|
}
|
|
#endif
|