mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-16 10:54:09 +08:00
7dbc63f0a5
This is a collection of minor fixes including typos, white space, and style. No functional changes. Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
4106 lines
108 KiB
C
4106 lines
108 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2018, Intel Corporation. */
|
|
|
|
#include "ice.h"
|
|
#include "ice_base.h"
|
|
#include "ice_lib.h"
|
|
#include "ice_fltr.h"
|
|
|
|
/**
|
|
* ice_validate_vf_id - helper to check if VF ID is valid
|
|
* @pf: pointer to the PF structure
|
|
* @vf_id: the ID of the VF to check
|
|
*/
|
|
static int ice_validate_vf_id(struct ice_pf *pf, u16 vf_id)
|
|
{
|
|
/* vf_id range is only valid for 0-255, and should always be unsigned */
|
|
if (vf_id >= pf->num_alloc_vfs) {
|
|
dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %u\n", vf_id);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_check_vf_init - helper to check if VF init complete
|
|
* @pf: pointer to the PF structure
|
|
* @vf: the pointer to the VF to check
|
|
*/
|
|
static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf)
|
|
{
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n",
|
|
vf->vf_id);
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_err_to_virt_err - translate errors for VF return code
|
|
* @ice_err: error return code
|
|
*/
|
|
static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err)
|
|
{
|
|
switch (ice_err) {
|
|
case ICE_SUCCESS:
|
|
return VIRTCHNL_STATUS_SUCCESS;
|
|
case ICE_ERR_BAD_PTR:
|
|
case ICE_ERR_INVAL_SIZE:
|
|
case ICE_ERR_DEVICE_NOT_SUPPORTED:
|
|
case ICE_ERR_PARAM:
|
|
case ICE_ERR_CFG:
|
|
return VIRTCHNL_STATUS_ERR_PARAM;
|
|
case ICE_ERR_NO_MEMORY:
|
|
return VIRTCHNL_STATUS_ERR_NO_MEMORY;
|
|
case ICE_ERR_NOT_READY:
|
|
case ICE_ERR_RESET_FAILED:
|
|
case ICE_ERR_FW_API_VER:
|
|
case ICE_ERR_AQ_ERROR:
|
|
case ICE_ERR_AQ_TIMEOUT:
|
|
case ICE_ERR_AQ_FULL:
|
|
case ICE_ERR_AQ_NO_WORK:
|
|
case ICE_ERR_AQ_EMPTY:
|
|
return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
|
|
default:
|
|
return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
|
|
* @pf: pointer to the PF structure
|
|
* @v_opcode: operation code
|
|
* @v_retval: return value
|
|
* @msg: pointer to the msg buffer
|
|
* @msglen: msg length
|
|
*/
|
|
static void
|
|
ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
|
|
enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
unsigned int i;
|
|
|
|
ice_for_each_vf(pf, i) {
|
|
struct ice_vf *vf = &pf->vf[i];
|
|
|
|
/* Not all vfs are enabled so skip the ones that are not */
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
|
|
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
|
|
continue;
|
|
|
|
/* Ignore return value on purpose - a given VF may fail, but
|
|
* we need to keep going and send to all of them
|
|
*/
|
|
ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
|
|
msglen, NULL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
|
|
* @vf: pointer to the VF structure
|
|
* @pfe: pointer to the virtchnl_pf_event to set link speed/status for
|
|
* @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
|
|
* @link_up: whether or not to set the link up/down
|
|
*/
|
|
static void
|
|
ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
|
|
int ice_link_speed, bool link_up)
|
|
{
|
|
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
|
|
pfe->event_data.link_event_adv.link_status = link_up;
|
|
/* Speed in Mbps */
|
|
pfe->event_data.link_event_adv.link_speed =
|
|
ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
|
|
} else {
|
|
pfe->event_data.link_event.link_status = link_up;
|
|
/* Legacy method for virtchnl link speeds */
|
|
pfe->event_data.link_event.link_speed =
|
|
(enum virtchnl_link_speed)
|
|
ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled
|
|
* @vf: the VF to check
|
|
*
|
|
* Returns true if the VF has no Rx and no Tx queues enabled and returns false
|
|
* otherwise
|
|
*/
|
|
static bool ice_vf_has_no_qs_ena(struct ice_vf *vf)
|
|
{
|
|
return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) &&
|
|
!bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF));
|
|
}
|
|
|
|
/**
|
|
* ice_is_vf_link_up - check if the VF's link is up
|
|
* @vf: VF to check if link is up
|
|
*/
|
|
static bool ice_is_vf_link_up(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
if (ice_check_vf_init(pf, vf))
|
|
return false;
|
|
|
|
if (ice_vf_has_no_qs_ena(vf))
|
|
return false;
|
|
else if (vf->link_forced)
|
|
return vf->link_up;
|
|
else
|
|
return pf->hw.port_info->phy.link_info.link_info &
|
|
ICE_AQ_LINK_UP;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_notify_vf_link_state - Inform a VF of link status
|
|
* @vf: pointer to the VF structure
|
|
*
|
|
* send a link status message to a single VF
|
|
*/
|
|
static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
|
|
{
|
|
struct virtchnl_pf_event pfe = { 0 };
|
|
struct ice_hw *hw = &vf->pf->hw;
|
|
|
|
pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
|
|
pfe.severity = PF_EVENT_SEVERITY_INFO;
|
|
|
|
if (ice_is_vf_link_up(vf))
|
|
ice_set_pfe_link(vf, &pfe,
|
|
hw->port_info->phy.link_info.link_speed, true);
|
|
else
|
|
ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
|
|
|
|
ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
|
|
VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
|
|
sizeof(pfe), NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access
|
|
* @vf: VF to remove access to VSI for
|
|
*/
|
|
static void ice_vf_invalidate_vsi(struct ice_vf *vf)
|
|
{
|
|
vf->lan_vsi_idx = ICE_NO_VSI;
|
|
vf->lan_vsi_num = ICE_NO_VSI;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_vsi_release - invalidate the VF's VSI after freeing it
|
|
* @vf: invalidate this VF's VSI after freeing it
|
|
*/
|
|
static void ice_vf_vsi_release(struct ice_vf *vf)
|
|
{
|
|
ice_vsi_release(vf->pf->vsi[vf->lan_vsi_idx]);
|
|
ice_vf_invalidate_vsi(vf);
|
|
}
|
|
|
|
/**
|
|
* ice_free_vf_res - Free a VF's resources
|
|
* @vf: pointer to the VF info
|
|
*/
|
|
static void ice_free_vf_res(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
int i, last_vector_idx;
|
|
|
|
/* First, disable VF's configuration API to prevent OS from
|
|
* accessing the VF's VSI after it's freed or invalidated.
|
|
*/
|
|
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
|
|
/* free VSI and disconnect it from the parent uplink */
|
|
if (vf->lan_vsi_idx != ICE_NO_VSI) {
|
|
ice_vf_vsi_release(vf);
|
|
vf->num_mac = 0;
|
|
}
|
|
|
|
last_vector_idx = vf->first_vector_idx + pf->num_msix_per_vf - 1;
|
|
|
|
/* clear VF MDD event information */
|
|
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
|
|
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
|
|
|
|
/* Disable interrupts so that VF starts in a known state */
|
|
for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
|
|
wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
|
|
ice_flush(&pf->hw);
|
|
}
|
|
/* reset some of the state variables keeping track of the resources */
|
|
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
|
|
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
|
|
}
|
|
|
|
/**
|
|
* ice_dis_vf_mappings
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
static void ice_dis_vf_mappings(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
int first, last, v;
|
|
struct ice_hw *hw;
|
|
|
|
hw = &pf->hw;
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
|
|
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
|
|
|
|
first = vf->first_vector_idx;
|
|
last = first + pf->num_msix_per_vf - 1;
|
|
for (v = first; v <= last; v++) {
|
|
u32 reg;
|
|
|
|
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
|
|
GLINT_VECT2FUNC_IS_PF_M) |
|
|
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
|
GLINT_VECT2FUNC_PF_NUM_M));
|
|
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
|
}
|
|
|
|
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
|
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
|
|
else
|
|
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
|
|
|
|
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
|
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
|
|
else
|
|
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_free_msix_res - Reset/free any used MSIX resources
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* Since no MSIX entries are taken from the pf->irq_tracker then just clear
|
|
* the pf->sriov_base_vector.
|
|
*
|
|
* Returns 0 on success, and -EINVAL on error.
|
|
*/
|
|
static int ice_sriov_free_msix_res(struct ice_pf *pf)
|
|
{
|
|
struct ice_res_tracker *res;
|
|
|
|
if (!pf)
|
|
return -EINVAL;
|
|
|
|
res = pf->irq_tracker;
|
|
if (!res)
|
|
return -EINVAL;
|
|
|
|
/* give back irq_tracker resources used */
|
|
WARN_ON(pf->sriov_base_vector < res->num_entries);
|
|
|
|
pf->sriov_base_vector = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_state_qs_dis - Set VF queues state to disabled
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
void ice_set_vf_state_qs_dis(struct ice_vf *vf)
|
|
{
|
|
/* Clear Rx/Tx enabled queues flag */
|
|
bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF);
|
|
bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
|
|
clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
|
|
}
|
|
|
|
/**
|
|
* ice_dis_vf_qs - Disable the VF queues
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
static void ice_dis_vf_qs(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
|
|
ice_vsi_stop_all_rx_rings(vsi);
|
|
ice_set_vf_state_qs_dis(vf);
|
|
}
|
|
|
|
/**
|
|
* ice_free_vfs - Free all VFs
|
|
* @pf: pointer to the PF structure
|
|
*/
|
|
void ice_free_vfs(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
unsigned int tmp, i;
|
|
|
|
if (!pf->vf)
|
|
return;
|
|
|
|
while (test_and_set_bit(__ICE_VF_DIS, pf->state))
|
|
usleep_range(1000, 2000);
|
|
|
|
/* Disable IOV before freeing resources. This lets any VF drivers
|
|
* running in the host get themselves cleaned up before we yank
|
|
* the carpet out from underneath their feet.
|
|
*/
|
|
if (!pci_vfs_assigned(pf->pdev))
|
|
pci_disable_sriov(pf->pdev);
|
|
else
|
|
dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
|
|
|
|
/* Avoid wait time by stopping all VFs at the same time */
|
|
ice_for_each_vf(pf, i)
|
|
if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states))
|
|
ice_dis_vf_qs(&pf->vf[i]);
|
|
|
|
tmp = pf->num_alloc_vfs;
|
|
pf->num_qps_per_vf = 0;
|
|
pf->num_alloc_vfs = 0;
|
|
for (i = 0; i < tmp; i++) {
|
|
if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
|
|
/* disable VF qp mappings and set VF disable state */
|
|
ice_dis_vf_mappings(&pf->vf[i]);
|
|
set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states);
|
|
ice_free_vf_res(&pf->vf[i]);
|
|
}
|
|
}
|
|
|
|
if (ice_sriov_free_msix_res(pf))
|
|
dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
|
|
|
|
devm_kfree(dev, pf->vf);
|
|
pf->vf = NULL;
|
|
|
|
/* This check is for when the driver is unloaded while VFs are
|
|
* assigned. Setting the number of VFs to 0 through sysfs is caught
|
|
* before this function ever gets called.
|
|
*/
|
|
if (!pci_vfs_assigned(pf->pdev)) {
|
|
unsigned int vf_id;
|
|
|
|
/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
|
|
* work correctly when SR-IOV gets re-enabled.
|
|
*/
|
|
for (vf_id = 0; vf_id < tmp; vf_id++) {
|
|
u32 reg_idx, bit_idx;
|
|
|
|
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
|
|
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
|
|
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
|
}
|
|
}
|
|
clear_bit(__ICE_VF_DIS, pf->state);
|
|
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
|
}
|
|
|
|
/**
|
|
* ice_trigger_vf_reset - Reset a VF on HW
|
|
* @vf: pointer to the VF structure
|
|
* @is_vflr: true if VFLR was issued, false if not
|
|
* @is_pfr: true if the reset was triggered due to a previous PFR
|
|
*
|
|
* Trigger hardware to start a reset for a particular VF. Expects the caller
|
|
* to wait the proper amount of time to allow hardware to reset the VF before
|
|
* it cleans up and restores VF functionality.
|
|
*/
|
|
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
u32 reg, reg_idx, bit_idx;
|
|
unsigned int vf_abs_id, i;
|
|
struct device *dev;
|
|
struct ice_hw *hw;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
hw = &pf->hw;
|
|
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
|
|
|
|
/* Inform VF that it is no longer active, as a warning */
|
|
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
|
|
|
|
/* Disable VF's configuration API during reset. The flag is re-enabled
|
|
* when it's safe again to access VF's VSI.
|
|
*/
|
|
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
|
|
/* VF_MBX_ARQLEN is cleared by PFR, so the driver needs to clear it
|
|
* in the case of VFR. If this is done for PFR, it can mess up VF
|
|
* resets because the VF driver may already have started cleanup
|
|
* by the time we get here.
|
|
*/
|
|
if (!is_pfr)
|
|
wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0);
|
|
|
|
/* In the case of a VFLR, the HW has already reset the VF and we
|
|
* just need to clean up, so don't hit the VFRTRIG register.
|
|
*/
|
|
if (!is_vflr) {
|
|
/* reset VF using VPGEN_VFRTRIG reg */
|
|
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
|
reg |= VPGEN_VFRTRIG_VFSWR_M;
|
|
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
|
}
|
|
/* clear the VFLR bit in GLGEN_VFLRSTAT */
|
|
reg_idx = (vf_abs_id) / 32;
|
|
bit_idx = (vf_abs_id) % 32;
|
|
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
|
ice_flush(hw);
|
|
|
|
wr32(hw, PF_PCI_CIAA,
|
|
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
|
|
for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
|
|
reg = rd32(hw, PF_PCI_CIAD);
|
|
/* no transactions pending so stop polling */
|
|
if ((reg & VF_TRANS_PENDING_M) == 0)
|
|
break;
|
|
|
|
dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
|
|
udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
|
|
* @vsi: the VSI to update
|
|
* @pvid_info: VLAN ID and QoS used to set the PVID VSI context field
|
|
* @enable: true for enable PVID false for disable
|
|
*/
|
|
static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable)
|
|
{
|
|
struct ice_hw *hw = &vsi->back->hw;
|
|
struct ice_aqc_vsi_props *info;
|
|
struct ice_vsi_ctx *ctxt;
|
|
enum ice_status status;
|
|
int ret = 0;
|
|
|
|
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
|
|
if (!ctxt)
|
|
return -ENOMEM;
|
|
|
|
ctxt->info = vsi->info;
|
|
info = &ctxt->info;
|
|
if (enable) {
|
|
info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
|
|
ICE_AQ_VSI_PVLAN_INSERT_PVID |
|
|
ICE_AQ_VSI_VLAN_EMOD_STR;
|
|
info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
|
|
} else {
|
|
info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING |
|
|
ICE_AQ_VSI_VLAN_MODE_ALL;
|
|
info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
|
|
}
|
|
|
|
info->pvid = cpu_to_le16(pvid_info);
|
|
info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
|
|
ICE_AQ_VSI_PROP_SW_VALID);
|
|
|
|
status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
|
|
if (status) {
|
|
dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %s aq_err %s\n",
|
|
ice_stat_str(status),
|
|
ice_aq_str(hw->adminq.sq_last_status));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
vsi->info.vlan_flags = info->vlan_flags;
|
|
vsi->info.sw_flags2 = info->sw_flags2;
|
|
vsi->info.pvid = info->pvid;
|
|
out:
|
|
kfree(ctxt);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_get_port_info - Get the VF's port info structure
|
|
* @vf: VF used to get the port info structure for
|
|
*/
|
|
static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf)
|
|
{
|
|
return vf->pf->hw.port_info;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_vsi_setup - Set up a VF VSI
|
|
* @vf: VF to setup VSI for
|
|
*
|
|
* Returns pointer to the successfully allocated VSI struct on success,
|
|
* otherwise returns NULL on failure.
|
|
*/
|
|
static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
|
|
{
|
|
struct ice_port_info *pi = ice_vf_get_port_info(vf);
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id);
|
|
|
|
if (!vsi) {
|
|
dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
|
|
ice_vf_invalidate_vsi(vf);
|
|
return NULL;
|
|
}
|
|
|
|
vf->lan_vsi_idx = vsi->idx;
|
|
vf->lan_vsi_num = vsi->vsi_num;
|
|
|
|
return vsi;
|
|
}
|
|
|
|
/**
|
|
* ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
|
|
* @pf: pointer to PF structure
|
|
* @vf: pointer to VF that the first MSIX vector index is being calculated for
|
|
*
|
|
* This returns the first MSIX vector index in PF space that is used by this VF.
|
|
* This index is used when accessing PF relative registers such as
|
|
* GLINT_VECT2FUNC and GLINT_DYN_CTL.
|
|
* This will always be the OICR index in the AVF driver so any functionality
|
|
* using vf->first_vector_idx for queue configuration will have to increment by
|
|
* 1 to avoid meddling with the OICR index.
|
|
*/
|
|
static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
|
|
{
|
|
return pf->sriov_base_vector + vf->vf_id * pf->num_msix_per_vf;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN
|
|
* @vf: VF to add MAC filters for
|
|
*
|
|
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
|
|
* always re-adds either a VLAN 0 or port VLAN based filter after reset.
|
|
*/
|
|
static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
|
|
struct device *dev = ice_pf_to_dev(vf->pf);
|
|
u16 vlan_id = 0;
|
|
int err;
|
|
|
|
if (vf->port_vlan_info) {
|
|
err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
|
|
if (err) {
|
|
dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n",
|
|
vf->vf_id, err);
|
|
return err;
|
|
}
|
|
|
|
vlan_id = vf->port_vlan_info & VLAN_VID_MASK;
|
|
}
|
|
|
|
/* vlan_id will either be 0 or the port VLAN number */
|
|
err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI);
|
|
if (err) {
|
|
dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n",
|
|
vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id,
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA
|
|
* @vf: VF to add MAC filters for
|
|
*
|
|
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
|
|
* always re-adds a broadcast filter and the VF's perm_addr/LAA after reset.
|
|
*/
|
|
static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
|
|
struct device *dev = ice_pf_to_dev(vf->pf);
|
|
enum ice_status status;
|
|
u8 broadcast[ETH_ALEN];
|
|
|
|
eth_broadcast_addr(broadcast);
|
|
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
|
|
if (status) {
|
|
dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n",
|
|
vf->vf_id, ice_stat_str(status));
|
|
return ice_status_to_errno(status);
|
|
}
|
|
|
|
vf->num_mac++;
|
|
|
|
if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
|
|
status = ice_fltr_add_mac(vsi, vf->dflt_lan_addr.addr,
|
|
ICE_FWD_TO_VSI);
|
|
if (status) {
|
|
dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n",
|
|
&vf->dflt_lan_addr.addr[0], vf->vf_id,
|
|
ice_stat_str(status));
|
|
return ice_status_to_errno(status);
|
|
}
|
|
vf->num_mac++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value
|
|
* @vf: VF to configure trust setting for
|
|
*/
|
|
static void ice_vf_set_host_trust_cfg(struct ice_vf *vf)
|
|
{
|
|
if (vf->trusted)
|
|
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
|
|
else
|
|
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
|
|
* @vf: VF to enable MSIX mappings for
|
|
*
|
|
* Some of the registers need to be indexed/configured using hardware global
|
|
* device values and other registers need 0-based values, which represent PF
|
|
* based values.
|
|
*/
|
|
static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
|
|
{
|
|
int device_based_first_msix, device_based_last_msix;
|
|
int pf_based_first_msix, pf_based_last_msix, v;
|
|
struct ice_pf *pf = vf->pf;
|
|
int device_based_vf_id;
|
|
struct ice_hw *hw;
|
|
u32 reg;
|
|
|
|
hw = &pf->hw;
|
|
pf_based_first_msix = vf->first_vector_idx;
|
|
pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1;
|
|
|
|
device_based_first_msix = pf_based_first_msix +
|
|
pf->hw.func_caps.common_cap.msix_vector_first_id;
|
|
device_based_last_msix =
|
|
(device_based_first_msix + pf->num_msix_per_vf) - 1;
|
|
device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
|
|
|
|
reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
|
|
VPINT_ALLOC_FIRST_M) |
|
|
((device_based_last_msix << VPINT_ALLOC_LAST_S) &
|
|
VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
|
|
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
|
|
|
|
reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
|
|
& VPINT_ALLOC_PCI_FIRST_M) |
|
|
((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
|
|
VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
|
|
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
|
|
|
|
/* map the interrupts to its functions */
|
|
for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
|
|
reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
|
|
GLINT_VECT2FUNC_VF_NUM_M) |
|
|
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
|
GLINT_VECT2FUNC_PF_NUM_M));
|
|
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
|
}
|
|
|
|
/* Map mailbox interrupt to VF MSI-X vector 0 */
|
|
wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
|
|
* @vf: VF to enable the mappings for
|
|
* @max_txq: max Tx queues allowed on the VF's VSI
|
|
* @max_rxq: max Rx queues allowed on the VF's VSI
|
|
*/
|
|
static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
|
|
{
|
|
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
|
|
struct device *dev = ice_pf_to_dev(vf->pf);
|
|
struct ice_hw *hw = &vf->pf->hw;
|
|
u32 reg;
|
|
|
|
/* set regardless of mapping mode */
|
|
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
|
|
|
|
/* VF Tx queues allocation */
|
|
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
|
/* set the VF PF Tx queue range
|
|
* VFNUMQ value should be set to (number of queues - 1). A value
|
|
* of 0 means 1 queue and a value of 255 means 256 queues
|
|
*/
|
|
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
|
|
VPLAN_TX_QBASE_VFFIRSTQ_M) |
|
|
(((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
|
|
VPLAN_TX_QBASE_VFNUMQ_M));
|
|
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
|
|
} else {
|
|
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
|
|
}
|
|
|
|
/* set regardless of mapping mode */
|
|
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
|
|
|
|
/* VF Rx queues allocation */
|
|
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
|
/* set the VF PF Rx queue range
|
|
* VFNUMQ value should be set to (number of queues - 1). A value
|
|
* of 0 means 1 queue and a value of 255 means 256 queues
|
|
*/
|
|
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
|
|
VPLAN_RX_QBASE_VFFIRSTQ_M) |
|
|
(((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
|
|
VPLAN_RX_QBASE_VFNUMQ_M));
|
|
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
|
|
} else {
|
|
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vf_mappings - enable VF MSIX and queue mapping
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
static void ice_ena_vf_mappings(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
|
|
|
|
ice_ena_vf_msix_mappings(vf);
|
|
ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
|
|
}
|
|
|
|
/**
|
|
* ice_determine_res
|
|
* @pf: pointer to the PF structure
|
|
* @avail_res: available resources in the PF structure
|
|
* @max_res: maximum resources that can be given per VF
|
|
* @min_res: minimum resources that can be given per VF
|
|
*
|
|
* Returns non-zero value if resources (queues/vectors) are available or
|
|
* returns zero if PF cannot accommodate for all num_alloc_vfs.
|
|
*/
|
|
static int
|
|
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
|
|
{
|
|
bool checked_min_res = false;
|
|
int res;
|
|
|
|
/* start by checking if PF can assign max number of resources for
|
|
* all num_alloc_vfs.
|
|
* if yes, return number per VF
|
|
* If no, divide by 2 and roundup, check again
|
|
* repeat the loop till we reach a point where even minimum resources
|
|
* are not available, in that case return 0
|
|
*/
|
|
res = max_res;
|
|
while ((res >= min_res) && !checked_min_res) {
|
|
int num_all_res;
|
|
|
|
num_all_res = pf->num_alloc_vfs * res;
|
|
if (num_all_res <= avail_res)
|
|
return res;
|
|
|
|
if (res == min_res)
|
|
checked_min_res = true;
|
|
|
|
res = DIV_ROUND_UP(res, 2);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
|
|
* @vf: VF to calculate the register index for
|
|
* @q_vector: a q_vector associated to the VF
|
|
*/
|
|
int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
|
|
{
|
|
struct ice_pf *pf;
|
|
|
|
if (!vf || !q_vector)
|
|
return -EINVAL;
|
|
|
|
pf = vf->pf;
|
|
|
|
/* always add one to account for the OICR being the first MSIX */
|
|
return pf->sriov_base_vector + pf->num_msix_per_vf * vf->vf_id +
|
|
q_vector->v_idx + 1;
|
|
}
|
|
|
|
/**
|
|
* ice_get_max_valid_res_idx - Get the max valid resource index
|
|
* @res: pointer to the resource to find the max valid index for
|
|
*
|
|
* Start from the end of the ice_res_tracker and return right when we find the
|
|
* first res->list entry with the ICE_RES_VALID_BIT set. This function is only
|
|
* valid for SR-IOV because it is the only consumer that manipulates the
|
|
* res->end and this is always called when res->end is set to res->num_entries.
|
|
*/
|
|
static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
|
|
{
|
|
int i;
|
|
|
|
if (!res)
|
|
return -EINVAL;
|
|
|
|
for (i = res->num_entries - 1; i >= 0; i--)
|
|
if (res->list[i] & ICE_RES_VALID_BIT)
|
|
return i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_set_msix_res - Set any used MSIX resources
|
|
* @pf: pointer to PF structure
|
|
* @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
|
|
*
|
|
* This function allows SR-IOV resources to be taken from the end of the PF's
|
|
* allowed HW MSIX vectors so that the irq_tracker will not be affected. We
|
|
* just set the pf->sriov_base_vector and return success.
|
|
*
|
|
* If there are not enough resources available, return an error. This should
|
|
* always be caught by ice_set_per_vf_res().
|
|
*
|
|
* Return 0 on success, and -EINVAL when there are not enough MSIX vectors in
|
|
* in the PF's space available for SR-IOV.
|
|
*/
|
|
static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
|
|
{
|
|
u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
|
|
int vectors_used = pf->irq_tracker->num_entries;
|
|
int sriov_base_vector;
|
|
|
|
sriov_base_vector = total_vectors - num_msix_needed;
|
|
|
|
/* make sure we only grab irq_tracker entries from the list end and
|
|
* that we have enough available MSIX vectors
|
|
*/
|
|
if (sriov_base_vector < vectors_used)
|
|
return -EINVAL;
|
|
|
|
pf->sriov_base_vector = sriov_base_vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_set_per_vf_res - check if vectors and queues are available
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* First, determine HW interrupts from common pool. If we allocate fewer VFs, we
|
|
* get more vectors and can enable more queues per VF. Note that this does not
|
|
* grab any vectors from the SW pool already allocated. Also note, that all
|
|
* vector counts include one for each VF's miscellaneous interrupt vector
|
|
* (i.e. OICR).
|
|
*
|
|
* Minimum VFs - 2 vectors, 1 queue pair
|
|
* Small VFs - 5 vectors, 4 queue pairs
|
|
* Medium VFs - 17 vectors, 16 queue pairs
|
|
*
|
|
* Second, determine number of queue pairs per VF by starting with a pre-defined
|
|
* maximum each VF supports. If this is not possible, then we adjust based on
|
|
* queue pairs available on the device.
|
|
*
|
|
* Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
|
|
* by each VF during VF initialization and reset.
|
|
*/
|
|
static int ice_set_per_vf_res(struct ice_pf *pf)
|
|
{
|
|
int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
|
|
int msix_avail_per_vf, msix_avail_for_sriov;
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
u16 num_msix_per_vf, num_txq, num_rxq;
|
|
|
|
if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
|
|
return -EINVAL;
|
|
|
|
/* determine MSI-X resources per VF */
|
|
msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
|
|
pf->irq_tracker->num_entries;
|
|
msix_avail_per_vf = msix_avail_for_sriov / pf->num_alloc_vfs;
|
|
if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
|
|
num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
|
|
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
|
|
num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
|
|
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
|
|
num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
|
|
} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
|
|
num_msix_per_vf = ICE_MIN_INTR_PER_VF;
|
|
} else {
|
|
dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
|
|
msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
|
|
pf->num_alloc_vfs);
|
|
return -EIO;
|
|
}
|
|
|
|
/* determine queue resources per VF */
|
|
num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf),
|
|
min_t(u16,
|
|
num_msix_per_vf - ICE_NONQ_VECS_VF,
|
|
ICE_MAX_RSS_QS_PER_VF),
|
|
ICE_MIN_QS_PER_VF);
|
|
|
|
num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf),
|
|
min_t(u16,
|
|
num_msix_per_vf - ICE_NONQ_VECS_VF,
|
|
ICE_MAX_RSS_QS_PER_VF),
|
|
ICE_MIN_QS_PER_VF);
|
|
|
|
if (!num_txq || !num_rxq) {
|
|
dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
|
|
ICE_MIN_QS_PER_VF, pf->num_alloc_vfs);
|
|
return -EIO;
|
|
}
|
|
|
|
if (ice_sriov_set_msix_res(pf, num_msix_per_vf * pf->num_alloc_vfs)) {
|
|
dev_err(dev, "Unable to set MSI-X resources for %d VFs\n",
|
|
pf->num_alloc_vfs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
|
|
pf->num_qps_per_vf = min_t(int, num_txq, num_rxq);
|
|
pf->num_msix_per_vf = num_msix_per_vf;
|
|
dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
|
|
pf->num_alloc_vfs, pf->num_msix_per_vf, pf->num_qps_per_vf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_vf_reset_trigger - enable VF to access hardware
|
|
* @vf: VF to enabled hardware access for
|
|
*/
|
|
static void ice_clear_vf_reset_trigger(struct ice_vf *vf)
|
|
{
|
|
struct ice_hw *hw = &vf->pf->hw;
|
|
u32 reg;
|
|
|
|
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
|
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
|
|
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
|
ice_flush(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
|
|
* @vf: pointer to the VF info
|
|
* @vsi: the VSI being configured
|
|
* @promisc_m: mask of promiscuous config bits
|
|
* @rm_promisc: promisc flag request from the VF to remove or add filter
|
|
*
|
|
* This function configures VF VSI promiscuous mode, based on the VF requests,
|
|
* for Unicast, Multicast and VLAN
|
|
*/
|
|
static enum ice_status
|
|
ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
|
|
bool rm_promisc)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
enum ice_status status = 0;
|
|
struct ice_hw *hw;
|
|
|
|
hw = &pf->hw;
|
|
if (vsi->num_vlan) {
|
|
status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
|
|
rm_promisc);
|
|
} else if (vf->port_vlan_info) {
|
|
if (rm_promisc)
|
|
status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
|
|
vf->port_vlan_info);
|
|
else
|
|
status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
|
|
vf->port_vlan_info);
|
|
} else {
|
|
if (rm_promisc)
|
|
status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
|
|
0);
|
|
else
|
|
status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
|
|
0);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void ice_vf_clear_counters(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
|
|
|
|
vf->num_mac = 0;
|
|
vsi->num_vlan = 0;
|
|
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
|
|
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
|
|
}
|
|
|
|
/**
|
|
* ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild
|
|
* @vf: VF to perform pre VSI rebuild tasks
|
|
*
|
|
* These tasks are items that don't need to be amortized since they are most
|
|
* likely called in a for loop with all VF(s) in the reset_all_vfs() case.
|
|
*/
|
|
static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf)
|
|
{
|
|
ice_vf_clear_counters(vf);
|
|
ice_clear_vf_reset_trigger(vf);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset
|
|
* @vf: VF to rebuild host configuration on
|
|
*/
|
|
static void ice_vf_rebuild_host_cfg(struct ice_vf *vf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(vf->pf);
|
|
|
|
ice_vf_set_host_trust_cfg(vf);
|
|
|
|
if (ice_vf_rebuild_host_mac_cfg(vf))
|
|
dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n",
|
|
vf->vf_id);
|
|
|
|
if (ice_vf_rebuild_host_vlan_cfg(vf))
|
|
dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n",
|
|
vf->vf_id);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI
|
|
* @vf: VF to release and setup the VSI for
|
|
*
|
|
* This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
|
|
* configuration change, etc.).
|
|
*/
|
|
static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf)
|
|
{
|
|
ice_vf_vsi_release(vf);
|
|
if (!ice_vf_vsi_setup(vf))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_rebuild_vsi - rebuild the VF's VSI
|
|
* @vf: VF to rebuild the VSI for
|
|
*
|
|
* This is only called when all VF(s) are being reset (i.e. PCIe Reset on the
|
|
* host, PFR, CORER, etc.).
|
|
*/
|
|
static int ice_vf_rebuild_vsi(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
if (ice_vsi_rebuild(vsi, true)) {
|
|
dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n",
|
|
vf->vf_id);
|
|
return -EIO;
|
|
}
|
|
/* vsi->idx will remain the same in this case so don't update
|
|
* vf->lan_vsi_idx
|
|
*/
|
|
vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
|
|
vf->lan_vsi_num = vsi->vsi_num;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_set_initialized - VF is ready for VIRTCHNL communication
|
|
* @vf: VF to set in initialized state
|
|
*
|
|
* After this function the VF will be ready to receive/handle the
|
|
* VIRTCHNL_OP_GET_VF_RESOURCES message
|
|
*/
|
|
static void ice_vf_set_initialized(struct ice_vf *vf)
|
|
{
|
|
ice_set_vf_state_qs_dis(vf);
|
|
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
|
|
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
|
|
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
|
|
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
|
|
* @vf: VF to perform tasks on
|
|
*/
|
|
static void ice_vf_post_vsi_rebuild(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_hw *hw;
|
|
|
|
hw = &pf->hw;
|
|
|
|
ice_vf_rebuild_host_cfg(vf);
|
|
|
|
ice_vf_set_initialized(vf);
|
|
ice_ena_vf_mappings(vf);
|
|
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
|
|
}
|
|
|
|
/**
|
|
* ice_reset_all_vfs - reset all allocated VFs in one go
|
|
* @pf: pointer to the PF structure
|
|
* @is_vflr: true if VFLR was issued, false if not
|
|
*
|
|
* First, tell the hardware to reset each VF, then do all the waiting in one
|
|
* chunk, and finally finish restoring each VF after the wait. This is useful
|
|
* during PF routines which need to reset all VFs, as otherwise it must perform
|
|
* these resets in a serialized fashion.
|
|
*
|
|
* Returns true if any VFs were reset, and false otherwise.
|
|
*/
|
|
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct ice_vf *vf;
|
|
int v, i;
|
|
|
|
/* If we don't have any VFs, then there is nothing to reset */
|
|
if (!pf->num_alloc_vfs)
|
|
return false;
|
|
|
|
/* If VFs have been disabled, there is no need to reset */
|
|
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
|
|
return false;
|
|
|
|
/* Begin reset on all VFs at once */
|
|
ice_for_each_vf(pf, v)
|
|
ice_trigger_vf_reset(&pf->vf[v], is_vflr, true);
|
|
|
|
/* HW requires some time to make sure it can flush the FIFO for a VF
|
|
* when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
|
|
* sequence to make sure that it has completed. We'll keep track of
|
|
* the VFs using a simple iterator that increments once that VF has
|
|
* finished resetting.
|
|
*/
|
|
for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
|
|
/* Check each VF in sequence */
|
|
while (v < pf->num_alloc_vfs) {
|
|
u32 reg;
|
|
|
|
vf = &pf->vf[v];
|
|
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
|
|
if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
|
|
/* only delay if the check failed */
|
|
usleep_range(10, 20);
|
|
break;
|
|
}
|
|
|
|
/* If the current VF has finished resetting, move on
|
|
* to the next VF in sequence.
|
|
*/
|
|
v++;
|
|
}
|
|
}
|
|
|
|
/* Display a warning if at least one VF didn't manage to reset in
|
|
* time, but continue on with the operation.
|
|
*/
|
|
if (v < pf->num_alloc_vfs)
|
|
dev_warn(dev, "VF reset check timeout\n");
|
|
|
|
/* free VF resources to begin resetting the VSI state */
|
|
ice_for_each_vf(pf, v) {
|
|
vf = &pf->vf[v];
|
|
|
|
ice_vf_pre_vsi_rebuild(vf);
|
|
ice_vf_rebuild_vsi(vf);
|
|
ice_vf_post_vsi_rebuild(vf);
|
|
}
|
|
|
|
ice_flush(hw);
|
|
clear_bit(__ICE_VF_DIS, pf->state);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_is_vf_disabled
|
|
* @vf: pointer to the VF info
|
|
*
|
|
* Returns true if the PF or VF is disabled, false otherwise.
|
|
*/
|
|
static bool ice_is_vf_disabled(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
/* If the PF has been disabled, there is no need resetting VF until
|
|
* PF is active again. Similarly, if the VF has been disabled, this
|
|
* means something else is resetting the VF, so we shouldn't continue.
|
|
* Otherwise, set disable VF state bit for actual reset, and continue.
|
|
*/
|
|
return (test_bit(__ICE_VF_DIS, pf->state) ||
|
|
test_bit(ICE_VF_STATE_DIS, vf->vf_states));
|
|
}
|
|
|
|
/**
|
|
* ice_reset_vf - Reset a particular VF
|
|
* @vf: pointer to the VF structure
|
|
* @is_vflr: true if VFLR was issued, false if not
|
|
*
|
|
* Returns true if the VF is currently in reset, resets successfully, or resets
|
|
* are disabled and false otherwise.
|
|
*/
|
|
bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
struct ice_hw *hw;
|
|
bool rsd = false;
|
|
u8 promisc_m;
|
|
u32 reg;
|
|
int i;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
|
|
dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n",
|
|
vf->vf_id);
|
|
return true;
|
|
}
|
|
|
|
if (ice_is_vf_disabled(vf)) {
|
|
dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n",
|
|
vf->vf_id);
|
|
return true;
|
|
}
|
|
|
|
/* Set VF disable bit state here, before triggering reset */
|
|
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
|
|
ice_trigger_vf_reset(vf, is_vflr, false);
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
|
|
ice_dis_vf_qs(vf);
|
|
|
|
/* Call Disable LAN Tx queue AQ whether or not queues are
|
|
* enabled. This is needed for successful completion of VFR.
|
|
*/
|
|
ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
|
|
NULL, ICE_VF_RESET, vf->vf_id, NULL);
|
|
|
|
hw = &pf->hw;
|
|
/* poll VPGEN_VFRSTAT reg to make sure
|
|
* that reset is complete
|
|
*/
|
|
for (i = 0; i < 10; i++) {
|
|
/* VF reset requires driver to first reset the VF and then
|
|
* poll the status register to make sure that the reset
|
|
* completed successfully.
|
|
*/
|
|
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
|
|
if (reg & VPGEN_VFRSTAT_VFRD_M) {
|
|
rsd = true;
|
|
break;
|
|
}
|
|
|
|
/* only sleep if the reset is not done */
|
|
usleep_range(10, 20);
|
|
}
|
|
|
|
/* Display a warning if VF didn't manage to reset in time, but need to
|
|
* continue on with the operation.
|
|
*/
|
|
if (!rsd)
|
|
dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id);
|
|
|
|
/* disable promiscuous modes in case they were enabled
|
|
* ignore any error if disabling process failed
|
|
*/
|
|
if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
|
|
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
|
|
if (vf->port_vlan_info || vsi->num_vlan)
|
|
promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
|
|
else
|
|
promisc_m = ICE_UCAST_PROMISC_BITS;
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
|
|
dev_err(dev, "disabling promiscuous mode failed\n");
|
|
}
|
|
|
|
ice_vf_pre_vsi_rebuild(vf);
|
|
ice_vf_rebuild_vsi_with_release(vf);
|
|
ice_vf_post_vsi_rebuild(vf);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_notify_link_state - Inform all VFs on a PF of link status
|
|
* @pf: pointer to the PF structure
|
|
*/
|
|
void ice_vc_notify_link_state(struct ice_pf *pf)
|
|
{
|
|
int i;
|
|
|
|
ice_for_each_vf(pf, i)
|
|
ice_vc_notify_vf_link_state(&pf->vf[i]);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_notify_reset - Send pending reset message to all VFs
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* indicate a pending reset to all VFs on a given PF
|
|
*/
|
|
void ice_vc_notify_reset(struct ice_pf *pf)
|
|
{
|
|
struct virtchnl_pf_event pfe;
|
|
|
|
if (!pf->num_alloc_vfs)
|
|
return;
|
|
|
|
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
|
|
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
|
|
ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
|
|
(u8 *)&pfe, sizeof(struct virtchnl_pf_event));
|
|
}
|
|
|
|
/**
|
|
* ice_vc_notify_vf_reset - Notify VF of a reset event
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
static void ice_vc_notify_vf_reset(struct ice_vf *vf)
|
|
{
|
|
struct virtchnl_pf_event pfe;
|
|
struct ice_pf *pf;
|
|
|
|
if (!vf)
|
|
return;
|
|
|
|
pf = vf->pf;
|
|
if (ice_validate_vf_id(pf, vf->vf_id))
|
|
return;
|
|
|
|
/* Bail out if VF is in disabled state, neither initialized, nor active
|
|
* state - otherwise proceed with notifications
|
|
*/
|
|
if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
|
|
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ||
|
|
test_bit(ICE_VF_STATE_DIS, vf->vf_states))
|
|
return;
|
|
|
|
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
|
|
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
|
|
ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
|
|
VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
|
|
NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_init_vf_vsi_res - initialize/setup VF VSI resources
|
|
* @vf: VF to initialize/setup the VSI for
|
|
*
|
|
* This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
|
|
* VF VSI's broadcast filter and is only used during initial VF creation.
|
|
*/
|
|
static int ice_init_vf_vsi_res(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
u8 broadcast[ETH_ALEN];
|
|
enum ice_status status;
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
int err;
|
|
|
|
vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
vsi = ice_vf_vsi_setup(vf);
|
|
if (!vsi)
|
|
return -ENOMEM;
|
|
|
|
err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
|
|
if (err) {
|
|
dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
|
|
vf->vf_id);
|
|
goto release_vsi;
|
|
}
|
|
|
|
eth_broadcast_addr(broadcast);
|
|
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
|
|
if (status) {
|
|
dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n",
|
|
vf->vf_id, ice_stat_str(status));
|
|
err = ice_status_to_errno(status);
|
|
goto release_vsi;
|
|
}
|
|
|
|
vf->num_mac = 1;
|
|
|
|
return 0;
|
|
|
|
release_vsi:
|
|
ice_vf_vsi_release(vf);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_start_vfs - start VFs so they are ready to be used by SR-IOV
|
|
* @pf: PF the VFs are associated with
|
|
*/
|
|
static int ice_start_vfs(struct ice_pf *pf)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
int retval, i;
|
|
|
|
ice_for_each_vf(pf, i) {
|
|
struct ice_vf *vf = &pf->vf[i];
|
|
|
|
ice_clear_vf_reset_trigger(vf);
|
|
|
|
retval = ice_init_vf_vsi_res(vf);
|
|
if (retval) {
|
|
dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
|
|
vf->vf_id, retval);
|
|
goto teardown;
|
|
}
|
|
|
|
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
ice_ena_vf_mappings(vf);
|
|
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
|
|
}
|
|
|
|
ice_flush(hw);
|
|
return 0;
|
|
|
|
teardown:
|
|
for (i = i - 1; i >= 0; i--) {
|
|
struct ice_vf *vf = &pf->vf[i];
|
|
|
|
ice_dis_vf_mappings(vf);
|
|
ice_vf_vsi_release(vf);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* ice_set_dflt_settings - set VF defaults during initialization/creation
|
|
* @pf: PF holding reference to all VFs for default configuration
|
|
*/
|
|
static void ice_set_dflt_settings_vfs(struct ice_pf *pf)
|
|
{
|
|
int i;
|
|
|
|
ice_for_each_vf(pf, i) {
|
|
struct ice_vf *vf = &pf->vf[i];
|
|
|
|
vf->pf = pf;
|
|
vf->vf_id = i;
|
|
vf->vf_sw_id = pf->first_sw;
|
|
/* assign default capabilities */
|
|
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps);
|
|
vf->spoofchk = true;
|
|
vf->num_vf_qs = pf->num_qps_per_vf;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_vfs - allocate num_vfs in the PF structure
|
|
* @pf: PF to store the allocated VFs in
|
|
* @num_vfs: number of VFs to allocate
|
|
*/
|
|
static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs)
|
|
{
|
|
struct ice_vf *vfs;
|
|
|
|
vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs),
|
|
GFP_KERNEL);
|
|
if (!vfs)
|
|
return -ENOMEM;
|
|
|
|
pf->vf = vfs;
|
|
pf->num_alloc_vfs = num_vfs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vfs - enable VFs so they are ready to be used
|
|
* @pf: pointer to the PF structure
|
|
* @num_vfs: number of VFs to enable
|
|
*/
|
|
static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
int ret;
|
|
|
|
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
|
|
wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
|
|
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
|
|
set_bit(__ICE_OICR_INTR_DIS, pf->state);
|
|
ice_flush(hw);
|
|
|
|
ret = pci_enable_sriov(pf->pdev, num_vfs);
|
|
if (ret) {
|
|
pf->num_alloc_vfs = 0;
|
|
goto err_unroll_intr;
|
|
}
|
|
|
|
ret = ice_alloc_vfs(pf, num_vfs);
|
|
if (ret)
|
|
goto err_pci_disable_sriov;
|
|
|
|
if (ice_set_per_vf_res(pf)) {
|
|
dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n",
|
|
num_vfs);
|
|
ret = -ENOSPC;
|
|
goto err_unroll_sriov;
|
|
}
|
|
|
|
ice_set_dflt_settings_vfs(pf);
|
|
|
|
if (ice_start_vfs(pf)) {
|
|
dev_err(dev, "Failed to start VF(s)\n");
|
|
ret = -EAGAIN;
|
|
goto err_unroll_sriov;
|
|
}
|
|
|
|
clear_bit(__ICE_VF_DIS, pf->state);
|
|
return 0;
|
|
|
|
err_unroll_sriov:
|
|
devm_kfree(dev, pf->vf);
|
|
pf->vf = NULL;
|
|
pf->num_alloc_vfs = 0;
|
|
err_pci_disable_sriov:
|
|
pci_disable_sriov(pf->pdev);
|
|
err_unroll_intr:
|
|
/* rearm interrupts here */
|
|
ice_irq_dynamic_ena(hw, NULL, NULL);
|
|
clear_bit(__ICE_OICR_INTR_DIS, pf->state);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_pci_sriov_ena - Enable or change number of VFs
|
|
* @pf: pointer to the PF structure
|
|
* @num_vfs: number of VFs to allocate
|
|
*
|
|
* Returns 0 on success and negative on failure
|
|
*/
|
|
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
|
|
{
|
|
int pre_existing_vfs = pci_num_vf(pf->pdev);
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
int err;
|
|
|
|
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
|
|
ice_free_vfs(pf);
|
|
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
|
|
return 0;
|
|
|
|
if (num_vfs > pf->num_vfs_supported) {
|
|
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
|
|
num_vfs, pf->num_vfs_supported);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
dev_info(dev, "Enabling %d VFs\n", num_vfs);
|
|
err = ice_ena_vfs(pf, num_vfs);
|
|
if (err) {
|
|
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
|
|
* @pf: PF to enabled SR-IOV on
|
|
*/
|
|
static int ice_check_sriov_allowed(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
|
|
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
|
|
dev_err(dev, "This device is not capable of SR-IOV\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (ice_is_safe_mode(pf)) {
|
|
dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!ice_pf_state_is_nominal(pf)) {
|
|
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_configure - Enable or change number of VFs via sysfs
|
|
* @pdev: pointer to a pci_dev structure
|
|
* @num_vfs: number of VFs to allocate or 0 to free VFs
|
|
*
|
|
* This function is called when the user updates the number of VFs in sysfs. On
|
|
* success return whatever num_vfs was set to by the caller. Return negative on
|
|
* failure.
|
|
*/
|
|
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
|
|
{
|
|
struct ice_pf *pf = pci_get_drvdata(pdev);
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
int err;
|
|
|
|
err = ice_check_sriov_allowed(pf);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!num_vfs) {
|
|
if (!pci_vfs_assigned(pdev)) {
|
|
ice_free_vfs(pf);
|
|
return 0;
|
|
}
|
|
|
|
dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
err = ice_pci_sriov_ena(pf, num_vfs);
|
|
if (err)
|
|
return err;
|
|
|
|
return num_vfs;
|
|
}
|
|
|
|
/**
|
|
* ice_process_vflr_event - Free VF resources via IRQ calls
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* called from the VFLR IRQ handler to
|
|
* free up VF resources and state variables
|
|
*/
|
|
void ice_process_vflr_event(struct ice_pf *pf)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
unsigned int vf_id;
|
|
u32 reg;
|
|
|
|
if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
|
|
!pf->num_alloc_vfs)
|
|
return;
|
|
|
|
ice_for_each_vf(pf, vf_id) {
|
|
struct ice_vf *vf = &pf->vf[vf_id];
|
|
u32 reg_idx, bit_idx;
|
|
|
|
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
|
|
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
|
|
/* read GLGEN_VFLRSTAT register to find out the flr VFs */
|
|
reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
|
|
if (reg & BIT(bit_idx))
|
|
/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
|
|
ice_reset_vf(vf, true);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_vc_reset_vf - Perform software reset on the VF after informing the AVF
|
|
* @vf: pointer to the VF info
|
|
*/
|
|
static void ice_vc_reset_vf(struct ice_vf *vf)
|
|
{
|
|
ice_vc_notify_vf_reset(vf);
|
|
ice_reset_vf(vf, false);
|
|
}
|
|
|
|
/**
|
|
* ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
|
|
* @pf: PF used to index all VFs
|
|
* @pfq: queue index relative to the PF's function space
|
|
*
|
|
* If no VF is found who owns the pfq then return NULL, otherwise return a
|
|
* pointer to the VF who owns the pfq
|
|
*/
|
|
static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
|
|
{
|
|
unsigned int vf_id;
|
|
|
|
ice_for_each_vf(pf, vf_id) {
|
|
struct ice_vf *vf = &pf->vf[vf_id];
|
|
struct ice_vsi *vsi;
|
|
u16 rxq_idx;
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
ice_for_each_rxq(vsi, rxq_idx)
|
|
if (vsi->rxq_map[rxq_idx] == pfq)
|
|
return vf;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_globalq_to_pfq - convert from global queue index to PF space queue index
|
|
* @pf: PF used for conversion
|
|
* @globalq: global queue index used to convert to PF space queue index
|
|
*/
|
|
static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
|
|
{
|
|
return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_lan_overflow_event - handle LAN overflow event for a VF
|
|
* @pf: PF that the LAN overflow event happened on
|
|
* @event: structure holding the event information for the LAN overflow event
|
|
*
|
|
* Determine if the LAN overflow event was caused by a VF queue. If it was not
|
|
* caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
|
|
* reset on the offending VF.
|
|
*/
|
|
void
|
|
ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
|
|
{
|
|
u32 gldcb_rtctq, queue;
|
|
struct ice_vf *vf;
|
|
|
|
gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
|
|
dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
|
|
|
|
/* event returns device global Rx queue number */
|
|
queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
|
|
GLDCB_RTCTQ_RXQNUM_S;
|
|
|
|
vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
|
|
if (!vf)
|
|
return;
|
|
|
|
ice_vc_reset_vf(vf);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_send_msg_to_vf - Send message to VF
|
|
* @vf: pointer to the VF info
|
|
* @v_opcode: virtual channel opcode
|
|
* @v_retval: virtual channel return value
|
|
* @msg: pointer to the msg buffer
|
|
* @msglen: msg length
|
|
*
|
|
* send msg to VF
|
|
*/
|
|
static int
|
|
ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
|
|
enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
|
|
{
|
|
enum ice_status aq_ret;
|
|
struct device *dev;
|
|
struct ice_pf *pf;
|
|
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
pf = vf->pf;
|
|
if (ice_validate_vf_id(pf, vf->vf_id))
|
|
return -EINVAL;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
/* single place to detect unsuccessful return values */
|
|
if (v_retval) {
|
|
vf->num_inval_msgs++;
|
|
dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id,
|
|
v_opcode, v_retval);
|
|
if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
|
|
dev_err(dev, "Number of invalid messages exceeded for VF %d\n",
|
|
vf->vf_id);
|
|
dev_err(dev, "Use PF Control I/F to enable the VF\n");
|
|
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
|
|
return -EIO;
|
|
}
|
|
} else {
|
|
vf->num_valid_msgs++;
|
|
/* reset the invalid counter, if a valid message is received. */
|
|
vf->num_inval_msgs = 0;
|
|
}
|
|
|
|
aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
|
|
msg, msglen, NULL);
|
|
if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
|
|
dev_info(dev, "Unable to send the message to VF %d ret %s aq_err %s\n",
|
|
vf->vf_id, ice_stat_str(aq_ret),
|
|
ice_aq_str(pf->hw.mailboxq.sq_last_status));
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_get_ver_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to request the API version used by the PF
|
|
*/
|
|
static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
struct virtchnl_version_info info = {
|
|
VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
|
|
};
|
|
|
|
vf->vf_ver = *(struct virtchnl_version_info *)msg;
|
|
/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
|
|
if (VF_IS_V10(&vf->vf_ver))
|
|
info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
|
|
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
|
|
VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
|
|
sizeof(struct virtchnl_version_info));
|
|
}
|
|
|
|
/**
|
|
* ice_vc_get_vf_res_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to request its resources
|
|
*/
|
|
static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_vf_resource *vfres = NULL;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
int len = 0;
|
|
int ret;
|
|
|
|
if (ice_check_vf_init(pf, vf)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto err;
|
|
}
|
|
|
|
len = sizeof(struct virtchnl_vf_resource);
|
|
|
|
vfres = kzalloc(len, GFP_KERNEL);
|
|
if (!vfres) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
|
|
len = 0;
|
|
goto err;
|
|
}
|
|
if (VF_IS_V11(&vf->vf_ver))
|
|
vf->driver_caps = *(u32 *)msg;
|
|
else
|
|
vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
|
|
VIRTCHNL_VF_OFFLOAD_RSS_REG |
|
|
VIRTCHNL_VF_OFFLOAD_VLAN;
|
|
|
|
vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto err;
|
|
}
|
|
|
|
if (!vsi->info.pvid)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
|
|
} else {
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
|
|
else
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
|
|
}
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
|
|
vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
|
|
|
|
vfres->num_vsis = 1;
|
|
/* Tx and Rx queue are equal for VF */
|
|
vfres->num_queue_pairs = vsi->num_txq;
|
|
vfres->max_vectors = pf->num_msix_per_vf;
|
|
vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
|
|
vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
|
|
|
|
vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
|
|
vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
|
|
vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
|
|
ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
|
|
vf->dflt_lan_addr.addr);
|
|
|
|
/* match guest capabilities */
|
|
vf->driver_caps = vfres->vf_cap_flags;
|
|
|
|
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
|
|
|
|
err:
|
|
/* send the response back to the VF */
|
|
ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
|
|
(u8 *)vfres, len);
|
|
|
|
kfree(vfres);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_reset_vf_msg
|
|
* @vf: pointer to the VF info
|
|
*
|
|
* called from the VF to reset itself,
|
|
* unlike other virtchnl messages, PF driver
|
|
* doesn't send the response back to the VF
|
|
*/
|
|
static void ice_vc_reset_vf_msg(struct ice_vf *vf)
|
|
{
|
|
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
|
|
ice_reset_vf(vf, false);
|
|
}
|
|
|
|
/**
|
|
* ice_find_vsi_from_id
|
|
* @pf: the PF structure to search for the VSI
|
|
* @id: ID of the VSI it is searching for
|
|
*
|
|
* searches for the VSI with the given ID
|
|
*/
|
|
static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
|
|
{
|
|
int i;
|
|
|
|
ice_for_each_vsi(pf, i)
|
|
if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
|
|
return pf->vsi[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_isvalid_vsi_id
|
|
* @vf: pointer to the VF info
|
|
* @vsi_id: VF relative VSI ID
|
|
*
|
|
* check for the valid VSI ID
|
|
*/
|
|
static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
vsi = ice_find_vsi_from_id(pf, vsi_id);
|
|
|
|
return (vsi && (vsi->vf_id == vf->vf_id));
|
|
}
|
|
|
|
/**
|
|
* ice_vc_isvalid_q_id
|
|
* @vf: pointer to the VF info
|
|
* @vsi_id: VSI ID
|
|
* @qid: VSI relative queue ID
|
|
*
|
|
* check for the valid queue ID
|
|
*/
|
|
static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
|
|
{
|
|
struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
|
|
/* allocated Tx and Rx queues should be always equal for VF VSI */
|
|
return (vsi && (qid < vsi->alloc_txq));
|
|
}
|
|
|
|
/**
|
|
* ice_vc_isvalid_ring_len
|
|
* @ring_len: length of ring
|
|
*
|
|
* check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
|
|
* or zero
|
|
*/
|
|
static bool ice_vc_isvalid_ring_len(u16 ring_len)
|
|
{
|
|
return ring_len == 0 ||
|
|
(ring_len >= ICE_MIN_NUM_DESC &&
|
|
ring_len <= ICE_MAX_NUM_DESC &&
|
|
!(ring_len % ICE_REQ_DESC_MULTIPLE));
|
|
}
|
|
|
|
/**
|
|
* ice_vc_config_rss_key
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* Configure the VF's RSS key
|
|
*/
|
|
static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_rss_key *vrk =
|
|
(struct virtchnl_rss_key *)msg;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (ice_set_rss(vsi, vrk->key, NULL, 0))
|
|
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
|
|
error_param:
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_config_rss_lut
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* Configure the VF's RSS LUT
|
|
*/
|
|
static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
|
|
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
|
|
error_param:
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset
|
|
* @vf: The VF being resseting
|
|
*
|
|
* The max poll time is about ~800ms, which is about the maximum time it takes
|
|
* for a VF to be reset and/or a VF driver to be removed.
|
|
*/
|
|
static void ice_wait_on_vf_reset(struct ice_vf *vf)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) {
|
|
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
|
|
break;
|
|
msleep(ICE_MAX_VF_RESET_SLEEP_MS);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried
|
|
* @vf: VF to check if it's ready to be configured/queried
|
|
*
|
|
* The purpose of this function is to make sure the VF is not in reset, not
|
|
* disabled, and initialized so it can be configured and/or queried by a host
|
|
* administrator.
|
|
*/
|
|
static int ice_check_vf_ready_for_cfg(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf;
|
|
|
|
ice_wait_on_vf_reset(vf);
|
|
|
|
if (ice_is_vf_disabled(vf))
|
|
return -EINVAL;
|
|
|
|
pf = vf->pf;
|
|
if (ice_check_vf_init(pf, vf))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_spoofchk
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @ena: flag to enable or disable feature
|
|
*
|
|
* Enable or disable VF spoof checking
|
|
*/
|
|
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
|
|
{
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
struct ice_pf *pf = np->vsi->back;
|
|
struct ice_vsi_ctx *ctx;
|
|
struct ice_vsi *vf_vsi;
|
|
enum ice_status status;
|
|
struct device *dev;
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
if (ice_validate_vf_id(pf, vf_id))
|
|
return -EINVAL;
|
|
|
|
vf = &pf->vf[vf_id];
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vf_vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vf_vsi) {
|
|
netdev_err(netdev, "VSI %d for VF %d is null\n",
|
|
vf->lan_vsi_idx, vf->vf_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vf_vsi->type != ICE_VSI_VF) {
|
|
netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
|
|
vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (ena == vf->spoofchk) {
|
|
dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
|
|
return 0;
|
|
}
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
ctx->info.sec_flags = vf_vsi->info.sec_flags;
|
|
ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
|
|
if (ena) {
|
|
ctx->info.sec_flags |=
|
|
ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
|
|
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
|
|
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
|
|
} else {
|
|
ctx->info.sec_flags &=
|
|
~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
|
|
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
|
|
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
|
|
}
|
|
|
|
status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL);
|
|
if (status) {
|
|
dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %s\n",
|
|
ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num,
|
|
ice_stat_str(status));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* only update spoofchk state and VSI context on success */
|
|
vf_vsi->info.sec_flags = ctx->info.sec_flags;
|
|
vf->spoofchk = ena;
|
|
|
|
out:
|
|
kfree(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode
|
|
* @pf: PF structure for accessing VF(s)
|
|
*
|
|
* Return false if no VF(s) are in unicast and/or multicast promiscuous mode,
|
|
* else return true
|
|
*/
|
|
bool ice_is_any_vf_in_promisc(struct ice_pf *pf)
|
|
{
|
|
int vf_idx;
|
|
|
|
ice_for_each_vf(pf, vf_idx) {
|
|
struct ice_vf *vf = &pf->vf[vf_idx];
|
|
|
|
/* found a VF that has promiscuous mode configured */
|
|
if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
|
|
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_cfg_promiscuous_mode_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to configure VF VSIs promiscuous mode
|
|
*/
|
|
static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_promisc_info *info =
|
|
(struct virtchnl_promisc_info *)msg;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
bool rm_promisc;
|
|
int ret = 0;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
if (!test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) {
|
|
dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
|
|
vf->vf_id);
|
|
/* Leave v_ret alone, lie to the VF on purpose. */
|
|
goto error_param;
|
|
}
|
|
|
|
rm_promisc = !(info->flags & FLAG_VF_UNICAST_PROMISC) &&
|
|
!(info->flags & FLAG_VF_MULTICAST_PROMISC);
|
|
|
|
if (vsi->num_vlan || vf->port_vlan_info) {
|
|
struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
|
|
struct net_device *pf_netdev;
|
|
|
|
if (!pf_vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
pf_netdev = pf_vsi->netdev;
|
|
|
|
ret = ice_set_vf_spoofchk(pf_netdev, vf->vf_id, rm_promisc);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to update spoofchk to %s for VF %d VSI %d when setting promiscuous mode\n",
|
|
rm_promisc ? "ON" : "OFF", vf->vf_id,
|
|
vsi->vsi_num);
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
}
|
|
|
|
ret = ice_cfg_vlan_pruning(vsi, true, !rm_promisc);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
}
|
|
|
|
if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
|
|
bool set_dflt_vsi = !!(info->flags & FLAG_VF_UNICAST_PROMISC);
|
|
|
|
if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
|
|
/* only attempt to set the default forwarding VSI if
|
|
* it's not currently set
|
|
*/
|
|
ret = ice_set_dflt_vsi(pf->first_sw, vsi);
|
|
else if (!set_dflt_vsi &&
|
|
ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
|
|
/* only attempt to free the default forwarding VSI if we
|
|
* are the owner
|
|
*/
|
|
ret = ice_clear_dflt_vsi(pf->first_sw);
|
|
|
|
if (ret) {
|
|
dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
|
|
set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
|
|
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
|
|
goto error_param;
|
|
}
|
|
} else {
|
|
enum ice_status status;
|
|
u8 promisc_m;
|
|
|
|
if (info->flags & FLAG_VF_UNICAST_PROMISC) {
|
|
if (vf->port_vlan_info || vsi->num_vlan)
|
|
promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
|
|
else
|
|
promisc_m = ICE_UCAST_PROMISC_BITS;
|
|
} else if (info->flags & FLAG_VF_MULTICAST_PROMISC) {
|
|
if (vf->port_vlan_info || vsi->num_vlan)
|
|
promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
|
|
else
|
|
promisc_m = ICE_MCAST_PROMISC_BITS;
|
|
} else {
|
|
if (vf->port_vlan_info || vsi->num_vlan)
|
|
promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
|
|
else
|
|
promisc_m = ICE_UCAST_PROMISC_BITS;
|
|
}
|
|
|
|
/* Configure multicast/unicast with or without VLAN promiscuous
|
|
* mode
|
|
*/
|
|
status = ice_vf_set_vsi_promisc(vf, vsi, promisc_m, rm_promisc);
|
|
if (status) {
|
|
dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed, error: %s\n",
|
|
rm_promisc ? "dis" : "en", vf->vf_id,
|
|
ice_stat_str(status));
|
|
v_ret = ice_err_to_virt_err(status);
|
|
goto error_param;
|
|
} else {
|
|
dev_dbg(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d succeeded\n",
|
|
rm_promisc ? "dis" : "en", vf->vf_id);
|
|
}
|
|
}
|
|
|
|
if (info->flags & FLAG_VF_MULTICAST_PROMISC)
|
|
set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
|
|
else
|
|
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
|
|
|
|
if (info->flags & FLAG_VF_UNICAST_PROMISC)
|
|
set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
|
|
else
|
|
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
|
|
|
|
error_param:
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
|
|
v_ret, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_get_stats_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to get VSI stats
|
|
*/
|
|
static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_queue_select *vqs =
|
|
(struct virtchnl_queue_select *)msg;
|
|
struct ice_eth_stats stats = { 0 };
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
ice_update_eth_stats(vsi);
|
|
|
|
stats = vsi->eth_stats;
|
|
|
|
error_param:
|
|
/* send the response to the VF */
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
|
|
(u8 *)&stats, sizeof(stats));
|
|
}
|
|
|
|
/**
|
|
* ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
|
|
* @vqs: virtchnl_queue_select structure containing bitmaps to validate
|
|
*
|
|
* Return true on successful validation, else false
|
|
*/
|
|
static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
|
|
{
|
|
if ((!vqs->rx_queues && !vqs->tx_queues) ||
|
|
vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
|
|
vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
|
|
* @vsi: VSI of the VF to configure
|
|
* @q_idx: VF queue index used to determine the queue in the PF's space
|
|
*/
|
|
static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
|
|
{
|
|
struct ice_hw *hw = &vsi->back->hw;
|
|
u32 pfq = vsi->txq_map[q_idx];
|
|
u32 reg;
|
|
|
|
reg = rd32(hw, QINT_TQCTL(pfq));
|
|
|
|
/* MSI-X index 0 in the VF's space is always for the OICR, which means
|
|
* this is most likely a poll mode VF driver, so don't enable an
|
|
* interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
|
|
*/
|
|
if (!(reg & QINT_TQCTL_MSIX_INDX_M))
|
|
return;
|
|
|
|
wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
|
|
* @vsi: VSI of the VF to configure
|
|
* @q_idx: VF queue index used to determine the queue in the PF's space
|
|
*/
|
|
static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
|
|
{
|
|
struct ice_hw *hw = &vsi->back->hw;
|
|
u32 pfq = vsi->rxq_map[q_idx];
|
|
u32 reg;
|
|
|
|
reg = rd32(hw, QINT_RQCTL(pfq));
|
|
|
|
/* MSI-X index 0 in the VF's space is always for the OICR, which means
|
|
* this is most likely a poll mode VF driver, so don't enable an
|
|
* interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
|
|
*/
|
|
if (!(reg & QINT_RQCTL_MSIX_INDX_M))
|
|
return;
|
|
|
|
wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_ena_qs_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to enable all or specific queue(s)
|
|
*/
|
|
static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_queue_select *vqs =
|
|
(struct virtchnl_queue_select *)msg;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
unsigned long q_map;
|
|
u16 vf_q_id;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_validate_vqs_bitmaps(vqs)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Enable only Rx rings, Tx rings were enabled by the FW when the
|
|
* Tx queue group list was configured and the context bits were
|
|
* programmed using ice_vsi_cfg_txqs
|
|
*/
|
|
q_map = vqs->rx_queues;
|
|
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
|
|
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Skip queue if enabled */
|
|
if (test_bit(vf_q_id, vf->rxq_ena))
|
|
continue;
|
|
|
|
if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
|
|
dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
|
|
vf_q_id, vsi->vsi_num);
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
|
|
set_bit(vf_q_id, vf->rxq_ena);
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
q_map = vqs->tx_queues;
|
|
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
|
|
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Skip queue if enabled */
|
|
if (test_bit(vf_q_id, vf->txq_ena))
|
|
continue;
|
|
|
|
ice_vf_ena_txq_interrupt(vsi, vf_q_id);
|
|
set_bit(vf_q_id, vf->txq_ena);
|
|
}
|
|
|
|
/* Set flag to indicate that queues are enabled */
|
|
if (v_ret == VIRTCHNL_STATUS_SUCCESS)
|
|
set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
|
|
|
|
error_param:
|
|
/* send the response to the VF */
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_dis_qs_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to disable all or specific
|
|
* queue(s)
|
|
*/
|
|
static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_queue_select *vqs =
|
|
(struct virtchnl_queue_select *)msg;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
unsigned long q_map;
|
|
u16 vf_q_id;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
|
|
!test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_validate_vqs_bitmaps(vqs)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (vqs->tx_queues) {
|
|
q_map = vqs->tx_queues;
|
|
|
|
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
|
|
struct ice_ring *ring = vsi->tx_rings[vf_q_id];
|
|
struct ice_txq_meta txq_meta = { 0 };
|
|
|
|
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Skip queue if not enabled */
|
|
if (!test_bit(vf_q_id, vf->txq_ena))
|
|
continue;
|
|
|
|
ice_fill_txq_meta(vsi, ring, &txq_meta);
|
|
|
|
if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
|
|
ring, &txq_meta)) {
|
|
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
|
|
vf_q_id, vsi->vsi_num);
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Clear enabled queues flag */
|
|
clear_bit(vf_q_id, vf->txq_ena);
|
|
}
|
|
}
|
|
|
|
q_map = vqs->rx_queues;
|
|
/* speed up Rx queue disable by batching them if possible */
|
|
if (q_map &&
|
|
bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
|
|
if (ice_vsi_stop_all_rx_rings(vsi)) {
|
|
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
|
|
vsi->vsi_num);
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
|
|
} else if (q_map) {
|
|
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
|
|
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Skip queue if not enabled */
|
|
if (!test_bit(vf_q_id, vf->rxq_ena))
|
|
continue;
|
|
|
|
if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
|
|
true)) {
|
|
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
|
|
vf_q_id, vsi->vsi_num);
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Clear enabled queues flag */
|
|
clear_bit(vf_q_id, vf->rxq_ena);
|
|
}
|
|
}
|
|
|
|
/* Clear enabled queues flag */
|
|
if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
|
|
clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
|
|
|
|
error_param:
|
|
/* send the response to the VF */
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_interrupt
|
|
* @vf: pointer to the VF info
|
|
* @vsi: the VSI being configured
|
|
* @vector_id: vector ID
|
|
* @map: vector map for mapping vectors to queues
|
|
* @q_vector: structure for interrupt vector
|
|
* configure the IRQ to queue map
|
|
*/
|
|
static int
|
|
ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
|
|
struct virtchnl_vector_map *map,
|
|
struct ice_q_vector *q_vector)
|
|
{
|
|
u16 vsi_q_id, vsi_q_id_idx;
|
|
unsigned long qmap;
|
|
|
|
q_vector->num_ring_rx = 0;
|
|
q_vector->num_ring_tx = 0;
|
|
|
|
qmap = map->rxq_map;
|
|
for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
|
|
vsi_q_id = vsi_q_id_idx;
|
|
|
|
if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
|
|
return VIRTCHNL_STATUS_ERR_PARAM;
|
|
|
|
q_vector->num_ring_rx++;
|
|
q_vector->rx.itr_idx = map->rxitr_idx;
|
|
vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
|
|
ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
|
|
q_vector->rx.itr_idx);
|
|
}
|
|
|
|
qmap = map->txq_map;
|
|
for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
|
|
vsi_q_id = vsi_q_id_idx;
|
|
|
|
if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
|
|
return VIRTCHNL_STATUS_ERR_PARAM;
|
|
|
|
q_vector->num_ring_tx++;
|
|
q_vector->tx.itr_idx = map->txitr_idx;
|
|
vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
|
|
ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
|
|
q_vector->tx.itr_idx);
|
|
}
|
|
|
|
return VIRTCHNL_STATUS_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_cfg_irq_map_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to configure the IRQ to queue map
|
|
*/
|
|
static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
u16 num_q_vectors_mapped, vsi_id, vector_id;
|
|
struct virtchnl_irq_map_info *irqmap_info;
|
|
struct virtchnl_vector_map *map;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
int i;
|
|
|
|
irqmap_info = (struct virtchnl_irq_map_info *)msg;
|
|
num_q_vectors_mapped = irqmap_info->num_vectors;
|
|
|
|
/* Check to make sure number of VF vectors mapped is not greater than
|
|
* number of VF vectors originally allocated, and check that
|
|
* there is actually at least a single VF queue vector mapped
|
|
*/
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
|
|
pf->num_msix_per_vf < num_q_vectors_mapped ||
|
|
!num_q_vectors_mapped) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
for (i = 0; i < num_q_vectors_mapped; i++) {
|
|
struct ice_q_vector *q_vector;
|
|
|
|
map = &irqmap_info->vecmap[i];
|
|
|
|
vector_id = map->vector_id;
|
|
vsi_id = map->vsi_id;
|
|
/* vector_id is always 0-based for each VF, and can never be
|
|
* larger than or equal to the max allowed interrupts per VF
|
|
*/
|
|
if (!(vector_id < pf->num_msix_per_vf) ||
|
|
!ice_vc_isvalid_vsi_id(vf, vsi_id) ||
|
|
(!vector_id && (map->rxq_map || map->txq_map))) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* No need to map VF miscellaneous or rogue vector */
|
|
if (!vector_id)
|
|
continue;
|
|
|
|
/* Subtract non queue vector from vector_id passed by VF
|
|
* to get actual number of VSI queue vector array index
|
|
*/
|
|
q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
|
|
if (!q_vector) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* lookout for the invalid queue index */
|
|
v_ret = (enum virtchnl_status_code)
|
|
ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
|
|
if (v_ret)
|
|
goto error_param;
|
|
}
|
|
|
|
error_param:
|
|
/* send the response to the VF */
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_cfg_qs_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* called from the VF to configure the Rx/Tx queues
|
|
*/
|
|
static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_vsi_queue_config_info *qci =
|
|
(struct virtchnl_vsi_queue_config_info *)msg;
|
|
struct virtchnl_queue_pair_info *qpi;
|
|
u16 num_rxq = 0, num_txq = 0;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
int i;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
|
|
qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
|
|
dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
|
|
vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
for (i = 0; i < qci->num_queue_pairs; i++) {
|
|
qpi = &qci->qpair[i];
|
|
if (qpi->txq.vsi_id != qci->vsi_id ||
|
|
qpi->rxq.vsi_id != qci->vsi_id ||
|
|
qpi->rxq.queue_id != qpi->txq.queue_id ||
|
|
qpi->txq.headwb_enabled ||
|
|
!ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
|
|
!ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
|
|
!ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
/* copy Tx queue info from VF into VSI */
|
|
if (qpi->txq.ring_len > 0) {
|
|
num_txq++;
|
|
vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
|
|
vsi->tx_rings[i]->count = qpi->txq.ring_len;
|
|
}
|
|
|
|
/* copy Rx queue info from VF into VSI */
|
|
if (qpi->rxq.ring_len > 0) {
|
|
num_rxq++;
|
|
vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
|
|
vsi->rx_rings[i]->count = qpi->rxq.ring_len;
|
|
|
|
if (qpi->rxq.databuffer_size != 0 &&
|
|
(qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
|
|
qpi->rxq.databuffer_size < 1024)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
vsi->rx_buf_len = qpi->rxq.databuffer_size;
|
|
vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
|
|
if (qpi->rxq.max_pkt_size >= (16 * 1024) ||
|
|
qpi->rxq.max_pkt_size < 64) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
}
|
|
|
|
vsi->max_frame = qpi->rxq.max_pkt_size;
|
|
}
|
|
|
|
/* VF can request to configure less than allocated queues or default
|
|
* allocated queues. So update the VSI with new number
|
|
*/
|
|
vsi->num_txq = num_txq;
|
|
vsi->num_rxq = num_rxq;
|
|
/* All queues of VF VSI are in TC 0 */
|
|
vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
|
|
vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
|
|
|
|
if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
|
|
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
|
|
|
|
error_param:
|
|
/* send the response to the VF */
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_is_vf_trusted
|
|
* @vf: pointer to the VF info
|
|
*/
|
|
static bool ice_is_vf_trusted(struct ice_vf *vf)
|
|
{
|
|
return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
|
|
}
|
|
|
|
/**
|
|
* ice_can_vf_change_mac
|
|
* @vf: pointer to the VF info
|
|
*
|
|
* Return true if the VF is allowed to change its MAC filters, false otherwise
|
|
*/
|
|
static bool ice_can_vf_change_mac(struct ice_vf *vf)
|
|
{
|
|
/* If the VF MAC address has been set administratively (via the
|
|
* ndo_set_vf_mac command), then deny permission to the VF to
|
|
* add/delete unicast MAC addresses, unless the VF is trusted
|
|
*/
|
|
if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_add_mac_addr - attempt to add the MAC address passed in
|
|
* @vf: pointer to the VF info
|
|
* @vsi: pointer to the VF's VSI
|
|
* @mac_addr: MAC address to add
|
|
*/
|
|
static int
|
|
ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(vf->pf);
|
|
enum ice_status status;
|
|
|
|
/* default unicast MAC already added */
|
|
if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
|
|
return 0;
|
|
|
|
if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
|
|
dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
status = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
|
|
if (status == ICE_ERR_ALREADY_EXISTS) {
|
|
dev_err(dev, "MAC %pM already exists for VF %d\n", mac_addr,
|
|
vf->vf_id);
|
|
return -EEXIST;
|
|
} else if (status) {
|
|
dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %s\n",
|
|
mac_addr, vf->vf_id, ice_stat_str(status));
|
|
return -EIO;
|
|
}
|
|
|
|
/* Set the default LAN address to the latest unicast MAC address added
|
|
* by the VF. The default LAN address is reported by the PF via
|
|
* ndo_get_vf_config.
|
|
*/
|
|
if (is_unicast_ether_addr(mac_addr))
|
|
ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr);
|
|
|
|
vf->num_mac++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_del_mac_addr - attempt to delete the MAC address passed in
|
|
* @vf: pointer to the VF info
|
|
* @vsi: pointer to the VF's VSI
|
|
* @mac_addr: MAC address to delete
|
|
*/
|
|
static int
|
|
ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(vf->pf);
|
|
enum ice_status status;
|
|
|
|
if (!ice_can_vf_change_mac(vf) &&
|
|
ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
|
|
return 0;
|
|
|
|
status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
|
|
if (status == ICE_ERR_DOES_NOT_EXIST) {
|
|
dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
|
|
vf->vf_id);
|
|
return -ENOENT;
|
|
} else if (status) {
|
|
dev_err(dev, "Failed to delete MAC %pM for VF %d, error %s\n",
|
|
mac_addr, vf->vf_id, ice_stat_str(status));
|
|
return -EIO;
|
|
}
|
|
|
|
if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
|
|
eth_zero_addr(vf->dflt_lan_addr.addr);
|
|
|
|
vf->num_mac--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vc_handle_mac_addr_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
* @set: true if MAC filters are being set, false otherwise
|
|
*
|
|
* add guest MAC address filter
|
|
*/
|
|
static int
|
|
ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
|
|
{
|
|
int (*ice_vc_cfg_mac)
|
|
(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr);
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_ether_addr_list *al =
|
|
(struct virtchnl_ether_addr_list *)msg;
|
|
struct ice_pf *pf = vf->pf;
|
|
enum virtchnl_ops vc_op;
|
|
struct ice_vsi *vsi;
|
|
int i;
|
|
|
|
if (set) {
|
|
vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
|
|
ice_vc_cfg_mac = ice_vc_add_mac_addr;
|
|
} else {
|
|
vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
|
|
ice_vc_cfg_mac = ice_vc_del_mac_addr;
|
|
}
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
|
|
!ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto handle_mac_exit;
|
|
}
|
|
|
|
/* If this VF is not privileged, then we can't add more than a
|
|
* limited number of addresses. Check to make sure that the
|
|
* additions do not push us over the limit.
|
|
*/
|
|
if (set && !ice_is_vf_trusted(vf) &&
|
|
(vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
|
|
dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
|
|
vf->vf_id);
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto handle_mac_exit;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto handle_mac_exit;
|
|
}
|
|
|
|
for (i = 0; i < al->num_elements; i++) {
|
|
u8 *mac_addr = al->list[i].addr;
|
|
int result;
|
|
|
|
if (is_broadcast_ether_addr(mac_addr) ||
|
|
is_zero_ether_addr(mac_addr))
|
|
continue;
|
|
|
|
result = ice_vc_cfg_mac(vf, vsi, mac_addr);
|
|
if (result == -EEXIST || result == -ENOENT) {
|
|
continue;
|
|
} else if (result) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
|
|
goto handle_mac_exit;
|
|
}
|
|
}
|
|
|
|
handle_mac_exit:
|
|
/* send the response to the VF */
|
|
return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_add_mac_addr_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* add guest MAC address filter
|
|
*/
|
|
static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
return ice_vc_handle_mac_addr_msg(vf, msg, true);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_del_mac_addr_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* remove guest MAC address filter
|
|
*/
|
|
static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
return ice_vc_handle_mac_addr_msg(vf, msg, false);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_request_qs_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* VFs get a default number of queues but can use this message to request a
|
|
* different number. If the request is successful, PF will reset the VF and
|
|
* return 0. If unsuccessful, PF will send message informing VF of number of
|
|
* available queue pairs via virtchnl message response to VF.
|
|
*/
|
|
static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_vf_res_request *vfres =
|
|
(struct virtchnl_vf_res_request *)msg;
|
|
u16 req_queues = vfres->num_queue_pairs;
|
|
struct ice_pf *pf = vf->pf;
|
|
u16 max_allowed_vf_queues;
|
|
u16 tx_rx_queue_left;
|
|
struct device *dev;
|
|
u16 cur_queues;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
cur_queues = vf->num_vf_qs;
|
|
tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
|
|
ice_get_avail_rxq_count(pf));
|
|
max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
|
|
if (!req_queues) {
|
|
dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
|
|
vf->vf_id);
|
|
} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
|
|
dev_err(dev, "VF %d tried to request more than %d queues.\n",
|
|
vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
|
|
vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
|
|
} else if (req_queues > cur_queues &&
|
|
req_queues - cur_queues > tx_rx_queue_left) {
|
|
dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
|
|
vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
|
|
vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
|
|
ICE_MAX_RSS_QS_PER_VF);
|
|
} else {
|
|
/* request is successful, then reset VF */
|
|
vf->num_req_qs = req_queues;
|
|
ice_vc_reset_vf(vf);
|
|
dev_info(dev, "VF %d granted request of %u queues.\n",
|
|
vf->vf_id, req_queues);
|
|
return 0;
|
|
}
|
|
|
|
error_param:
|
|
/* send the response to the VF */
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
|
|
v_ret, (u8 *)vfres, sizeof(*vfres));
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_port_vlan
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @vlan_id: VLAN ID being set
|
|
* @qos: priority setting
|
|
* @vlan_proto: VLAN protocol
|
|
*
|
|
* program VF Port VLAN ID and/or QoS
|
|
*/
|
|
int
|
|
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
|
|
__be16 vlan_proto)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct device *dev;
|
|
struct ice_vf *vf;
|
|
u16 vlanprio;
|
|
int ret;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
if (ice_validate_vf_id(pf, vf_id))
|
|
return -EINVAL;
|
|
|
|
if (vlan_id >= VLAN_N_VID || qos > 7) {
|
|
dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
|
|
vf_id, vlan_id, qos);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vlan_proto != htons(ETH_P_8021Q)) {
|
|
dev_err(dev, "VF VLAN protocol is not supported\n");
|
|
return -EPROTONOSUPPORT;
|
|
}
|
|
|
|
vf = &pf->vf[vf_id];
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vlanprio = vlan_id | (qos << VLAN_PRIO_SHIFT);
|
|
|
|
if (vf->port_vlan_info == vlanprio) {
|
|
/* duplicate request, so just return success */
|
|
dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio);
|
|
return 0;
|
|
}
|
|
|
|
vf->port_vlan_info = vlanprio;
|
|
|
|
if (vf->port_vlan_info)
|
|
dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n",
|
|
vlan_id, qos, vf_id);
|
|
else
|
|
dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
|
|
|
|
ice_vc_reset_vf(vf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
|
|
* @caps: VF driver negotiated capabilities
|
|
*
|
|
* Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
|
|
*/
|
|
static bool ice_vf_vlan_offload_ena(u32 caps)
|
|
{
|
|
return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_process_vlan_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
* @add_v: Add VLAN if true, otherwise delete VLAN
|
|
*
|
|
* Process virtchnl op to add or remove programmed guest VLAN ID
|
|
*/
|
|
static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct virtchnl_vlan_filter_list *vfl =
|
|
(struct virtchnl_vlan_filter_list *)msg;
|
|
struct ice_pf *pf = vf->pf;
|
|
bool vlan_promisc = false;
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
struct ice_hw *hw;
|
|
int status = 0;
|
|
u8 promisc_m;
|
|
int i;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
for (i = 0; i < vfl->num_elements; i++) {
|
|
if (vfl->vlan_id[i] >= VLAN_N_VID) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
dev_err(dev, "invalid VF VLAN id %d\n",
|
|
vfl->vlan_id[i]);
|
|
goto error_param;
|
|
}
|
|
}
|
|
|
|
hw = &pf->hw;
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (add_v && !ice_is_vf_trusted(vf) &&
|
|
vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
|
|
dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
|
|
vf->vf_id);
|
|
/* There is no need to let VF know about being not trusted,
|
|
* so we can just return success message here
|
|
*/
|
|
goto error_param;
|
|
}
|
|
|
|
if (vsi->info.pvid) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
|
|
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
|
|
test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags))
|
|
vlan_promisc = true;
|
|
|
|
if (add_v) {
|
|
for (i = 0; i < vfl->num_elements; i++) {
|
|
u16 vid = vfl->vlan_id[i];
|
|
|
|
if (!ice_is_vf_trusted(vf) &&
|
|
vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
|
|
dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
|
|
vf->vf_id);
|
|
/* There is no need to let VF know about being
|
|
* not trusted, so we can just return success
|
|
* message here as well.
|
|
*/
|
|
goto error_param;
|
|
}
|
|
|
|
/* we add VLAN 0 by default for each VF so we can enable
|
|
* Tx VLAN anti-spoof without triggering MDD events so
|
|
* we don't need to add it again here
|
|
*/
|
|
if (!vid)
|
|
continue;
|
|
|
|
status = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
|
|
if (status) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Enable VLAN pruning when non-zero VLAN is added */
|
|
if (!vlan_promisc && vid &&
|
|
!ice_vsi_is_vlan_pruning_ena(vsi)) {
|
|
status = ice_cfg_vlan_pruning(vsi, true, false);
|
|
if (status) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
|
|
vid, status);
|
|
goto error_param;
|
|
}
|
|
} else if (vlan_promisc) {
|
|
/* Enable Ucast/Mcast VLAN promiscuous mode */
|
|
promisc_m = ICE_PROMISC_VLAN_TX |
|
|
ICE_PROMISC_VLAN_RX;
|
|
|
|
status = ice_set_vsi_promisc(hw, vsi->idx,
|
|
promisc_m, vid);
|
|
if (status) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
|
|
vid, status);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* In case of non_trusted VF, number of VLAN elements passed
|
|
* to PF for removal might be greater than number of VLANs
|
|
* filter programmed for that VF - So, use actual number of
|
|
* VLANS added earlier with add VLAN opcode. In order to avoid
|
|
* removing VLAN that doesn't exist, which result to sending
|
|
* erroneous failed message back to the VF
|
|
*/
|
|
int num_vf_vlan;
|
|
|
|
num_vf_vlan = vsi->num_vlan;
|
|
for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
|
|
u16 vid = vfl->vlan_id[i];
|
|
|
|
/* we add VLAN 0 by default for each VF so we can enable
|
|
* Tx VLAN anti-spoof without triggering MDD events so
|
|
* we don't want a VIRTCHNL request to remove it
|
|
*/
|
|
if (!vid)
|
|
continue;
|
|
|
|
/* Make sure ice_vsi_kill_vlan is successful before
|
|
* updating VLAN information
|
|
*/
|
|
status = ice_vsi_kill_vlan(vsi, vid);
|
|
if (status) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
/* Disable VLAN pruning when only VLAN 0 is left */
|
|
if (vsi->num_vlan == 1 &&
|
|
ice_vsi_is_vlan_pruning_ena(vsi))
|
|
ice_cfg_vlan_pruning(vsi, false, false);
|
|
|
|
/* Disable Unicast/Multicast VLAN promiscuous mode */
|
|
if (vlan_promisc) {
|
|
promisc_m = ICE_PROMISC_VLAN_TX |
|
|
ICE_PROMISC_VLAN_RX;
|
|
|
|
ice_clear_vsi_promisc(hw, vsi->idx,
|
|
promisc_m, vid);
|
|
}
|
|
}
|
|
}
|
|
|
|
error_param:
|
|
/* send the response to the VF */
|
|
if (add_v)
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
|
|
NULL, 0);
|
|
else
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_add_vlan_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* Add and program guest VLAN ID
|
|
*/
|
|
static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
return ice_vc_process_vlan_msg(vf, msg, true);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_remove_vlan_msg
|
|
* @vf: pointer to the VF info
|
|
* @msg: pointer to the msg buffer
|
|
*
|
|
* remove programmed guest VLAN ID
|
|
*/
|
|
static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
|
|
{
|
|
return ice_vc_process_vlan_msg(vf, msg, false);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_ena_vlan_stripping
|
|
* @vf: pointer to the VF info
|
|
*
|
|
* Enable VLAN header stripping for a given VF
|
|
*/
|
|
static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (ice_vsi_manage_vlan_stripping(vsi, true))
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
|
|
error_param:
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
|
|
v_ret, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_dis_vlan_stripping
|
|
* @vf: pointer to the VF info
|
|
*
|
|
* Disable VLAN header stripping for a given VF
|
|
*/
|
|
static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
|
|
{
|
|
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi) {
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
goto error_param;
|
|
}
|
|
|
|
if (ice_vsi_manage_vlan_stripping(vsi, false))
|
|
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
|
|
|
|
error_param:
|
|
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
|
|
v_ret, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
|
|
* @vf: VF to enable/disable VLAN stripping for on initialization
|
|
*
|
|
* If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if
|
|
* the flag is cleared then we want to disable stripping. For example, the flag
|
|
* will be cleared when port VLANs are configured by the administrator before
|
|
* passing the VF to the guest or if the AVF driver doesn't support VLAN
|
|
* offloads.
|
|
*/
|
|
static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
|
|
|
|
if (!vsi)
|
|
return -EINVAL;
|
|
|
|
/* don't modify stripping if port VLAN is configured */
|
|
if (vsi->info.pvid)
|
|
return 0;
|
|
|
|
if (ice_vf_vlan_offload_ena(vf->driver_caps))
|
|
return ice_vsi_manage_vlan_stripping(vsi, true);
|
|
else
|
|
return ice_vsi_manage_vlan_stripping(vsi, false);
|
|
}
|
|
|
|
/**
|
|
* ice_vc_process_vf_msg - Process request from VF
|
|
* @pf: pointer to the PF structure
|
|
* @event: pointer to the AQ event
|
|
*
|
|
* called from the common asq/arq handler to
|
|
* process request from VF
|
|
*/
|
|
void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
|
|
{
|
|
u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
|
|
s16 vf_id = le16_to_cpu(event->desc.retval);
|
|
u16 msglen = event->msg_len;
|
|
u8 *msg = event->msg_buf;
|
|
struct ice_vf *vf = NULL;
|
|
struct device *dev;
|
|
int err = 0;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
if (ice_validate_vf_id(pf, vf_id)) {
|
|
err = -EINVAL;
|
|
goto error_handler;
|
|
}
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
/* Check if VF is disabled. */
|
|
if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
|
|
err = -EPERM;
|
|
goto error_handler;
|
|
}
|
|
|
|
/* Perform basic checks on the msg */
|
|
err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
|
|
if (err) {
|
|
if (err == VIRTCHNL_STATUS_ERR_PARAM)
|
|
err = -EPERM;
|
|
else
|
|
err = -EINVAL;
|
|
}
|
|
|
|
error_handler:
|
|
if (err) {
|
|
ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
|
|
NULL, 0);
|
|
dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
|
|
vf_id, v_opcode, msglen, err);
|
|
return;
|
|
}
|
|
|
|
switch (v_opcode) {
|
|
case VIRTCHNL_OP_VERSION:
|
|
err = ice_vc_get_ver_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_GET_VF_RESOURCES:
|
|
err = ice_vc_get_vf_res_msg(vf, msg);
|
|
if (ice_vf_init_vlan_stripping(vf))
|
|
dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n",
|
|
vf->vf_id);
|
|
ice_vc_notify_vf_link_state(vf);
|
|
break;
|
|
case VIRTCHNL_OP_RESET_VF:
|
|
ice_vc_reset_vf_msg(vf);
|
|
break;
|
|
case VIRTCHNL_OP_ADD_ETH_ADDR:
|
|
err = ice_vc_add_mac_addr_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_DEL_ETH_ADDR:
|
|
err = ice_vc_del_mac_addr_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
|
|
err = ice_vc_cfg_qs_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_ENABLE_QUEUES:
|
|
err = ice_vc_ena_qs_msg(vf, msg);
|
|
ice_vc_notify_vf_link_state(vf);
|
|
break;
|
|
case VIRTCHNL_OP_DISABLE_QUEUES:
|
|
err = ice_vc_dis_qs_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_REQUEST_QUEUES:
|
|
err = ice_vc_request_qs_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
|
|
err = ice_vc_cfg_irq_map_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_CONFIG_RSS_KEY:
|
|
err = ice_vc_config_rss_key(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_CONFIG_RSS_LUT:
|
|
err = ice_vc_config_rss_lut(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_GET_STATS:
|
|
err = ice_vc_get_stats_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
|
|
err = ice_vc_cfg_promiscuous_mode_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_ADD_VLAN:
|
|
err = ice_vc_add_vlan_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_DEL_VLAN:
|
|
err = ice_vc_remove_vlan_msg(vf, msg);
|
|
break;
|
|
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
|
|
err = ice_vc_ena_vlan_stripping(vf);
|
|
break;
|
|
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
|
|
err = ice_vc_dis_vlan_stripping(vf);
|
|
break;
|
|
case VIRTCHNL_OP_UNKNOWN:
|
|
default:
|
|
dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
|
|
vf_id);
|
|
err = ice_vc_send_msg_to_vf(vf, v_opcode,
|
|
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
|
|
NULL, 0);
|
|
break;
|
|
}
|
|
if (err) {
|
|
/* Helper function cares less about error return values here
|
|
* as it is busy with pending work.
|
|
*/
|
|
dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
|
|
vf_id, v_opcode, err);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_get_vf_cfg
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @ivi: VF configuration structure
|
|
*
|
|
* return VF configuration
|
|
*/
|
|
int
|
|
ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
|
|
if (ice_validate_vf_id(pf, vf_id))
|
|
return -EINVAL;
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
if (ice_check_vf_init(pf, vf))
|
|
return -EBUSY;
|
|
|
|
ivi->vf = vf_id;
|
|
ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
|
|
|
|
/* VF configuration for VLAN and applicable QoS */
|
|
ivi->vlan = vf->port_vlan_info & VLAN_VID_MASK;
|
|
ivi->qos = (vf->port_vlan_info & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
|
|
|
|
ivi->trusted = vf->trusted;
|
|
ivi->spoofchk = vf->spoofchk;
|
|
if (!vf->link_forced)
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
|
|
else if (vf->link_up)
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
|
|
else
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
|
|
ivi->max_tx_rate = vf->tx_rate;
|
|
ivi->min_tx_rate = 0;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
|
|
* @pf: PF used to reference the switch's rules
|
|
* @umac: unicast MAC to compare against existing switch rules
|
|
*
|
|
* Return true on the first/any match, else return false
|
|
*/
|
|
static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
|
|
{
|
|
struct ice_sw_recipe *mac_recipe_list =
|
|
&pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
|
|
struct ice_fltr_mgmt_list_entry *list_itr;
|
|
struct list_head *rule_head;
|
|
struct mutex *rule_lock; /* protect MAC filter list access */
|
|
|
|
rule_head = &mac_recipe_list->filt_rules;
|
|
rule_lock = &mac_recipe_list->filt_rule_lock;
|
|
|
|
mutex_lock(rule_lock);
|
|
list_for_each_entry(list_itr, rule_head, list_entry) {
|
|
u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
|
|
|
|
if (ether_addr_equal(existing_mac, umac)) {
|
|
mutex_unlock(rule_lock);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(rule_lock);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_mac
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @mac: MAC address
|
|
*
|
|
* program VF MAC address
|
|
*/
|
|
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
if (ice_validate_vf_id(pf, vf_id))
|
|
return -EINVAL;
|
|
|
|
if (is_multicast_ether_addr(mac)) {
|
|
netdev_err(netdev, "%pM not a valid unicast address\n", mac);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vf = &pf->vf[vf_id];
|
|
/* nothing left to do, unicast MAC already set */
|
|
if (ether_addr_equal(vf->dflt_lan_addr.addr, mac))
|
|
return 0;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ice_unicast_mac_exists(pf, mac)) {
|
|
netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
|
|
mac, vf_id, mac);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* VF is notified of its new MAC via the PF's response to the
|
|
* VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
|
|
*/
|
|
ether_addr_copy(vf->dflt_lan_addr.addr, mac);
|
|
if (is_zero_ether_addr(mac)) {
|
|
/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
|
|
vf->pf_set_mac = false;
|
|
netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
|
|
vf->vf_id);
|
|
} else {
|
|
/* PF will add MAC rule for the VF */
|
|
vf->pf_set_mac = true;
|
|
netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
|
|
mac, vf_id);
|
|
}
|
|
|
|
ice_vc_reset_vf(vf);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_trust
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @trusted: Boolean value to enable/disable trusted VF
|
|
*
|
|
* Enable or disable a given VF as trusted
|
|
*/
|
|
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
if (ice_validate_vf_id(pf, vf_id))
|
|
return -EINVAL;
|
|
|
|
vf = &pf->vf[vf_id];
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check if already trusted */
|
|
if (trusted == vf->trusted)
|
|
return 0;
|
|
|
|
vf->trusted = trusted;
|
|
ice_vc_reset_vf(vf);
|
|
dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
|
|
vf_id, trusted ? "" : "un");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_link_state
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @link_state: required link state
|
|
*
|
|
* Set VF's link state, irrespective of physical link state status
|
|
*/
|
|
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
if (ice_validate_vf_id(pf, vf_id))
|
|
return -EINVAL;
|
|
|
|
vf = &pf->vf[vf_id];
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (link_state) {
|
|
case IFLA_VF_LINK_STATE_AUTO:
|
|
vf->link_forced = false;
|
|
break;
|
|
case IFLA_VF_LINK_STATE_ENABLE:
|
|
vf->link_forced = true;
|
|
vf->link_up = true;
|
|
break;
|
|
case IFLA_VF_LINK_STATE_DISABLE:
|
|
vf->link_forced = true;
|
|
vf->link_up = false;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ice_vc_notify_vf_link_state(vf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_get_vf_stats - populate some stats for the VF
|
|
* @netdev: the netdev of the PF
|
|
* @vf_id: the host OS identifier (0-255)
|
|
* @vf_stats: pointer to the OS memory to be initialized
|
|
*/
|
|
int ice_get_vf_stats(struct net_device *netdev, int vf_id,
|
|
struct ifla_vf_stats *vf_stats)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_eth_stats *stats;
|
|
struct ice_vsi *vsi;
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
if (ice_validate_vf_id(pf, vf_id))
|
|
return -EINVAL;
|
|
|
|
vf = &pf->vf[vf_id];
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
if (!vsi)
|
|
return -EINVAL;
|
|
|
|
ice_update_eth_stats(vsi);
|
|
stats = &vsi->eth_stats;
|
|
|
|
memset(vf_stats, 0, sizeof(*vf_stats));
|
|
|
|
vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
|
|
stats->rx_multicast;
|
|
vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
|
|
stats->tx_multicast;
|
|
vf_stats->rx_bytes = stats->rx_bytes;
|
|
vf_stats->tx_bytes = stats->tx_bytes;
|
|
vf_stats->broadcast = stats->rx_broadcast;
|
|
vf_stats->multicast = stats->rx_multicast;
|
|
vf_stats->rx_dropped = stats->rx_discards;
|
|
vf_stats->tx_dropped = stats->tx_discards;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct device *dev;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
|
|
vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
|
|
vf->dflt_lan_addr.addr,
|
|
test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
|
|
? "on" : "off");
|
|
}
|
|
|
|
/**
|
|
* ice_print_vfs_mdd_event - print VFs malicious driver detect event
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
|
|
*/
|
|
void ice_print_vfs_mdd_events(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
int i;
|
|
|
|
/* check that there are pending MDD events to print */
|
|
if (!test_and_clear_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state))
|
|
return;
|
|
|
|
/* VF MDD event logs are rate limited to one second intervals */
|
|
if (time_is_after_jiffies(pf->last_printed_mdd_jiffies + HZ * 1))
|
|
return;
|
|
|
|
pf->last_printed_mdd_jiffies = jiffies;
|
|
|
|
ice_for_each_vf(pf, i) {
|
|
struct ice_vf *vf = &pf->vf[i];
|
|
|
|
/* only print Rx MDD event message if there are new events */
|
|
if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
|
|
vf->mdd_rx_events.last_printed =
|
|
vf->mdd_rx_events.count;
|
|
ice_print_vf_rx_mdd_event(vf);
|
|
}
|
|
|
|
/* only print Tx MDD event message if there are new events */
|
|
if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
|
|
vf->mdd_tx_events.last_printed =
|
|
vf->mdd_tx_events.count;
|
|
|
|
dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
|
|
vf->mdd_tx_events.count, hw->pf_id, i,
|
|
vf->dflt_lan_addr.addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
|
|
* @pdev: pointer to a pci_dev structure
|
|
*
|
|
* Called when recovering from a PF FLR to restore interrupt capability to
|
|
* the VFs.
|
|
*/
|
|
void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dev *vfdev;
|
|
u16 vf_id;
|
|
int pos;
|
|
|
|
if (!pci_num_vf(pdev))
|
|
return;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
|
|
if (pos) {
|
|
pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
|
|
&vf_id);
|
|
vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
|
|
while (vfdev) {
|
|
if (vfdev->is_virtfn && vfdev->physfn == pdev)
|
|
pci_restore_msi_state(vfdev);
|
|
vfdev = pci_get_device(pdev->vendor, vf_id,
|
|
vfdev);
|
|
}
|
|
}
|
|
}
|