linux/fs/ufs/util.h
Matthew Wilcox (Oracle) f9bff0e318 minmax: add in_range() macro
Patch series "New page table range API", v6.

This patchset changes the API used by the MM to set up page table entries.
The four APIs are:

    set_ptes(mm, addr, ptep, pte, nr)
    update_mmu_cache_range(vma, addr, ptep, nr)
    flush_dcache_folio(folio) 
    flush_icache_pages(vma, page, nr)

flush_dcache_folio() isn't technically new, but no architecture
implemented it, so I've done that for them.  The old APIs remain around
but are mostly implemented by calling the new interfaces.

The new APIs are based around setting up N page table entries at once. 
The N entries belong to the same PMD, the same folio and the same VMA, so
ptep++ is a legitimate operation, and locking is taken care of for you. 
Some architectures can do a better job of it than just a loop, but I have
hesitated to make too deep a change to architectures I don't understand
well.

One thing I have changed in every architecture is that PG_arch_1 is now a
per-folio bit instead of a per-page bit when used for dcache clean/dirty
tracking.  This was something that would have to happen eventually, and it
makes sense to do it now rather than iterate over every page involved in a
cache flush and figure out if it needs to happen.

The point of all this is better performance, and Fengwei Yin has measured
improvement on x86.  I suspect you'll see improvement on your architecture
too.  Try the new will-it-scale test mentioned here:
https://lore.kernel.org/linux-mm/20230206140639.538867-5-fengwei.yin@intel.com/
You'll need to run it on an XFS filesystem and have
CONFIG_TRANSPARENT_HUGEPAGE set.

This patchset is the basis for much of the anonymous large folio work
being done by Ryan, so it's received quite a lot of testing over the last
few months.


This patch (of 38):

Determine if a value lies within a range more efficiently (subtraction +
comparison vs two comparisons and an AND).  It also has useful (under some
circumstances) behaviour if the range exceeds the maximum value of the
type.  Convert all the conflicting definitions of in_range() within the
kernel; some can use the generic definition while others need their own
definition.

Link: https://lkml.kernel.org/r/20230802151406.3735276-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230802151406.3735276-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24 16:20:18 -07:00

601 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* linux/fs/ufs/util.h
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*/
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include "swab.h"
/*
* functions used for retyping
*/
static inline struct ufs_buffer_head *UCPI_UBH(struct ufs_cg_private_info *cpi)
{
return &cpi->c_ubh;
}
static inline struct ufs_buffer_head *USPI_UBH(struct ufs_sb_private_info *spi)
{
return &spi->s_ubh;
}
/*
* macros used for accessing structures
*/
static inline s32
ufs_get_fs_state(struct super_block *sb, struct ufs_super_block_first *usb1,
struct ufs_super_block_third *usb3)
{
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
if (fs32_to_cpu(sb, usb3->fs_postblformat) == UFS_42POSTBLFMT)
return fs32_to_cpu(sb, usb1->fs_u0.fs_sun.fs_state);
fallthrough; /* to UFS_ST_SUN */
case UFS_ST_SUN:
return fs32_to_cpu(sb, usb3->fs_un2.fs_sun.fs_state);
case UFS_ST_SUNx86:
return fs32_to_cpu(sb, usb1->fs_u1.fs_sunx86.fs_state);
case UFS_ST_44BSD:
default:
return fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_state);
}
}
static inline void
ufs_set_fs_state(struct super_block *sb, struct ufs_super_block_first *usb1,
struct ufs_super_block_third *usb3, s32 value)
{
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
if (fs32_to_cpu(sb, usb3->fs_postblformat) == UFS_42POSTBLFMT) {
usb1->fs_u0.fs_sun.fs_state = cpu_to_fs32(sb, value);
break;
}
fallthrough; /* to UFS_ST_SUN */
case UFS_ST_SUN:
usb3->fs_un2.fs_sun.fs_state = cpu_to_fs32(sb, value);
break;
case UFS_ST_SUNx86:
usb1->fs_u1.fs_sunx86.fs_state = cpu_to_fs32(sb, value);
break;
case UFS_ST_44BSD:
usb3->fs_un2.fs_44.fs_state = cpu_to_fs32(sb, value);
break;
}
}
static inline u32
ufs_get_fs_npsect(struct super_block *sb, struct ufs_super_block_first *usb1,
struct ufs_super_block_third *usb3)
{
if ((UFS_SB(sb)->s_flags & UFS_ST_MASK) == UFS_ST_SUNx86)
return fs32_to_cpu(sb, usb3->fs_un2.fs_sunx86.fs_npsect);
else
return fs32_to_cpu(sb, usb1->fs_u1.fs_sun.fs_npsect);
}
static inline u64
ufs_get_fs_qbmask(struct super_block *sb, struct ufs_super_block_third *usb3)
{
__fs64 tmp;
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
case UFS_ST_SUN:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sun.fs_qbmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sun.fs_qbmask[1];
break;
case UFS_ST_SUNx86:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sunx86.fs_qbmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sunx86.fs_qbmask[1];
break;
case UFS_ST_44BSD:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_44.fs_qbmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_44.fs_qbmask[1];
break;
}
return fs64_to_cpu(sb, tmp);
}
static inline u64
ufs_get_fs_qfmask(struct super_block *sb, struct ufs_super_block_third *usb3)
{
__fs64 tmp;
switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) {
case UFS_ST_SUNOS:
case UFS_ST_SUN:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sun.fs_qfmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sun.fs_qfmask[1];
break;
case UFS_ST_SUNx86:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sunx86.fs_qfmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sunx86.fs_qfmask[1];
break;
case UFS_ST_44BSD:
((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_44.fs_qfmask[0];
((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_44.fs_qfmask[1];
break;
}
return fs64_to_cpu(sb, tmp);
}
static inline u16
ufs_get_de_namlen(struct super_block *sb, struct ufs_dir_entry *de)
{
if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) == UFS_DE_OLD)
return fs16_to_cpu(sb, de->d_u.d_namlen);
else
return de->d_u.d_44.d_namlen; /* XXX this seems wrong */
}
static inline void
ufs_set_de_namlen(struct super_block *sb, struct ufs_dir_entry *de, u16 value)
{
if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) == UFS_DE_OLD)
de->d_u.d_namlen = cpu_to_fs16(sb, value);
else
de->d_u.d_44.d_namlen = value; /* XXX this seems wrong */
}
static inline void
ufs_set_de_type(struct super_block *sb, struct ufs_dir_entry *de, int mode)
{
if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) != UFS_DE_44BSD)
return;
/*
* TODO turn this into a table lookup
*/
switch (mode & S_IFMT) {
case S_IFSOCK:
de->d_u.d_44.d_type = DT_SOCK;
break;
case S_IFLNK:
de->d_u.d_44.d_type = DT_LNK;
break;
case S_IFREG:
de->d_u.d_44.d_type = DT_REG;
break;
case S_IFBLK:
de->d_u.d_44.d_type = DT_BLK;
break;
case S_IFDIR:
de->d_u.d_44.d_type = DT_DIR;
break;
case S_IFCHR:
de->d_u.d_44.d_type = DT_CHR;
break;
case S_IFIFO:
de->d_u.d_44.d_type = DT_FIFO;
break;
default:
de->d_u.d_44.d_type = DT_UNKNOWN;
}
}
static inline u32
ufs_get_inode_uid(struct super_block *sb, struct ufs_inode *inode)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
return fs32_to_cpu(sb, inode->ui_u3.ui_44.ui_uid);
case UFS_UID_EFT:
if (inode->ui_u1.oldids.ui_suid == 0xFFFF)
return fs32_to_cpu(sb, inode->ui_u3.ui_sun.ui_uid);
fallthrough;
default:
return fs16_to_cpu(sb, inode->ui_u1.oldids.ui_suid);
}
}
static inline void
ufs_set_inode_uid(struct super_block *sb, struct ufs_inode *inode, u32 value)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
inode->ui_u3.ui_44.ui_uid = cpu_to_fs32(sb, value);
inode->ui_u1.oldids.ui_suid = cpu_to_fs16(sb, value);
break;
case UFS_UID_EFT:
inode->ui_u3.ui_sun.ui_uid = cpu_to_fs32(sb, value);
if (value > 0xFFFF)
value = 0xFFFF;
fallthrough;
default:
inode->ui_u1.oldids.ui_suid = cpu_to_fs16(sb, value);
break;
}
}
static inline u32
ufs_get_inode_gid(struct super_block *sb, struct ufs_inode *inode)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
return fs32_to_cpu(sb, inode->ui_u3.ui_44.ui_gid);
case UFS_UID_EFT:
if (inode->ui_u1.oldids.ui_sgid == 0xFFFF)
return fs32_to_cpu(sb, inode->ui_u3.ui_sun.ui_gid);
fallthrough;
default:
return fs16_to_cpu(sb, inode->ui_u1.oldids.ui_sgid);
}
}
static inline void
ufs_set_inode_gid(struct super_block *sb, struct ufs_inode *inode, u32 value)
{
switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) {
case UFS_UID_44BSD:
inode->ui_u3.ui_44.ui_gid = cpu_to_fs32(sb, value);
inode->ui_u1.oldids.ui_sgid = cpu_to_fs16(sb, value);
break;
case UFS_UID_EFT:
inode->ui_u3.ui_sun.ui_gid = cpu_to_fs32(sb, value);
if (value > 0xFFFF)
value = 0xFFFF;
fallthrough;
default:
inode->ui_u1.oldids.ui_sgid = cpu_to_fs16(sb, value);
break;
}
}
extern dev_t ufs_get_inode_dev(struct super_block *, struct ufs_inode_info *);
extern void ufs_set_inode_dev(struct super_block *, struct ufs_inode_info *, dev_t);
extern int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len);
/*
* These functions manipulate ufs buffers
*/
#define ubh_bread(sb,fragment,size) _ubh_bread_(uspi,sb,fragment,size)
extern struct ufs_buffer_head * _ubh_bread_(struct ufs_sb_private_info *, struct super_block *, u64 , u64);
extern struct ufs_buffer_head * ubh_bread_uspi(struct ufs_sb_private_info *, struct super_block *, u64, u64);
extern void ubh_brelse (struct ufs_buffer_head *);
extern void ubh_brelse_uspi (struct ufs_sb_private_info *);
extern void ubh_mark_buffer_dirty (struct ufs_buffer_head *);
extern void ubh_mark_buffer_uptodate (struct ufs_buffer_head *, int);
extern void ubh_sync_block(struct ufs_buffer_head *);
extern void ubh_bforget (struct ufs_buffer_head *);
extern int ubh_buffer_dirty (struct ufs_buffer_head *);
#define ubh_ubhcpymem(mem,ubh,size) _ubh_ubhcpymem_(uspi,mem,ubh,size)
extern void _ubh_ubhcpymem_(struct ufs_sb_private_info *, unsigned char *, struct ufs_buffer_head *, unsigned);
#define ubh_memcpyubh(ubh,mem,size) _ubh_memcpyubh_(uspi,ubh,mem,size)
extern void _ubh_memcpyubh_(struct ufs_sb_private_info *, struct ufs_buffer_head *, unsigned char *, unsigned);
/* This functions works with cache pages*/
extern struct page *ufs_get_locked_page(struct address_space *mapping,
pgoff_t index);
static inline void ufs_put_locked_page(struct page *page)
{
unlock_page(page);
put_page(page);
}
/*
* macros and inline function to get important structures from ufs_sb_private_info
*/
static inline void *get_usb_offset(struct ufs_sb_private_info *uspi,
unsigned int offset)
{
unsigned int index;
index = offset >> uspi->s_fshift;
offset &= ~uspi->s_fmask;
return uspi->s_ubh.bh[index]->b_data + offset;
}
#define ubh_get_usb_first(uspi) \
((struct ufs_super_block_first *)get_usb_offset((uspi), 0))
#define ubh_get_usb_second(uspi) \
((struct ufs_super_block_second *)get_usb_offset((uspi), UFS_SECTOR_SIZE))
#define ubh_get_usb_third(uspi) \
((struct ufs_super_block_third *)get_usb_offset((uspi), 2*UFS_SECTOR_SIZE))
#define ubh_get_ucg(ubh) \
((struct ufs_cylinder_group *)((ubh)->bh[0]->b_data))
/*
* Extract byte from ufs_buffer_head
* Extract the bits for a block from a map inside ufs_buffer_head
*/
#define ubh_get_addr8(ubh,begin) \
((u8*)(ubh)->bh[(begin) >> uspi->s_fshift]->b_data + \
((begin) & ~uspi->s_fmask))
#define ubh_get_addr16(ubh,begin) \
(((__fs16*)((ubh)->bh[(begin) >> (uspi->s_fshift-1)]->b_data)) + \
((begin) & ((uspi->fsize>>1) - 1)))
#define ubh_get_addr32(ubh,begin) \
(((__fs32*)((ubh)->bh[(begin) >> (uspi->s_fshift-2)]->b_data)) + \
((begin) & ((uspi->s_fsize>>2) - 1)))
#define ubh_get_addr64(ubh,begin) \
(((__fs64*)((ubh)->bh[(begin) >> (uspi->s_fshift-3)]->b_data)) + \
((begin) & ((uspi->s_fsize>>3) - 1)))
#define ubh_get_addr ubh_get_addr8
static inline void *ubh_get_data_ptr(struct ufs_sb_private_info *uspi,
struct ufs_buffer_head *ubh,
u64 blk)
{
if (uspi->fs_magic == UFS2_MAGIC)
return ubh_get_addr64(ubh, blk);
else
return ubh_get_addr32(ubh, blk);
}
#define ubh_blkmap(ubh,begin,bit) \
((*ubh_get_addr(ubh, (begin) + ((bit) >> 3)) >> ((bit) & 7)) & (0xff >> (UFS_MAXFRAG - uspi->s_fpb)))
static inline u64
ufs_freefrags(struct ufs_sb_private_info *uspi)
{
return ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
uspi->cs_total.cs_nffree;
}
/*
* Macros to access cylinder group array structures
*/
#define ubh_cg_blktot(ucpi,cylno) \
(*((__fs32*)ubh_get_addr(UCPI_UBH(ucpi), (ucpi)->c_btotoff + ((cylno) << 2))))
#define ubh_cg_blks(ucpi,cylno,rpos) \
(*((__fs16*)ubh_get_addr(UCPI_UBH(ucpi), \
(ucpi)->c_boff + (((cylno) * uspi->s_nrpos + (rpos)) << 1 ))))
/*
* Bitmap operations
* These functions work like classical bitmap operations.
* The difference is that we don't have the whole bitmap
* in one contiguous chunk of memory, but in several buffers.
* The parameters of each function are super_block, ufs_buffer_head and
* position of the beginning of the bitmap.
*/
#define ubh_setbit(ubh,begin,bit) \
(*ubh_get_addr(ubh, (begin) + ((bit) >> 3)) |= (1 << ((bit) & 7)))
#define ubh_clrbit(ubh,begin,bit) \
(*ubh_get_addr (ubh, (begin) + ((bit) >> 3)) &= ~(1 << ((bit) & 7)))
#define ubh_isset(ubh,begin,bit) \
(*ubh_get_addr (ubh, (begin) + ((bit) >> 3)) & (1 << ((bit) & 7)))
#define ubh_isclr(ubh,begin,bit) (!ubh_isset(ubh,begin,bit))
#define ubh_find_first_zero_bit(ubh,begin,size) _ubh_find_next_zero_bit_(uspi,ubh,begin,size,0)
#define ubh_find_next_zero_bit(ubh,begin,size,offset) _ubh_find_next_zero_bit_(uspi,ubh,begin,size,offset)
static inline unsigned _ubh_find_next_zero_bit_(
struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh,
unsigned begin, unsigned size, unsigned offset)
{
unsigned base, count, pos;
size -= offset;
begin <<= 3;
offset += begin;
base = offset >> uspi->s_bpfshift;
offset &= uspi->s_bpfmask;
for (;;) {
count = min_t(unsigned int, size + offset, uspi->s_bpf);
size -= count - offset;
pos = find_next_zero_bit_le(ubh->bh[base]->b_data, count, offset);
if (pos < count || !size)
break;
base++;
offset = 0;
}
return (base << uspi->s_bpfshift) + pos - begin;
}
static inline unsigned find_last_zero_bit (unsigned char * bitmap,
unsigned size, unsigned offset)
{
unsigned bit, i;
unsigned char * mapp;
unsigned char map;
mapp = bitmap + (size >> 3);
map = *mapp--;
bit = 1 << (size & 7);
for (i = size; i > offset; i--) {
if ((map & bit) == 0)
break;
if ((i & 7) != 0) {
bit >>= 1;
} else {
map = *mapp--;
bit = 1 << 7;
}
}
return i;
}
#define ubh_find_last_zero_bit(ubh,begin,size,offset) _ubh_find_last_zero_bit_(uspi,ubh,begin,size,offset)
static inline unsigned _ubh_find_last_zero_bit_(
struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh,
unsigned begin, unsigned start, unsigned end)
{
unsigned base, count, pos, size;
size = start - end;
begin <<= 3;
start += begin;
base = start >> uspi->s_bpfshift;
start &= uspi->s_bpfmask;
for (;;) {
count = min_t(unsigned int,
size + (uspi->s_bpf - start), uspi->s_bpf)
- (uspi->s_bpf - start);
size -= count;
pos = find_last_zero_bit (ubh->bh[base]->b_data,
start, start - count);
if (pos > start - count || !size)
break;
base--;
start = uspi->s_bpf;
}
return (base << uspi->s_bpfshift) + pos - begin;
}
#define ubh_isblockclear(ubh,begin,block) (!_ubh_isblockset_(uspi,ubh,begin,block))
#define ubh_isblockset(ubh,begin,block) _ubh_isblockset_(uspi,ubh,begin,block)
static inline int _ubh_isblockset_(struct ufs_sb_private_info * uspi,
struct ufs_buffer_head * ubh, unsigned begin, unsigned block)
{
u8 mask;
switch (uspi->s_fpb) {
case 8:
return (*ubh_get_addr (ubh, begin + block) == 0xff);
case 4:
mask = 0x0f << ((block & 0x01) << 2);
return (*ubh_get_addr (ubh, begin + (block >> 1)) & mask) == mask;
case 2:
mask = 0x03 << ((block & 0x03) << 1);
return (*ubh_get_addr (ubh, begin + (block >> 2)) & mask) == mask;
case 1:
mask = 0x01 << (block & 0x07);
return (*ubh_get_addr (ubh, begin + (block >> 3)) & mask) == mask;
}
return 0;
}
#define ubh_clrblock(ubh,begin,block) _ubh_clrblock_(uspi,ubh,begin,block)
static inline void _ubh_clrblock_(struct ufs_sb_private_info * uspi,
struct ufs_buffer_head * ubh, unsigned begin, unsigned block)
{
switch (uspi->s_fpb) {
case 8:
*ubh_get_addr (ubh, begin + block) = 0x00;
return;
case 4:
*ubh_get_addr (ubh, begin + (block >> 1)) &= ~(0x0f << ((block & 0x01) << 2));
return;
case 2:
*ubh_get_addr (ubh, begin + (block >> 2)) &= ~(0x03 << ((block & 0x03) << 1));
return;
case 1:
*ubh_get_addr (ubh, begin + (block >> 3)) &= ~(0x01 << ((block & 0x07)));
return;
}
}
#define ubh_setblock(ubh,begin,block) _ubh_setblock_(uspi,ubh,begin,block)
static inline void _ubh_setblock_(struct ufs_sb_private_info * uspi,
struct ufs_buffer_head * ubh, unsigned begin, unsigned block)
{
switch (uspi->s_fpb) {
case 8:
*ubh_get_addr(ubh, begin + block) = 0xff;
return;
case 4:
*ubh_get_addr(ubh, begin + (block >> 1)) |= (0x0f << ((block & 0x01) << 2));
return;
case 2:
*ubh_get_addr(ubh, begin + (block >> 2)) |= (0x03 << ((block & 0x03) << 1));
return;
case 1:
*ubh_get_addr(ubh, begin + (block >> 3)) |= (0x01 << ((block & 0x07)));
return;
}
}
static inline void ufs_fragacct (struct super_block * sb, unsigned blockmap,
__fs32 * fraglist, int cnt)
{
struct ufs_sb_private_info * uspi;
unsigned fragsize, pos;
uspi = UFS_SB(sb)->s_uspi;
fragsize = 0;
for (pos = 0; pos < uspi->s_fpb; pos++) {
if (blockmap & (1 << pos)) {
fragsize++;
}
else if (fragsize > 0) {
fs32_add(sb, &fraglist[fragsize], cnt);
fragsize = 0;
}
}
if (fragsize > 0 && fragsize < uspi->s_fpb)
fs32_add(sb, &fraglist[fragsize], cnt);
}
static inline void *ufs_get_direct_data_ptr(struct ufs_sb_private_info *uspi,
struct ufs_inode_info *ufsi,
unsigned blk)
{
BUG_ON(blk > UFS_TIND_BLOCK);
return uspi->fs_magic == UFS2_MAGIC ?
(void *)&ufsi->i_u1.u2_i_data[blk] :
(void *)&ufsi->i_u1.i_data[blk];
}
static inline u64 ufs_data_ptr_to_cpu(struct super_block *sb, void *p)
{
return UFS_SB(sb)->s_uspi->fs_magic == UFS2_MAGIC ?
fs64_to_cpu(sb, *(__fs64 *)p) :
fs32_to_cpu(sb, *(__fs32 *)p);
}
static inline void ufs_cpu_to_data_ptr(struct super_block *sb, void *p, u64 val)
{
if (UFS_SB(sb)->s_uspi->fs_magic == UFS2_MAGIC)
*(__fs64 *)p = cpu_to_fs64(sb, val);
else
*(__fs32 *)p = cpu_to_fs32(sb, val);
}
static inline void ufs_data_ptr_clear(struct ufs_sb_private_info *uspi,
void *p)
{
if (uspi->fs_magic == UFS2_MAGIC)
*(__fs64 *)p = 0;
else
*(__fs32 *)p = 0;
}
static inline int ufs_is_data_ptr_zero(struct ufs_sb_private_info *uspi,
void *p)
{
if (uspi->fs_magic == UFS2_MAGIC)
return *(__fs64 *)p == 0;
else
return *(__fs32 *)p == 0;
}
static inline __fs32 ufs_get_seconds(struct super_block *sbp)
{
time64_t now = ktime_get_real_seconds();
/* Signed 32-bit interpretation wraps around in 2038, which
* happens in ufs1 inode stamps but not ufs2 using 64-bits
* stamps. For superblock and blockgroup, let's assume
* unsigned 32-bit stamps, which are good until y2106.
* Wrap around rather than clamp here to make the dirty
* file system detection work in the superblock stamp.
*/
return cpu_to_fs32(sbp, lower_32_bits(now));
}