mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 17:44:14 +08:00
3c771c1944
One of the bottleneck of the new scrub code is the extra csum tree
search.
The old code would only do the csum tree search for each scrub bio,
which can be as large as 512KiB, thus they can afford to allocate a new
path each time.
But the new scrub code is doing csum tree search for each stripe, which
is only 64KiB, this means we'd better re-use the same csum path during
each search.
This patch would introduce a per-sctx path for csum tree search, as we
don't need to re-allocate the path every time we need to do a csum tree
search.
With this change we can further improve the queue depth and improve the
scrub read performance:
Before (with regression and cached extent tree path):
Device r/s rkB/s rrqm/s %rrqm r_await rareq-sz aqu-sz %util
nvme0n1p3 15875.00 1013328.00 12.00 0.08 0.08 63.83 1.35 100.00
After (with both cached extent/csum tree path):
nvme0n1p3 17759.00 1133280.00 10.00 0.06 0.08 63.81 1.50 100.00
Fixes: e02ee89baa
("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe infrastructure")
CC: stable@vger.kernel.org # 6.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
1354 lines
37 KiB
C
1354 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/bio.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <crypto/hash.h>
|
|
#include "messages.h"
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "bio.h"
|
|
#include "print-tree.h"
|
|
#include "compression.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "file-item.h"
|
|
#include "super.h"
|
|
|
|
#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
|
|
sizeof(struct btrfs_item) * 2) / \
|
|
size) - 1))
|
|
|
|
#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
|
|
PAGE_SIZE))
|
|
|
|
/*
|
|
* Set inode's size according to filesystem options.
|
|
*
|
|
* @inode: inode we want to update the disk_i_size for
|
|
* @new_i_size: i_size we want to set to, 0 if we use i_size
|
|
*
|
|
* With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
|
|
* returns as it is perfectly fine with a file that has holes without hole file
|
|
* extent items.
|
|
*
|
|
* However without NO_HOLES we need to only return the area that is contiguous
|
|
* from the 0 offset of the file. Otherwise we could end up adjust i_size up
|
|
* to an extent that has a gap in between.
|
|
*
|
|
* Finally new_i_size should only be set in the case of truncate where we're not
|
|
* ready to use i_size_read() as the limiter yet.
|
|
*/
|
|
void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
u64 start, end, i_size;
|
|
int ret;
|
|
|
|
spin_lock(&inode->lock);
|
|
i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
|
|
if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
|
|
inode->disk_i_size = i_size;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
|
|
&end, EXTENT_DIRTY);
|
|
if (!ret && start == 0)
|
|
i_size = min(i_size, end + 1);
|
|
else
|
|
i_size = 0;
|
|
inode->disk_i_size = i_size;
|
|
out_unlock:
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
|
|
/*
|
|
* Mark range within a file as having a new extent inserted.
|
|
*
|
|
* @inode: inode being modified
|
|
* @start: start file offset of the file extent we've inserted
|
|
* @len: logical length of the file extent item
|
|
*
|
|
* Call when we are inserting a new file extent where there was none before.
|
|
* Does not need to call this in the case where we're replacing an existing file
|
|
* extent, however if not sure it's fine to call this multiple times.
|
|
*
|
|
* The start and len must match the file extent item, so thus must be sectorsize
|
|
* aligned.
|
|
*/
|
|
int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
|
|
u64 len)
|
|
{
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
|
|
|
|
if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
|
|
return 0;
|
|
return set_extent_bit(&inode->file_extent_tree, start, start + len - 1,
|
|
EXTENT_DIRTY, NULL);
|
|
}
|
|
|
|
/*
|
|
* Mark an inode range as not having a backing extent.
|
|
*
|
|
* @inode: inode being modified
|
|
* @start: start file offset of the file extent we've inserted
|
|
* @len: logical length of the file extent item
|
|
*
|
|
* Called when we drop a file extent, for example when we truncate. Doesn't
|
|
* need to be called for cases where we're replacing a file extent, like when
|
|
* we've COWed a file extent.
|
|
*
|
|
* The start and len must match the file extent item, so thus must be sectorsize
|
|
* aligned.
|
|
*/
|
|
int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
|
|
u64 len)
|
|
{
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
|
|
len == (u64)-1);
|
|
|
|
if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
|
|
return 0;
|
|
return clear_extent_bit(&inode->file_extent_tree, start,
|
|
start + len - 1, EXTENT_DIRTY, NULL);
|
|
}
|
|
|
|
static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
|
|
{
|
|
ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
|
|
|
|
return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
|
|
}
|
|
|
|
static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
|
|
{
|
|
ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
|
|
|
|
return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
|
|
}
|
|
|
|
static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
|
|
{
|
|
u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
|
|
fs_info->csum_size);
|
|
|
|
return csum_size_to_bytes(fs_info, max_csum_size);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total size needed to allocate for an ordered sum structure
|
|
* spanning @bytes in the file.
|
|
*/
|
|
static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
|
|
{
|
|
return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
|
|
}
|
|
|
|
int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 objectid, u64 pos, u64 num_bytes)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_file_extent_item *item;
|
|
struct btrfs_key file_key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
file_key.objectid = objectid;
|
|
file_key.offset = pos;
|
|
file_key.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
|
|
sizeof(*item));
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret); /* Can't happen */
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
|
|
btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
|
|
btrfs_set_file_extent_offset(leaf, item, 0);
|
|
btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
|
|
btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
|
|
btrfs_set_file_extent_generation(leaf, item, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_file_extent_compression(leaf, item, 0);
|
|
btrfs_set_file_extent_encryption(leaf, item, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, item, 0);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static struct btrfs_csum_item *
|
|
btrfs_lookup_csum(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, int cow)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
struct btrfs_key file_key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_csum_item *item;
|
|
struct extent_buffer *leaf;
|
|
u64 csum_offset = 0;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
int csums_in_item;
|
|
|
|
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
file_key.offset = bytenr;
|
|
file_key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
|
|
if (ret < 0)
|
|
goto fail;
|
|
leaf = path->nodes[0];
|
|
if (ret > 0) {
|
|
ret = 1;
|
|
if (path->slots[0] == 0)
|
|
goto fail;
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
|
|
goto fail;
|
|
|
|
csum_offset = (bytenr - found_key.offset) >>
|
|
fs_info->sectorsize_bits;
|
|
csums_in_item = btrfs_item_size(leaf, path->slots[0]);
|
|
csums_in_item /= csum_size;
|
|
|
|
if (csum_offset == csums_in_item) {
|
|
ret = -EFBIG;
|
|
goto fail;
|
|
} else if (csum_offset > csums_in_item) {
|
|
goto fail;
|
|
}
|
|
}
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
|
|
item = (struct btrfs_csum_item *)((unsigned char *)item +
|
|
csum_offset * csum_size);
|
|
return item;
|
|
fail:
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, u64 objectid,
|
|
u64 offset, int mod)
|
|
{
|
|
struct btrfs_key file_key;
|
|
int ins_len = mod < 0 ? -1 : 0;
|
|
int cow = mod != 0;
|
|
|
|
file_key.objectid = objectid;
|
|
file_key.offset = offset;
|
|
file_key.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
|
|
}
|
|
|
|
/*
|
|
* Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
|
|
* store the result to @dst.
|
|
*
|
|
* Return >0 for the number of sectors we found.
|
|
* Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
|
|
* for it. Caller may want to try next sector until one range is hit.
|
|
* Return <0 for fatal error.
|
|
*/
|
|
static int search_csum_tree(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 disk_bytenr,
|
|
u64 len, u8 *dst)
|
|
{
|
|
struct btrfs_root *csum_root;
|
|
struct btrfs_csum_item *item = NULL;
|
|
struct btrfs_key key;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u32 itemsize;
|
|
int ret;
|
|
u64 csum_start;
|
|
u64 csum_len;
|
|
|
|
ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
|
|
IS_ALIGNED(len, sectorsize));
|
|
|
|
/* Check if the current csum item covers disk_bytenr */
|
|
if (path->nodes[0]) {
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_csum_item);
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
|
|
|
|
csum_start = key.offset;
|
|
csum_len = (itemsize / csum_size) * sectorsize;
|
|
|
|
if (in_range(disk_bytenr, csum_start, csum_len))
|
|
goto found;
|
|
}
|
|
|
|
/* Current item doesn't contain the desired range, search again */
|
|
btrfs_release_path(path);
|
|
csum_root = btrfs_csum_root(fs_info, disk_bytenr);
|
|
item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
|
|
if (IS_ERR(item)) {
|
|
ret = PTR_ERR(item);
|
|
goto out;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
|
|
|
|
csum_start = key.offset;
|
|
csum_len = (itemsize / csum_size) * sectorsize;
|
|
ASSERT(in_range(disk_bytenr, csum_start, csum_len));
|
|
|
|
found:
|
|
ret = (min(csum_start + csum_len, disk_bytenr + len) -
|
|
disk_bytenr) >> fs_info->sectorsize_bits;
|
|
read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
|
|
ret * csum_size);
|
|
out:
|
|
if (ret == -ENOENT || ret == -EFBIG)
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Lookup the checksum for the read bio in csum tree.
|
|
*
|
|
* Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
|
|
*/
|
|
blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
|
|
{
|
|
struct btrfs_inode *inode = bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct bio *bio = &bbio->bio;
|
|
struct btrfs_path *path;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u32 orig_len = bio->bi_iter.bi_size;
|
|
u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
|
|
blk_status_t ret = BLK_STS_OK;
|
|
u32 bio_offset = 0;
|
|
|
|
if ((inode->flags & BTRFS_INODE_NODATASUM) ||
|
|
test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
|
|
return BLK_STS_OK;
|
|
|
|
/*
|
|
* This function is only called for read bio.
|
|
*
|
|
* This means two things:
|
|
* - All our csums should only be in csum tree
|
|
* No ordered extents csums, as ordered extents are only for write
|
|
* path.
|
|
* - No need to bother any other info from bvec
|
|
* Since we're looking up csums, the only important info is the
|
|
* disk_bytenr and the length, which can be extracted from bi_iter
|
|
* directly.
|
|
*/
|
|
ASSERT(bio_op(bio) == REQ_OP_READ);
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
|
|
bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
|
|
if (!bbio->csum) {
|
|
btrfs_free_path(path);
|
|
return BLK_STS_RESOURCE;
|
|
}
|
|
} else {
|
|
bbio->csum = bbio->csum_inline;
|
|
}
|
|
|
|
/*
|
|
* If requested number of sectors is larger than one leaf can contain,
|
|
* kick the readahead for csum tree.
|
|
*/
|
|
if (nblocks > fs_info->csums_per_leaf)
|
|
path->reada = READA_FORWARD;
|
|
|
|
/*
|
|
* the free space stuff is only read when it hasn't been
|
|
* updated in the current transaction. So, we can safely
|
|
* read from the commit root and sidestep a nasty deadlock
|
|
* between reading the free space cache and updating the csum tree.
|
|
*/
|
|
if (btrfs_is_free_space_inode(inode)) {
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
}
|
|
|
|
while (bio_offset < orig_len) {
|
|
int count;
|
|
u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
|
|
u8 *csum_dst = bbio->csum +
|
|
(bio_offset >> fs_info->sectorsize_bits) * csum_size;
|
|
|
|
count = search_csum_tree(fs_info, path, cur_disk_bytenr,
|
|
orig_len - bio_offset, csum_dst);
|
|
if (count < 0) {
|
|
ret = errno_to_blk_status(count);
|
|
if (bbio->csum != bbio->csum_inline)
|
|
kfree(bbio->csum);
|
|
bbio->csum = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We didn't find a csum for this range. We need to make sure
|
|
* we complain loudly about this, because we are not NODATASUM.
|
|
*
|
|
* However for the DATA_RELOC inode we could potentially be
|
|
* relocating data extents for a NODATASUM inode, so the inode
|
|
* itself won't be marked with NODATASUM, but the extent we're
|
|
* copying is in fact NODATASUM. If we don't find a csum we
|
|
* assume this is the case.
|
|
*/
|
|
if (count == 0) {
|
|
memset(csum_dst, 0, csum_size);
|
|
count = 1;
|
|
|
|
if (inode->root->root_key.objectid ==
|
|
BTRFS_DATA_RELOC_TREE_OBJECTID) {
|
|
u64 file_offset = bbio->file_offset + bio_offset;
|
|
|
|
set_extent_bit(&inode->io_tree, file_offset,
|
|
file_offset + sectorsize - 1,
|
|
EXTENT_NODATASUM, NULL);
|
|
} else {
|
|
btrfs_warn_rl(fs_info,
|
|
"csum hole found for disk bytenr range [%llu, %llu)",
|
|
cur_disk_bytenr, cur_disk_bytenr + sectorsize);
|
|
}
|
|
}
|
|
bio_offset += count * sectorsize;
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
|
|
struct list_head *list, int search_commit,
|
|
bool nowait)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_ordered_sum *sums;
|
|
struct btrfs_csum_item *item;
|
|
LIST_HEAD(tmplist);
|
|
int ret;
|
|
|
|
ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
|
|
IS_ALIGNED(end + 1, fs_info->sectorsize));
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->nowait = nowait;
|
|
if (search_commit) {
|
|
path->skip_locking = 1;
|
|
path->reada = READA_FORWARD;
|
|
path->search_commit_root = 1;
|
|
}
|
|
|
|
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key.offset = start;
|
|
key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0 && path->slots[0] > 0) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
|
|
|
|
/*
|
|
* There are two cases we can hit here for the previous csum
|
|
* item:
|
|
*
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Or
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Check if the previous csum item covers the leading part of
|
|
* the search range. If so we have to start from previous csum
|
|
* item.
|
|
*/
|
|
if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
|
|
key.type == BTRFS_EXTENT_CSUM_KEY) {
|
|
if (bytes_to_csum_size(fs_info, start - key.offset) <
|
|
btrfs_item_size(leaf, path->slots[0] - 1))
|
|
path->slots[0]--;
|
|
}
|
|
}
|
|
|
|
while (start <= end) {
|
|
u64 csum_end;
|
|
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
key.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
key.offset > end)
|
|
break;
|
|
|
|
if (key.offset > start)
|
|
start = key.offset;
|
|
|
|
csum_end = key.offset + csum_size_to_bytes(fs_info,
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
if (csum_end <= start) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
csum_end = min(csum_end, end + 1);
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_csum_item);
|
|
while (start < csum_end) {
|
|
unsigned long offset;
|
|
size_t size;
|
|
|
|
size = min_t(size_t, csum_end - start,
|
|
max_ordered_sum_bytes(fs_info));
|
|
sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
|
|
GFP_NOFS);
|
|
if (!sums) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
sums->logical = start;
|
|
sums->len = size;
|
|
|
|
offset = bytes_to_csum_size(fs_info, start - key.offset);
|
|
|
|
read_extent_buffer(path->nodes[0],
|
|
sums->sums,
|
|
((unsigned long)item) + offset,
|
|
bytes_to_csum_size(fs_info, size));
|
|
|
|
start += size;
|
|
list_add_tail(&sums->list, &tmplist);
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
fail:
|
|
while (ret < 0 && !list_empty(&tmplist)) {
|
|
sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
|
|
list_del(&sums->list);
|
|
kfree(sums);
|
|
}
|
|
list_splice_tail(&tmplist, list);
|
|
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do the same work as btrfs_lookup_csums_list(), the difference is in how
|
|
* we return the result.
|
|
*
|
|
* This version will set the corresponding bits in @csum_bitmap to represent
|
|
* that there is a csum found.
|
|
* Each bit represents a sector. Thus caller should ensure @csum_buf passed
|
|
* in is large enough to contain all csums.
|
|
*/
|
|
int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
|
|
u64 start, u64 end, u8 *csum_buf,
|
|
unsigned long *csum_bitmap)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_csum_item *item;
|
|
const u64 orig_start = start;
|
|
bool free_path = false;
|
|
int ret;
|
|
|
|
ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
|
|
IS_ALIGNED(end + 1, fs_info->sectorsize));
|
|
|
|
if (!path) {
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
free_path = true;
|
|
}
|
|
|
|
/* Check if we can reuse the previous path. */
|
|
if (path->nodes[0]) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
|
|
if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
|
|
key.type == BTRFS_EXTENT_CSUM_KEY &&
|
|
key.offset <= start)
|
|
goto search_forward;
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
key.offset = start;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0 && path->slots[0] > 0) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
|
|
|
|
/*
|
|
* There are two cases we can hit here for the previous csum
|
|
* item:
|
|
*
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Or
|
|
* |<- search range ->|
|
|
* |<- csum item ->|
|
|
*
|
|
* Check if the previous csum item covers the leading part of
|
|
* the search range. If so we have to start from previous csum
|
|
* item.
|
|
*/
|
|
if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
|
|
key.type == BTRFS_EXTENT_CSUM_KEY) {
|
|
if (bytes_to_csum_size(fs_info, start - key.offset) <
|
|
btrfs_item_size(leaf, path->slots[0] - 1))
|
|
path->slots[0]--;
|
|
}
|
|
}
|
|
|
|
search_forward:
|
|
while (start <= end) {
|
|
u64 csum_end;
|
|
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
key.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
key.offset > end)
|
|
break;
|
|
|
|
if (key.offset > start)
|
|
start = key.offset;
|
|
|
|
csum_end = key.offset + csum_size_to_bytes(fs_info,
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
if (csum_end <= start) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
csum_end = min(csum_end, end + 1);
|
|
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_csum_item);
|
|
while (start < csum_end) {
|
|
unsigned long offset;
|
|
size_t size;
|
|
u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
|
|
start - orig_start);
|
|
|
|
size = min_t(size_t, csum_end - start, end + 1 - start);
|
|
|
|
offset = bytes_to_csum_size(fs_info, start - key.offset);
|
|
|
|
read_extent_buffer(path->nodes[0], csum_dest,
|
|
((unsigned long)item) + offset,
|
|
bytes_to_csum_size(fs_info, size));
|
|
|
|
bitmap_set(csum_bitmap,
|
|
(start - orig_start) >> fs_info->sectorsize_bits,
|
|
size >> fs_info->sectorsize_bits);
|
|
|
|
start += size;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
fail:
|
|
if (free_path)
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate checksums of the data contained inside a bio.
|
|
*/
|
|
blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
|
|
{
|
|
struct btrfs_ordered_extent *ordered = bbio->ordered;
|
|
struct btrfs_inode *inode = bbio->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
|
|
struct bio *bio = &bbio->bio;
|
|
struct btrfs_ordered_sum *sums;
|
|
char *data;
|
|
struct bvec_iter iter;
|
|
struct bio_vec bvec;
|
|
int index;
|
|
unsigned int blockcount;
|
|
int i;
|
|
unsigned nofs_flag;
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
|
|
GFP_KERNEL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
|
|
if (!sums)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
sums->len = bio->bi_iter.bi_size;
|
|
INIT_LIST_HEAD(&sums->list);
|
|
|
|
sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
index = 0;
|
|
|
|
shash->tfm = fs_info->csum_shash;
|
|
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
|
|
bvec.bv_len + fs_info->sectorsize
|
|
- 1);
|
|
|
|
for (i = 0; i < blockcount; i++) {
|
|
data = bvec_kmap_local(&bvec);
|
|
crypto_shash_digest(shash,
|
|
data + (i * fs_info->sectorsize),
|
|
fs_info->sectorsize,
|
|
sums->sums + index);
|
|
kunmap_local(data);
|
|
index += fs_info->csum_size;
|
|
}
|
|
|
|
}
|
|
|
|
bbio->sums = sums;
|
|
btrfs_add_ordered_sum(ordered, sums);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
|
|
* record the updated logical address on Zone Append completion.
|
|
* Allocate just the structure with an empty sums array here for that case.
|
|
*/
|
|
blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
|
|
{
|
|
bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
|
|
if (!bbio->sums)
|
|
return BLK_STS_RESOURCE;
|
|
bbio->sums->len = bbio->bio.bi_iter.bi_size;
|
|
bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
|
|
btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove one checksum overlapping a range.
|
|
*
|
|
* This expects the key to describe the csum pointed to by the path, and it
|
|
* expects the csum to overlap the range [bytenr, len]
|
|
*
|
|
* The csum should not be entirely contained in the range and the range should
|
|
* not be entirely contained in the csum.
|
|
*
|
|
* This calls btrfs_truncate_item with the correct args based on the overlap,
|
|
* and fixes up the key as required.
|
|
*/
|
|
static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *key,
|
|
u64 bytenr, u64 len)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u64 csum_end;
|
|
u64 end_byte = bytenr + len;
|
|
u32 blocksize_bits = fs_info->sectorsize_bits;
|
|
|
|
leaf = path->nodes[0];
|
|
csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
|
|
csum_end <<= blocksize_bits;
|
|
csum_end += key->offset;
|
|
|
|
if (key->offset < bytenr && csum_end <= end_byte) {
|
|
/*
|
|
* [ bytenr - len ]
|
|
* [ ]
|
|
* [csum ]
|
|
* A simple truncate off the end of the item
|
|
*/
|
|
u32 new_size = (bytenr - key->offset) >> blocksize_bits;
|
|
new_size *= csum_size;
|
|
btrfs_truncate_item(path, new_size, 1);
|
|
} else if (key->offset >= bytenr && csum_end > end_byte &&
|
|
end_byte > key->offset) {
|
|
/*
|
|
* [ bytenr - len ]
|
|
* [ ]
|
|
* [csum ]
|
|
* we need to truncate from the beginning of the csum
|
|
*/
|
|
u32 new_size = (csum_end - end_byte) >> blocksize_bits;
|
|
new_size *= csum_size;
|
|
|
|
btrfs_truncate_item(path, new_size, 0);
|
|
|
|
key->offset = end_byte;
|
|
btrfs_set_item_key_safe(fs_info, path, key);
|
|
} else {
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete the csum items from the csum tree for a given range of bytes.
|
|
*/
|
|
int btrfs_del_csums(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
u64 end_byte = bytenr + len;
|
|
u64 csum_end;
|
|
struct extent_buffer *leaf;
|
|
int ret = 0;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
u32 blocksize_bits = fs_info->sectorsize_bits;
|
|
|
|
ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
|
|
root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key.offset = end_byte - 1;
|
|
key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
} else if (ret < 0) {
|
|
break;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
key.type != BTRFS_EXTENT_CSUM_KEY) {
|
|
break;
|
|
}
|
|
|
|
if (key.offset >= end_byte)
|
|
break;
|
|
|
|
csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
|
|
csum_end <<= blocksize_bits;
|
|
csum_end += key.offset;
|
|
|
|
/* this csum ends before we start, we're done */
|
|
if (csum_end <= bytenr)
|
|
break;
|
|
|
|
/* delete the entire item, it is inside our range */
|
|
if (key.offset >= bytenr && csum_end <= end_byte) {
|
|
int del_nr = 1;
|
|
|
|
/*
|
|
* Check how many csum items preceding this one in this
|
|
* leaf correspond to our range and then delete them all
|
|
* at once.
|
|
*/
|
|
if (key.offset > bytenr && path->slots[0] > 0) {
|
|
int slot = path->slots[0] - 1;
|
|
|
|
while (slot >= 0) {
|
|
struct btrfs_key pk;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &pk, slot);
|
|
if (pk.offset < bytenr ||
|
|
pk.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
pk.objectid !=
|
|
BTRFS_EXTENT_CSUM_OBJECTID)
|
|
break;
|
|
path->slots[0] = slot;
|
|
del_nr++;
|
|
key.offset = pk.offset;
|
|
slot--;
|
|
}
|
|
}
|
|
ret = btrfs_del_items(trans, root, path,
|
|
path->slots[0], del_nr);
|
|
if (ret)
|
|
break;
|
|
if (key.offset == bytenr)
|
|
break;
|
|
} else if (key.offset < bytenr && csum_end > end_byte) {
|
|
unsigned long offset;
|
|
unsigned long shift_len;
|
|
unsigned long item_offset;
|
|
/*
|
|
* [ bytenr - len ]
|
|
* [csum ]
|
|
*
|
|
* Our bytes are in the middle of the csum,
|
|
* we need to split this item and insert a new one.
|
|
*
|
|
* But we can't drop the path because the
|
|
* csum could change, get removed, extended etc.
|
|
*
|
|
* The trick here is the max size of a csum item leaves
|
|
* enough room in the tree block for a single
|
|
* item header. So, we split the item in place,
|
|
* adding a new header pointing to the existing
|
|
* bytes. Then we loop around again and we have
|
|
* a nicely formed csum item that we can neatly
|
|
* truncate.
|
|
*/
|
|
offset = (bytenr - key.offset) >> blocksize_bits;
|
|
offset *= csum_size;
|
|
|
|
shift_len = (len >> blocksize_bits) * csum_size;
|
|
|
|
item_offset = btrfs_item_ptr_offset(leaf,
|
|
path->slots[0]);
|
|
|
|
memzero_extent_buffer(leaf, item_offset + offset,
|
|
shift_len);
|
|
key.offset = bytenr;
|
|
|
|
/*
|
|
* btrfs_split_item returns -EAGAIN when the
|
|
* item changed size or key
|
|
*/
|
|
ret = btrfs_split_item(trans, root, path, &key, offset);
|
|
if (ret && ret != -EAGAIN) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
break;
|
|
}
|
|
ret = 0;
|
|
|
|
key.offset = end_byte - 1;
|
|
} else {
|
|
truncate_one_csum(fs_info, path, &key, bytenr, len);
|
|
if (key.offset < bytenr)
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
}
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int find_next_csum_offset(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 *next_offset)
|
|
{
|
|
const u32 nritems = btrfs_header_nritems(path->nodes[0]);
|
|
struct btrfs_key found_key;
|
|
int slot = path->slots[0] + 1;
|
|
int ret;
|
|
|
|
if (nritems == 0 || slot >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
return ret;
|
|
} else if (ret > 0) {
|
|
*next_offset = (u64)-1;
|
|
return 0;
|
|
}
|
|
slot = path->slots[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
|
|
|
|
if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
found_key.type != BTRFS_EXTENT_CSUM_KEY)
|
|
*next_offset = (u64)-1;
|
|
else
|
|
*next_offset = found_key.offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_ordered_sum *sums)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key file_key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_csum_item *item;
|
|
struct btrfs_csum_item *item_end;
|
|
struct extent_buffer *leaf = NULL;
|
|
u64 next_offset;
|
|
u64 total_bytes = 0;
|
|
u64 csum_offset;
|
|
u64 bytenr;
|
|
u32 ins_size;
|
|
int index = 0;
|
|
int found_next;
|
|
int ret;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
again:
|
|
next_offset = (u64)-1;
|
|
found_next = 0;
|
|
bytenr = sums->logical + total_bytes;
|
|
file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
file_key.offset = bytenr;
|
|
file_key.type = BTRFS_EXTENT_CSUM_KEY;
|
|
|
|
item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
|
|
if (!IS_ERR(item)) {
|
|
ret = 0;
|
|
leaf = path->nodes[0];
|
|
item_end = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_csum_item);
|
|
item_end = (struct btrfs_csum_item *)((char *)item_end +
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
goto found;
|
|
}
|
|
ret = PTR_ERR(item);
|
|
if (ret != -EFBIG && ret != -ENOENT)
|
|
goto out;
|
|
|
|
if (ret == -EFBIG) {
|
|
u32 item_size;
|
|
/* we found one, but it isn't big enough yet */
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
if ((item_size / csum_size) >=
|
|
MAX_CSUM_ITEMS(fs_info, csum_size)) {
|
|
/* already at max size, make a new one */
|
|
goto insert;
|
|
}
|
|
} else {
|
|
/* We didn't find a csum item, insert one. */
|
|
ret = find_next_csum_offset(root, path, &next_offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
found_next = 1;
|
|
goto insert;
|
|
}
|
|
|
|
/*
|
|
* At this point, we know the tree has a checksum item that ends at an
|
|
* offset matching the start of the checksum range we want to insert.
|
|
* We try to extend that item as much as possible and then add as many
|
|
* checksums to it as they fit.
|
|
*
|
|
* First check if the leaf has enough free space for at least one
|
|
* checksum. If it has go directly to the item extension code, otherwise
|
|
* release the path and do a search for insertion before the extension.
|
|
*/
|
|
if (btrfs_leaf_free_space(leaf) >= csum_size) {
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
csum_offset = (bytenr - found_key.offset) >>
|
|
fs_info->sectorsize_bits;
|
|
goto extend_csum;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
path->search_for_extension = 1;
|
|
ret = btrfs_search_slot(trans, root, &file_key, path,
|
|
csum_size, 1);
|
|
path->search_for_extension = 0;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
goto insert;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
|
|
|
|
if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
|
|
found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
|
|
csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
|
|
goto insert;
|
|
}
|
|
|
|
extend_csum:
|
|
if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
|
|
csum_size) {
|
|
int extend_nr;
|
|
u64 tmp;
|
|
u32 diff;
|
|
|
|
tmp = sums->len - total_bytes;
|
|
tmp >>= fs_info->sectorsize_bits;
|
|
WARN_ON(tmp < 1);
|
|
extend_nr = max_t(int, 1, tmp);
|
|
|
|
/*
|
|
* A log tree can already have checksum items with a subset of
|
|
* the checksums we are trying to log. This can happen after
|
|
* doing a sequence of partial writes into prealloc extents and
|
|
* fsyncs in between, with a full fsync logging a larger subrange
|
|
* of an extent for which a previous fast fsync logged a smaller
|
|
* subrange. And this happens in particular due to merging file
|
|
* extent items when we complete an ordered extent for a range
|
|
* covered by a prealloc extent - this is done at
|
|
* btrfs_mark_extent_written().
|
|
*
|
|
* So if we try to extend the previous checksum item, which has
|
|
* a range that ends at the start of the range we want to insert,
|
|
* make sure we don't extend beyond the start offset of the next
|
|
* checksum item. If we are at the last item in the leaf, then
|
|
* forget the optimization of extending and add a new checksum
|
|
* item - it is not worth the complexity of releasing the path,
|
|
* getting the first key for the next leaf, repeat the btree
|
|
* search, etc, because log trees are temporary anyway and it
|
|
* would only save a few bytes of leaf space.
|
|
*/
|
|
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
if (path->slots[0] + 1 >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = find_next_csum_offset(root, path, &next_offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
found_next = 1;
|
|
goto insert;
|
|
}
|
|
|
|
ret = find_next_csum_offset(root, path, &next_offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
|
|
if (tmp <= INT_MAX)
|
|
extend_nr = min_t(int, extend_nr, tmp);
|
|
}
|
|
|
|
diff = (csum_offset + extend_nr) * csum_size;
|
|
diff = min(diff,
|
|
MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
|
|
|
|
diff = diff - btrfs_item_size(leaf, path->slots[0]);
|
|
diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
|
|
diff /= csum_size;
|
|
diff *= csum_size;
|
|
|
|
btrfs_extend_item(path, diff);
|
|
ret = 0;
|
|
goto csum;
|
|
}
|
|
|
|
insert:
|
|
btrfs_release_path(path);
|
|
csum_offset = 0;
|
|
if (found_next) {
|
|
u64 tmp;
|
|
|
|
tmp = sums->len - total_bytes;
|
|
tmp >>= fs_info->sectorsize_bits;
|
|
tmp = min(tmp, (next_offset - file_key.offset) >>
|
|
fs_info->sectorsize_bits);
|
|
|
|
tmp = max_t(u64, 1, tmp);
|
|
tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
|
|
ins_size = csum_size * tmp;
|
|
} else {
|
|
ins_size = csum_size;
|
|
}
|
|
ret = btrfs_insert_empty_item(trans, root, path, &file_key,
|
|
ins_size);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (WARN_ON(ret != 0))
|
|
goto out;
|
|
leaf = path->nodes[0];
|
|
csum:
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
|
|
item_end = (struct btrfs_csum_item *)((unsigned char *)item +
|
|
btrfs_item_size(leaf, path->slots[0]));
|
|
item = (struct btrfs_csum_item *)((unsigned char *)item +
|
|
csum_offset * csum_size);
|
|
found:
|
|
ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
|
|
ins_size *= csum_size;
|
|
ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
|
|
ins_size);
|
|
write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
|
|
ins_size);
|
|
|
|
index += ins_size;
|
|
ins_size /= csum_size;
|
|
total_bytes += ins_size * fs_info->sectorsize;
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
if (total_bytes < sums->len) {
|
|
btrfs_release_path(path);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
|
|
const struct btrfs_path *path,
|
|
struct btrfs_file_extent_item *fi,
|
|
struct extent_map *em)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_root *root = inode->root;
|
|
struct extent_buffer *leaf = path->nodes[0];
|
|
const int slot = path->slots[0];
|
|
struct btrfs_key key;
|
|
u64 extent_start, extent_end;
|
|
u64 bytenr;
|
|
u8 type = btrfs_file_extent_type(leaf, fi);
|
|
int compress_type = btrfs_file_extent_compression(leaf, fi);
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
extent_start = key.offset;
|
|
extent_end = btrfs_file_extent_end(path);
|
|
em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
em->generation = btrfs_file_extent_generation(leaf, fi);
|
|
if (type == BTRFS_FILE_EXTENT_REG ||
|
|
type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
em->start = extent_start;
|
|
em->len = extent_end - extent_start;
|
|
em->orig_start = extent_start -
|
|
btrfs_file_extent_offset(leaf, fi);
|
|
em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
if (bytenr == 0) {
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
return;
|
|
}
|
|
if (compress_type != BTRFS_COMPRESS_NONE) {
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
em->compress_type = compress_type;
|
|
em->block_start = bytenr;
|
|
em->block_len = em->orig_block_len;
|
|
} else {
|
|
bytenr += btrfs_file_extent_offset(leaf, fi);
|
|
em->block_start = bytenr;
|
|
em->block_len = em->len;
|
|
if (type == BTRFS_FILE_EXTENT_PREALLOC)
|
|
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
|
|
}
|
|
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
|
|
em->block_start = EXTENT_MAP_INLINE;
|
|
em->start = extent_start;
|
|
em->len = extent_end - extent_start;
|
|
/*
|
|
* Initialize orig_start and block_len with the same values
|
|
* as in inode.c:btrfs_get_extent().
|
|
*/
|
|
em->orig_start = EXTENT_MAP_HOLE;
|
|
em->block_len = (u64)-1;
|
|
em->compress_type = compress_type;
|
|
if (compress_type != BTRFS_COMPRESS_NONE)
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
} else {
|
|
btrfs_err(fs_info,
|
|
"unknown file extent item type %d, inode %llu, offset %llu, "
|
|
"root %llu", type, btrfs_ino(inode), extent_start,
|
|
root->root_key.objectid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the end offset (non inclusive) of the file extent item the given path
|
|
* points to. If it points to an inline extent, the returned offset is rounded
|
|
* up to the sector size.
|
|
*/
|
|
u64 btrfs_file_extent_end(const struct btrfs_path *path)
|
|
{
|
|
const struct extent_buffer *leaf = path->nodes[0];
|
|
const int slot = path->slots[0];
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 end;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
|
|
if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
|
|
end = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
|
|
} else {
|
|
end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
}
|
|
|
|
return end;
|
|
}
|