mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 06:55:13 +08:00
3d6b661330
We should not call pm_runtime_resume_and_get where the reference count is expected to be incremented unconditionally. This patch reverts these calls to the original unconditional get_sync call. Reported-by: Heiner Kallweit <hkallweit1@gmail.com> Fixes:747bf30fd9
("crypto: stm32/cryp - Fix PM reference leak...") Fixes:1cb3ad7019
("crypto: stm32/hash - Fix PM reference leak...") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1936 lines
46 KiB
C
1936 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) STMicroelectronics SA 2017
|
|
* Author: Fabien Dessenne <fabien.dessenne@st.com>
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
|
|
#include <crypto/aes.h>
|
|
#include <crypto/internal/des.h>
|
|
#include <crypto/engine.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
|
|
#define DRIVER_NAME "stm32-cryp"
|
|
|
|
/* Bit [0] encrypt / decrypt */
|
|
#define FLG_ENCRYPT BIT(0)
|
|
/* Bit [8..1] algo & operation mode */
|
|
#define FLG_AES BIT(1)
|
|
#define FLG_DES BIT(2)
|
|
#define FLG_TDES BIT(3)
|
|
#define FLG_ECB BIT(4)
|
|
#define FLG_CBC BIT(5)
|
|
#define FLG_CTR BIT(6)
|
|
#define FLG_GCM BIT(7)
|
|
#define FLG_CCM BIT(8)
|
|
/* Mode mask = bits [15..0] */
|
|
#define FLG_MODE_MASK GENMASK(15, 0)
|
|
/* Bit [31..16] status */
|
|
|
|
/* Registers */
|
|
#define CRYP_CR 0x00000000
|
|
#define CRYP_SR 0x00000004
|
|
#define CRYP_DIN 0x00000008
|
|
#define CRYP_DOUT 0x0000000C
|
|
#define CRYP_DMACR 0x00000010
|
|
#define CRYP_IMSCR 0x00000014
|
|
#define CRYP_RISR 0x00000018
|
|
#define CRYP_MISR 0x0000001C
|
|
#define CRYP_K0LR 0x00000020
|
|
#define CRYP_K0RR 0x00000024
|
|
#define CRYP_K1LR 0x00000028
|
|
#define CRYP_K1RR 0x0000002C
|
|
#define CRYP_K2LR 0x00000030
|
|
#define CRYP_K2RR 0x00000034
|
|
#define CRYP_K3LR 0x00000038
|
|
#define CRYP_K3RR 0x0000003C
|
|
#define CRYP_IV0LR 0x00000040
|
|
#define CRYP_IV0RR 0x00000044
|
|
#define CRYP_IV1LR 0x00000048
|
|
#define CRYP_IV1RR 0x0000004C
|
|
#define CRYP_CSGCMCCM0R 0x00000050
|
|
#define CRYP_CSGCM0R 0x00000070
|
|
|
|
/* Registers values */
|
|
#define CR_DEC_NOT_ENC 0x00000004
|
|
#define CR_TDES_ECB 0x00000000
|
|
#define CR_TDES_CBC 0x00000008
|
|
#define CR_DES_ECB 0x00000010
|
|
#define CR_DES_CBC 0x00000018
|
|
#define CR_AES_ECB 0x00000020
|
|
#define CR_AES_CBC 0x00000028
|
|
#define CR_AES_CTR 0x00000030
|
|
#define CR_AES_KP 0x00000038
|
|
#define CR_AES_GCM 0x00080000
|
|
#define CR_AES_CCM 0x00080008
|
|
#define CR_AES_UNKNOWN 0xFFFFFFFF
|
|
#define CR_ALGO_MASK 0x00080038
|
|
#define CR_DATA32 0x00000000
|
|
#define CR_DATA16 0x00000040
|
|
#define CR_DATA8 0x00000080
|
|
#define CR_DATA1 0x000000C0
|
|
#define CR_KEY128 0x00000000
|
|
#define CR_KEY192 0x00000100
|
|
#define CR_KEY256 0x00000200
|
|
#define CR_FFLUSH 0x00004000
|
|
#define CR_CRYPEN 0x00008000
|
|
#define CR_PH_INIT 0x00000000
|
|
#define CR_PH_HEADER 0x00010000
|
|
#define CR_PH_PAYLOAD 0x00020000
|
|
#define CR_PH_FINAL 0x00030000
|
|
#define CR_PH_MASK 0x00030000
|
|
#define CR_NBPBL_SHIFT 20
|
|
|
|
#define SR_BUSY 0x00000010
|
|
#define SR_OFNE 0x00000004
|
|
|
|
#define IMSCR_IN BIT(0)
|
|
#define IMSCR_OUT BIT(1)
|
|
|
|
#define MISR_IN BIT(0)
|
|
#define MISR_OUT BIT(1)
|
|
|
|
/* Misc */
|
|
#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
|
|
#define GCM_CTR_INIT 2
|
|
#define CRYP_AUTOSUSPEND_DELAY 50
|
|
|
|
struct stm32_cryp_caps {
|
|
bool swap_final;
|
|
bool padding_wa;
|
|
};
|
|
|
|
struct stm32_cryp_ctx {
|
|
struct crypto_engine_ctx enginectx;
|
|
struct stm32_cryp *cryp;
|
|
int keylen;
|
|
__be32 key[AES_KEYSIZE_256 / sizeof(u32)];
|
|
unsigned long flags;
|
|
};
|
|
|
|
struct stm32_cryp_reqctx {
|
|
unsigned long mode;
|
|
};
|
|
|
|
struct stm32_cryp {
|
|
struct list_head list;
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
struct clk *clk;
|
|
unsigned long flags;
|
|
u32 irq_status;
|
|
const struct stm32_cryp_caps *caps;
|
|
struct stm32_cryp_ctx *ctx;
|
|
|
|
struct crypto_engine *engine;
|
|
|
|
struct skcipher_request *req;
|
|
struct aead_request *areq;
|
|
|
|
size_t authsize;
|
|
size_t hw_blocksize;
|
|
|
|
size_t payload_in;
|
|
size_t header_in;
|
|
size_t payload_out;
|
|
|
|
struct scatterlist *out_sg;
|
|
|
|
struct scatter_walk in_walk;
|
|
struct scatter_walk out_walk;
|
|
|
|
__be32 last_ctr[4];
|
|
u32 gcm_ctr;
|
|
};
|
|
|
|
struct stm32_cryp_list {
|
|
struct list_head dev_list;
|
|
spinlock_t lock; /* protect dev_list */
|
|
};
|
|
|
|
static struct stm32_cryp_list cryp_list = {
|
|
.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
|
|
.lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
|
|
};
|
|
|
|
static inline bool is_aes(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_AES;
|
|
}
|
|
|
|
static inline bool is_des(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_DES;
|
|
}
|
|
|
|
static inline bool is_tdes(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_TDES;
|
|
}
|
|
|
|
static inline bool is_ecb(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_ECB;
|
|
}
|
|
|
|
static inline bool is_cbc(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_CBC;
|
|
}
|
|
|
|
static inline bool is_ctr(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_CTR;
|
|
}
|
|
|
|
static inline bool is_gcm(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_GCM;
|
|
}
|
|
|
|
static inline bool is_ccm(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_CCM;
|
|
}
|
|
|
|
static inline bool is_encrypt(struct stm32_cryp *cryp)
|
|
{
|
|
return cryp->flags & FLG_ENCRYPT;
|
|
}
|
|
|
|
static inline bool is_decrypt(struct stm32_cryp *cryp)
|
|
{
|
|
return !is_encrypt(cryp);
|
|
}
|
|
|
|
static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
|
|
{
|
|
return readl_relaxed(cryp->regs + ofst);
|
|
}
|
|
|
|
static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
|
|
{
|
|
writel_relaxed(val, cryp->regs + ofst);
|
|
}
|
|
|
|
static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
|
|
{
|
|
u32 status;
|
|
|
|
return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
|
|
!(status & SR_BUSY), 10, 100000);
|
|
}
|
|
|
|
static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
|
|
{
|
|
writel_relaxed(readl_relaxed(cryp->regs + CRYP_CR) | CR_CRYPEN, cryp->regs + CRYP_CR);
|
|
}
|
|
|
|
static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
|
|
{
|
|
u32 status;
|
|
|
|
return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
|
|
!(status & CR_CRYPEN), 10, 100000);
|
|
}
|
|
|
|
static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
|
|
{
|
|
u32 status;
|
|
|
|
return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
|
|
status & SR_OFNE, 10, 100000);
|
|
}
|
|
|
|
static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
|
|
static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
|
|
|
|
static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
|
|
{
|
|
struct stm32_cryp *tmp, *cryp = NULL;
|
|
|
|
spin_lock_bh(&cryp_list.lock);
|
|
if (!ctx->cryp) {
|
|
list_for_each_entry(tmp, &cryp_list.dev_list, list) {
|
|
cryp = tmp;
|
|
break;
|
|
}
|
|
ctx->cryp = cryp;
|
|
} else {
|
|
cryp = ctx->cryp;
|
|
}
|
|
|
|
spin_unlock_bh(&cryp_list.lock);
|
|
|
|
return cryp;
|
|
}
|
|
|
|
static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
|
|
{
|
|
if (!iv)
|
|
return;
|
|
|
|
stm32_cryp_write(cryp, CRYP_IV0LR, be32_to_cpu(*iv++));
|
|
stm32_cryp_write(cryp, CRYP_IV0RR, be32_to_cpu(*iv++));
|
|
|
|
if (is_aes(cryp)) {
|
|
stm32_cryp_write(cryp, CRYP_IV1LR, be32_to_cpu(*iv++));
|
|
stm32_cryp_write(cryp, CRYP_IV1RR, be32_to_cpu(*iv++));
|
|
}
|
|
}
|
|
|
|
static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
|
|
{
|
|
struct skcipher_request *req = cryp->req;
|
|
__be32 *tmp = (void *)req->iv;
|
|
|
|
if (!tmp)
|
|
return;
|
|
|
|
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
|
|
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
|
|
|
|
if (is_aes(cryp)) {
|
|
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
|
|
*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
|
|
}
|
|
}
|
|
|
|
static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
|
|
{
|
|
unsigned int i;
|
|
int r_id;
|
|
|
|
if (is_des(c)) {
|
|
stm32_cryp_write(c, CRYP_K1LR, be32_to_cpu(c->ctx->key[0]));
|
|
stm32_cryp_write(c, CRYP_K1RR, be32_to_cpu(c->ctx->key[1]));
|
|
} else {
|
|
r_id = CRYP_K3RR;
|
|
for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
|
|
stm32_cryp_write(c, r_id,
|
|
be32_to_cpu(c->ctx->key[i - 1]));
|
|
}
|
|
}
|
|
|
|
static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
|
|
{
|
|
if (is_aes(cryp) && is_ecb(cryp))
|
|
return CR_AES_ECB;
|
|
|
|
if (is_aes(cryp) && is_cbc(cryp))
|
|
return CR_AES_CBC;
|
|
|
|
if (is_aes(cryp) && is_ctr(cryp))
|
|
return CR_AES_CTR;
|
|
|
|
if (is_aes(cryp) && is_gcm(cryp))
|
|
return CR_AES_GCM;
|
|
|
|
if (is_aes(cryp) && is_ccm(cryp))
|
|
return CR_AES_CCM;
|
|
|
|
if (is_des(cryp) && is_ecb(cryp))
|
|
return CR_DES_ECB;
|
|
|
|
if (is_des(cryp) && is_cbc(cryp))
|
|
return CR_DES_CBC;
|
|
|
|
if (is_tdes(cryp) && is_ecb(cryp))
|
|
return CR_TDES_ECB;
|
|
|
|
if (is_tdes(cryp) && is_cbc(cryp))
|
|
return CR_TDES_CBC;
|
|
|
|
dev_err(cryp->dev, "Unknown mode\n");
|
|
return CR_AES_UNKNOWN;
|
|
}
|
|
|
|
static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
|
|
{
|
|
return is_encrypt(cryp) ? cryp->areq->cryptlen :
|
|
cryp->areq->cryptlen - cryp->authsize;
|
|
}
|
|
|
|
static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
|
|
{
|
|
int ret;
|
|
__be32 iv[4];
|
|
|
|
/* Phase 1 : init */
|
|
memcpy(iv, cryp->areq->iv, 12);
|
|
iv[3] = cpu_to_be32(GCM_CTR_INIT);
|
|
cryp->gcm_ctr = GCM_CTR_INIT;
|
|
stm32_cryp_hw_write_iv(cryp, iv);
|
|
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
|
|
|
|
/* Wait for end of processing */
|
|
ret = stm32_cryp_wait_enable(cryp);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "Timeout (gcm init)\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Prepare next phase */
|
|
if (cryp->areq->assoclen) {
|
|
cfg |= CR_PH_HEADER;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
} else if (stm32_cryp_get_input_text_len(cryp)) {
|
|
cfg |= CR_PH_PAYLOAD;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
|
|
{
|
|
u32 cfg;
|
|
int err;
|
|
|
|
/* Check if whole header written */
|
|
if (!cryp->header_in) {
|
|
/* Wait for completion */
|
|
err = stm32_cryp_wait_busy(cryp);
|
|
if (err) {
|
|
dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
|
|
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
|
|
stm32_cryp_finish_req(cryp, err);
|
|
return;
|
|
}
|
|
|
|
if (stm32_cryp_get_input_text_len(cryp)) {
|
|
/* Phase 3 : payload */
|
|
cfg = stm32_cryp_read(cryp, CRYP_CR);
|
|
cfg &= ~CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
cfg &= ~CR_PH_MASK;
|
|
cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
} else {
|
|
/*
|
|
* Phase 4 : tag.
|
|
* Nothing to read, nothing to write, caller have to
|
|
* end request
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
|
|
{
|
|
unsigned int i;
|
|
size_t written;
|
|
size_t len;
|
|
u32 alen = cryp->areq->assoclen;
|
|
u32 block[AES_BLOCK_32] = {0};
|
|
u8 *b8 = (u8 *)block;
|
|
|
|
if (alen <= 65280) {
|
|
/* Write first u32 of B1 */
|
|
b8[0] = (alen >> 8) & 0xFF;
|
|
b8[1] = alen & 0xFF;
|
|
len = 2;
|
|
} else {
|
|
/* Build the two first u32 of B1 */
|
|
b8[0] = 0xFF;
|
|
b8[1] = 0xFE;
|
|
b8[2] = (alen & 0xFF000000) >> 24;
|
|
b8[3] = (alen & 0x00FF0000) >> 16;
|
|
b8[4] = (alen & 0x0000FF00) >> 8;
|
|
b8[5] = alen & 0x000000FF;
|
|
len = 6;
|
|
}
|
|
|
|
written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
|
|
|
|
scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
|
|
for (i = 0; i < AES_BLOCK_32; i++)
|
|
stm32_cryp_write(cryp, CRYP_DIN, block[i]);
|
|
|
|
cryp->header_in -= written;
|
|
|
|
stm32_crypt_gcmccm_end_header(cryp);
|
|
}
|
|
|
|
static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
|
|
{
|
|
int ret;
|
|
u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
|
|
u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
|
|
__be32 *bd;
|
|
u32 *d;
|
|
unsigned int i, textlen;
|
|
|
|
/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
|
|
memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
|
|
memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
|
|
iv[AES_BLOCK_SIZE - 1] = 1;
|
|
stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
|
|
|
|
/* Build B0 */
|
|
memcpy(b0, iv, AES_BLOCK_SIZE);
|
|
|
|
b0[0] |= (8 * ((cryp->authsize - 2) / 2));
|
|
|
|
if (cryp->areq->assoclen)
|
|
b0[0] |= 0x40;
|
|
|
|
textlen = stm32_cryp_get_input_text_len(cryp);
|
|
|
|
b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
|
|
b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
|
|
|
|
/* Enable HW */
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
|
|
|
|
/* Write B0 */
|
|
d = (u32 *)b0;
|
|
bd = (__be32 *)b0;
|
|
|
|
for (i = 0; i < AES_BLOCK_32; i++) {
|
|
u32 xd = d[i];
|
|
|
|
if (!cryp->caps->padding_wa)
|
|
xd = be32_to_cpu(bd[i]);
|
|
stm32_cryp_write(cryp, CRYP_DIN, xd);
|
|
}
|
|
|
|
/* Wait for end of processing */
|
|
ret = stm32_cryp_wait_enable(cryp);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "Timeout (ccm init)\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Prepare next phase */
|
|
if (cryp->areq->assoclen) {
|
|
cfg |= CR_PH_HEADER | CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* Write first (special) block (may move to next phase [payload]) */
|
|
stm32_cryp_write_ccm_first_header(cryp);
|
|
} else if (stm32_cryp_get_input_text_len(cryp)) {
|
|
cfg |= CR_PH_PAYLOAD;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
|
|
{
|
|
int ret;
|
|
u32 cfg, hw_mode;
|
|
|
|
pm_runtime_get_sync(cryp->dev);
|
|
|
|
/* Disable interrupt */
|
|
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
|
|
|
|
/* Set configuration */
|
|
cfg = CR_DATA8 | CR_FFLUSH;
|
|
|
|
switch (cryp->ctx->keylen) {
|
|
case AES_KEYSIZE_128:
|
|
cfg |= CR_KEY128;
|
|
break;
|
|
|
|
case AES_KEYSIZE_192:
|
|
cfg |= CR_KEY192;
|
|
break;
|
|
|
|
default:
|
|
case AES_KEYSIZE_256:
|
|
cfg |= CR_KEY256;
|
|
break;
|
|
}
|
|
|
|
hw_mode = stm32_cryp_get_hw_mode(cryp);
|
|
if (hw_mode == CR_AES_UNKNOWN)
|
|
return -EINVAL;
|
|
|
|
/* AES ECB/CBC decrypt: run key preparation first */
|
|
if (is_decrypt(cryp) &&
|
|
((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
|
|
/* Configure in key preparation mode */
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP);
|
|
|
|
/* Set key only after full configuration done */
|
|
stm32_cryp_hw_write_key(cryp);
|
|
|
|
/* Start prepare key */
|
|
stm32_cryp_enable(cryp);
|
|
/* Wait for end of processing */
|
|
ret = stm32_cryp_wait_busy(cryp);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "Timeout (key preparation)\n");
|
|
return ret;
|
|
}
|
|
|
|
cfg |= hw_mode | CR_DEC_NOT_ENC;
|
|
|
|
/* Apply updated config (Decrypt + algo) and flush */
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
} else {
|
|
cfg |= hw_mode;
|
|
if (is_decrypt(cryp))
|
|
cfg |= CR_DEC_NOT_ENC;
|
|
|
|
/* Apply config and flush */
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* Set key only after configuration done */
|
|
stm32_cryp_hw_write_key(cryp);
|
|
}
|
|
|
|
switch (hw_mode) {
|
|
case CR_AES_GCM:
|
|
case CR_AES_CCM:
|
|
/* Phase 1 : init */
|
|
if (hw_mode == CR_AES_CCM)
|
|
ret = stm32_cryp_ccm_init(cryp, cfg);
|
|
else
|
|
ret = stm32_cryp_gcm_init(cryp, cfg);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
break;
|
|
|
|
case CR_DES_CBC:
|
|
case CR_TDES_CBC:
|
|
case CR_AES_CBC:
|
|
case CR_AES_CTR:
|
|
stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Enable now */
|
|
stm32_cryp_enable(cryp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
|
|
{
|
|
if (!err && (is_gcm(cryp) || is_ccm(cryp)))
|
|
/* Phase 4 : output tag */
|
|
err = stm32_cryp_read_auth_tag(cryp);
|
|
|
|
if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
|
|
stm32_cryp_get_iv(cryp);
|
|
|
|
pm_runtime_mark_last_busy(cryp->dev);
|
|
pm_runtime_put_autosuspend(cryp->dev);
|
|
|
|
if (is_gcm(cryp) || is_ccm(cryp))
|
|
crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
|
|
else
|
|
crypto_finalize_skcipher_request(cryp->engine, cryp->req,
|
|
err);
|
|
}
|
|
|
|
static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
|
|
{
|
|
/* Enable interrupt and let the IRQ handler do everything */
|
|
stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
|
|
static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
|
|
void *areq);
|
|
|
|
static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
|
|
|
|
ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
|
|
ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
|
|
ctx->enginectx.op.unprepare_request = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
|
|
static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
|
|
void *areq);
|
|
|
|
static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
|
|
{
|
|
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
|
|
|
|
ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
|
|
ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
|
|
ctx->enginectx.op.unprepare_request = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
|
|
{
|
|
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
|
|
crypto_skcipher_reqtfm(req));
|
|
struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
|
|
struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
|
|
|
|
if (!cryp)
|
|
return -ENODEV;
|
|
|
|
rctx->mode = mode;
|
|
|
|
return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
|
|
}
|
|
|
|
static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
|
|
{
|
|
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
|
|
struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
|
|
struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
|
|
|
|
if (!cryp)
|
|
return -ENODEV;
|
|
|
|
rctx->mode = mode;
|
|
|
|
return crypto_transfer_aead_request_to_engine(cryp->engine, req);
|
|
}
|
|
|
|
static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
memcpy(ctx->key, key, keylen);
|
|
ctx->keylen = keylen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
|
|
keylen != AES_KEYSIZE_256)
|
|
return -EINVAL;
|
|
else
|
|
return stm32_cryp_setkey(tfm, key, keylen);
|
|
}
|
|
|
|
static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
return verify_skcipher_des_key(tfm, key) ?:
|
|
stm32_cryp_setkey(tfm, key, keylen);
|
|
}
|
|
|
|
static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
return verify_skcipher_des3_key(tfm, key) ?:
|
|
stm32_cryp_setkey(tfm, key, keylen);
|
|
}
|
|
|
|
static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
|
|
keylen != AES_KEYSIZE_256)
|
|
return -EINVAL;
|
|
|
|
memcpy(ctx->key, key, keylen);
|
|
ctx->keylen = keylen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
|
|
unsigned int authsize)
|
|
{
|
|
switch (authsize) {
|
|
case 4:
|
|
case 8:
|
|
case 12:
|
|
case 13:
|
|
case 14:
|
|
case 15:
|
|
case 16:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
|
|
unsigned int authsize)
|
|
{
|
|
switch (authsize) {
|
|
case 4:
|
|
case 6:
|
|
case 8:
|
|
case 10:
|
|
case 12:
|
|
case 14:
|
|
case 16:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
|
|
}
|
|
|
|
static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
|
|
}
|
|
|
|
static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
|
|
}
|
|
|
|
static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
|
|
{
|
|
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
|
|
{
|
|
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
|
|
}
|
|
|
|
static inline int crypto_ccm_check_iv(const u8 *iv)
|
|
{
|
|
/* 2 <= L <= 8, so 1 <= L' <= 7. */
|
|
if (iv[0] < 1 || iv[0] > 7)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
|
|
{
|
|
int err;
|
|
|
|
err = crypto_ccm_check_iv(req->iv);
|
|
if (err)
|
|
return err;
|
|
|
|
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
|
|
{
|
|
int err;
|
|
|
|
err = crypto_ccm_check_iv(req->iv);
|
|
if (err)
|
|
return err;
|
|
|
|
return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
|
|
}
|
|
|
|
static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
|
|
}
|
|
|
|
static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
|
|
}
|
|
|
|
static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
|
|
}
|
|
|
|
static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
|
|
}
|
|
|
|
static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
if (req->cryptlen % DES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (req->cryptlen == 0)
|
|
return 0;
|
|
|
|
return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
|
|
}
|
|
|
|
static int stm32_cryp_prepare_req(struct skcipher_request *req,
|
|
struct aead_request *areq)
|
|
{
|
|
struct stm32_cryp_ctx *ctx;
|
|
struct stm32_cryp *cryp;
|
|
struct stm32_cryp_reqctx *rctx;
|
|
struct scatterlist *in_sg;
|
|
int ret;
|
|
|
|
if (!req && !areq)
|
|
return -EINVAL;
|
|
|
|
ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
|
|
crypto_aead_ctx(crypto_aead_reqtfm(areq));
|
|
|
|
cryp = ctx->cryp;
|
|
|
|
if (!cryp)
|
|
return -ENODEV;
|
|
|
|
rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
|
|
rctx->mode &= FLG_MODE_MASK;
|
|
|
|
ctx->cryp = cryp;
|
|
|
|
cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
|
|
cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
|
|
cryp->ctx = ctx;
|
|
|
|
if (req) {
|
|
cryp->req = req;
|
|
cryp->areq = NULL;
|
|
cryp->header_in = 0;
|
|
cryp->payload_in = req->cryptlen;
|
|
cryp->payload_out = req->cryptlen;
|
|
cryp->authsize = 0;
|
|
} else {
|
|
/*
|
|
* Length of input and output data:
|
|
* Encryption case:
|
|
* INPUT = AssocData || PlainText
|
|
* <- assoclen -> <- cryptlen ->
|
|
*
|
|
* OUTPUT = AssocData || CipherText || AuthTag
|
|
* <- assoclen -> <-- cryptlen --> <- authsize ->
|
|
*
|
|
* Decryption case:
|
|
* INPUT = AssocData || CipherTex || AuthTag
|
|
* <- assoclen ---> <---------- cryptlen ---------->
|
|
*
|
|
* OUTPUT = AssocData || PlainText
|
|
* <- assoclen -> <- cryptlen - authsize ->
|
|
*/
|
|
cryp->areq = areq;
|
|
cryp->req = NULL;
|
|
cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
|
|
if (is_encrypt(cryp)) {
|
|
cryp->payload_in = areq->cryptlen;
|
|
cryp->header_in = areq->assoclen;
|
|
cryp->payload_out = areq->cryptlen;
|
|
} else {
|
|
cryp->payload_in = areq->cryptlen - cryp->authsize;
|
|
cryp->header_in = areq->assoclen;
|
|
cryp->payload_out = cryp->payload_in;
|
|
}
|
|
}
|
|
|
|
in_sg = req ? req->src : areq->src;
|
|
scatterwalk_start(&cryp->in_walk, in_sg);
|
|
|
|
cryp->out_sg = req ? req->dst : areq->dst;
|
|
scatterwalk_start(&cryp->out_walk, cryp->out_sg);
|
|
|
|
if (is_gcm(cryp) || is_ccm(cryp)) {
|
|
/* In output, jump after assoc data */
|
|
scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
|
|
}
|
|
|
|
if (is_ctr(cryp))
|
|
memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
|
|
|
|
ret = stm32_cryp_hw_init(cryp);
|
|
return ret;
|
|
}
|
|
|
|
static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
|
|
void *areq)
|
|
{
|
|
struct skcipher_request *req = container_of(areq,
|
|
struct skcipher_request,
|
|
base);
|
|
|
|
return stm32_cryp_prepare_req(req, NULL);
|
|
}
|
|
|
|
static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct skcipher_request *req = container_of(areq,
|
|
struct skcipher_request,
|
|
base);
|
|
struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
|
|
crypto_skcipher_reqtfm(req));
|
|
struct stm32_cryp *cryp = ctx->cryp;
|
|
|
|
if (!cryp)
|
|
return -ENODEV;
|
|
|
|
return stm32_cryp_cpu_start(cryp);
|
|
}
|
|
|
|
static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct aead_request *req = container_of(areq, struct aead_request,
|
|
base);
|
|
|
|
return stm32_cryp_prepare_req(NULL, req);
|
|
}
|
|
|
|
static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct aead_request *req = container_of(areq, struct aead_request,
|
|
base);
|
|
struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
|
|
struct stm32_cryp *cryp = ctx->cryp;
|
|
|
|
if (!cryp)
|
|
return -ENODEV;
|
|
|
|
if (unlikely(!cryp->payload_in && !cryp->header_in)) {
|
|
/* No input data to process: get tag and finish */
|
|
stm32_cryp_finish_req(cryp, 0);
|
|
return 0;
|
|
}
|
|
|
|
return stm32_cryp_cpu_start(cryp);
|
|
}
|
|
|
|
static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
|
|
{
|
|
u32 cfg, size_bit;
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
/* Update Config */
|
|
cfg = stm32_cryp_read(cryp, CRYP_CR);
|
|
|
|
cfg &= ~CR_PH_MASK;
|
|
cfg |= CR_PH_FINAL;
|
|
cfg &= ~CR_DEC_NOT_ENC;
|
|
cfg |= CR_CRYPEN;
|
|
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
if (is_gcm(cryp)) {
|
|
/* GCM: write aad and payload size (in bits) */
|
|
size_bit = cryp->areq->assoclen * 8;
|
|
if (cryp->caps->swap_final)
|
|
size_bit = (__force u32)cpu_to_be32(size_bit);
|
|
|
|
stm32_cryp_write(cryp, CRYP_DIN, 0);
|
|
stm32_cryp_write(cryp, CRYP_DIN, size_bit);
|
|
|
|
size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
|
|
cryp->areq->cryptlen - cryp->authsize;
|
|
size_bit *= 8;
|
|
if (cryp->caps->swap_final)
|
|
size_bit = (__force u32)cpu_to_be32(size_bit);
|
|
|
|
stm32_cryp_write(cryp, CRYP_DIN, 0);
|
|
stm32_cryp_write(cryp, CRYP_DIN, size_bit);
|
|
} else {
|
|
/* CCM: write CTR0 */
|
|
u32 iv32[AES_BLOCK_32];
|
|
u8 *iv = (u8 *)iv32;
|
|
__be32 *biv = (__be32 *)iv32;
|
|
|
|
memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
|
|
memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
|
|
|
|
for (i = 0; i < AES_BLOCK_32; i++) {
|
|
u32 xiv = iv32[i];
|
|
|
|
if (!cryp->caps->padding_wa)
|
|
xiv = be32_to_cpu(biv[i]);
|
|
stm32_cryp_write(cryp, CRYP_DIN, xiv);
|
|
}
|
|
}
|
|
|
|
/* Wait for output data */
|
|
ret = stm32_cryp_wait_output(cryp);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "Timeout (read tag)\n");
|
|
return ret;
|
|
}
|
|
|
|
if (is_encrypt(cryp)) {
|
|
u32 out_tag[AES_BLOCK_32];
|
|
|
|
/* Get and write tag */
|
|
for (i = 0; i < AES_BLOCK_32; i++)
|
|
out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
|
|
|
|
scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
|
|
} else {
|
|
/* Get and check tag */
|
|
u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
|
|
|
|
scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
|
|
|
|
for (i = 0; i < AES_BLOCK_32; i++)
|
|
out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
|
|
|
|
if (crypto_memneq(in_tag, out_tag, cryp->authsize))
|
|
ret = -EBADMSG;
|
|
}
|
|
|
|
/* Disable cryp */
|
|
cfg &= ~CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
|
|
{
|
|
u32 cr;
|
|
|
|
if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
|
|
/*
|
|
* In this case, we need to increment manually the ctr counter,
|
|
* as HW doesn't handle the U32 carry.
|
|
*/
|
|
crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
|
|
|
|
cr = stm32_cryp_read(cryp, CRYP_CR);
|
|
stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
|
|
|
|
stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
|
|
|
|
stm32_cryp_write(cryp, CRYP_CR, cr);
|
|
}
|
|
|
|
/* The IV registers are BE */
|
|
cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
|
|
cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
|
|
cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
|
|
cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
|
|
}
|
|
|
|
static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
|
|
{
|
|
unsigned int i;
|
|
u32 block[AES_BLOCK_32];
|
|
|
|
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
|
|
block[i] = stm32_cryp_read(cryp, CRYP_DOUT);
|
|
|
|
scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
|
|
cryp->payload_out), 1);
|
|
cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
|
|
cryp->payload_out);
|
|
}
|
|
|
|
static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
|
|
{
|
|
unsigned int i;
|
|
u32 block[AES_BLOCK_32] = {0};
|
|
|
|
scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
|
|
cryp->payload_in), 0);
|
|
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
|
|
stm32_cryp_write(cryp, CRYP_DIN, block[i]);
|
|
|
|
cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
|
|
}
|
|
|
|
static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
|
|
{
|
|
int err;
|
|
u32 cfg, block[AES_BLOCK_32] = {0};
|
|
unsigned int i;
|
|
|
|
/* 'Special workaround' procedure described in the datasheet */
|
|
|
|
/* a) disable ip */
|
|
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
|
|
cfg = stm32_cryp_read(cryp, CRYP_CR);
|
|
cfg &= ~CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* b) Update IV1R */
|
|
stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
|
|
|
|
/* c) change mode to CTR */
|
|
cfg &= ~CR_ALGO_MASK;
|
|
cfg |= CR_AES_CTR;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* a) enable IP */
|
|
cfg |= CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* b) pad and write the last block */
|
|
stm32_cryp_irq_write_block(cryp);
|
|
/* wait end of process */
|
|
err = stm32_cryp_wait_output(cryp);
|
|
if (err) {
|
|
dev_err(cryp->dev, "Timeout (write gcm last data)\n");
|
|
return stm32_cryp_finish_req(cryp, err);
|
|
}
|
|
|
|
/* c) get and store encrypted data */
|
|
/*
|
|
* Same code as stm32_cryp_irq_read_data(), but we want to store
|
|
* block value
|
|
*/
|
|
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
|
|
block[i] = stm32_cryp_read(cryp, CRYP_DOUT);
|
|
|
|
scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
|
|
cryp->payload_out), 1);
|
|
cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
|
|
cryp->payload_out);
|
|
|
|
/* d) change mode back to AES GCM */
|
|
cfg &= ~CR_ALGO_MASK;
|
|
cfg |= CR_AES_GCM;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* e) change phase to Final */
|
|
cfg &= ~CR_PH_MASK;
|
|
cfg |= CR_PH_FINAL;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* f) write padded data */
|
|
for (i = 0; i < AES_BLOCK_32; i++)
|
|
stm32_cryp_write(cryp, CRYP_DIN, block[i]);
|
|
|
|
/* g) Empty fifo out */
|
|
err = stm32_cryp_wait_output(cryp);
|
|
if (err) {
|
|
dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
|
|
return stm32_cryp_finish_req(cryp, err);
|
|
}
|
|
|
|
for (i = 0; i < AES_BLOCK_32; i++)
|
|
stm32_cryp_read(cryp, CRYP_DOUT);
|
|
|
|
/* h) run the he normal Final phase */
|
|
stm32_cryp_finish_req(cryp, 0);
|
|
}
|
|
|
|
static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
|
|
{
|
|
u32 cfg;
|
|
|
|
/* disable ip, set NPBLB and reneable ip */
|
|
cfg = stm32_cryp_read(cryp, CRYP_CR);
|
|
cfg &= ~CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
|
|
cfg |= CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
}
|
|
|
|
static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
|
|
{
|
|
int err = 0;
|
|
u32 cfg, iv1tmp;
|
|
u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
|
|
u32 block[AES_BLOCK_32] = {0};
|
|
unsigned int i;
|
|
|
|
/* 'Special workaround' procedure described in the datasheet */
|
|
|
|
/* a) disable ip */
|
|
stm32_cryp_write(cryp, CRYP_IMSCR, 0);
|
|
|
|
cfg = stm32_cryp_read(cryp, CRYP_CR);
|
|
cfg &= ~CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* b) get IV1 from CRYP_CSGCMCCM7 */
|
|
iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
|
|
|
|
/* c) Load CRYP_CSGCMCCMxR */
|
|
for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
|
|
cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
|
|
|
|
/* d) Write IV1R */
|
|
stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
|
|
|
|
/* e) change mode to CTR */
|
|
cfg &= ~CR_ALGO_MASK;
|
|
cfg |= CR_AES_CTR;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* a) enable IP */
|
|
cfg |= CR_CRYPEN;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* b) pad and write the last block */
|
|
stm32_cryp_irq_write_block(cryp);
|
|
/* wait end of process */
|
|
err = stm32_cryp_wait_output(cryp);
|
|
if (err) {
|
|
dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
|
|
return stm32_cryp_finish_req(cryp, err);
|
|
}
|
|
|
|
/* c) get and store decrypted data */
|
|
/*
|
|
* Same code as stm32_cryp_irq_read_data(), but we want to store
|
|
* block value
|
|
*/
|
|
for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
|
|
block[i] = stm32_cryp_read(cryp, CRYP_DOUT);
|
|
|
|
scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
|
|
cryp->payload_out), 1);
|
|
cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
|
|
|
|
/* d) Load again CRYP_CSGCMCCMxR */
|
|
for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
|
|
cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
|
|
|
|
/* e) change mode back to AES CCM */
|
|
cfg &= ~CR_ALGO_MASK;
|
|
cfg |= CR_AES_CCM;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* f) change phase to header */
|
|
cfg &= ~CR_PH_MASK;
|
|
cfg |= CR_PH_HEADER;
|
|
stm32_cryp_write(cryp, CRYP_CR, cfg);
|
|
|
|
/* g) XOR and write padded data */
|
|
for (i = 0; i < ARRAY_SIZE(block); i++) {
|
|
block[i] ^= cstmp1[i];
|
|
block[i] ^= cstmp2[i];
|
|
stm32_cryp_write(cryp, CRYP_DIN, block[i]);
|
|
}
|
|
|
|
/* h) wait for completion */
|
|
err = stm32_cryp_wait_busy(cryp);
|
|
if (err)
|
|
dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
|
|
|
|
/* i) run the he normal Final phase */
|
|
stm32_cryp_finish_req(cryp, err);
|
|
}
|
|
|
|
static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
|
|
{
|
|
if (unlikely(!cryp->payload_in)) {
|
|
dev_warn(cryp->dev, "No more data to process\n");
|
|
return;
|
|
}
|
|
|
|
if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
|
|
(stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
|
|
is_encrypt(cryp))) {
|
|
/* Padding for AES GCM encryption */
|
|
if (cryp->caps->padding_wa) {
|
|
/* Special case 1 */
|
|
stm32_cryp_irq_write_gcm_padded_data(cryp);
|
|
return;
|
|
}
|
|
|
|
/* Setting padding bytes (NBBLB) */
|
|
stm32_cryp_irq_set_npblb(cryp);
|
|
}
|
|
|
|
if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
|
|
(stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
|
|
is_decrypt(cryp))) {
|
|
/* Padding for AES CCM decryption */
|
|
if (cryp->caps->padding_wa) {
|
|
/* Special case 2 */
|
|
stm32_cryp_irq_write_ccm_padded_data(cryp);
|
|
return;
|
|
}
|
|
|
|
/* Setting padding bytes (NBBLB) */
|
|
stm32_cryp_irq_set_npblb(cryp);
|
|
}
|
|
|
|
if (is_aes(cryp) && is_ctr(cryp))
|
|
stm32_cryp_check_ctr_counter(cryp);
|
|
|
|
stm32_cryp_irq_write_block(cryp);
|
|
}
|
|
|
|
static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
|
|
{
|
|
unsigned int i;
|
|
u32 block[AES_BLOCK_32] = {0};
|
|
size_t written;
|
|
|
|
written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
|
|
|
|
scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
|
|
for (i = 0; i < AES_BLOCK_32; i++)
|
|
stm32_cryp_write(cryp, CRYP_DIN, block[i]);
|
|
|
|
cryp->header_in -= written;
|
|
|
|
stm32_crypt_gcmccm_end_header(cryp);
|
|
}
|
|
|
|
static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
|
|
{
|
|
struct stm32_cryp *cryp = arg;
|
|
u32 ph;
|
|
u32 it_mask = stm32_cryp_read(cryp, CRYP_IMSCR);
|
|
|
|
if (cryp->irq_status & MISR_OUT)
|
|
/* Output FIFO IRQ: read data */
|
|
stm32_cryp_irq_read_data(cryp);
|
|
|
|
if (cryp->irq_status & MISR_IN) {
|
|
if (is_gcm(cryp) || is_ccm(cryp)) {
|
|
ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
|
|
if (unlikely(ph == CR_PH_HEADER))
|
|
/* Write Header */
|
|
stm32_cryp_irq_write_gcmccm_header(cryp);
|
|
else
|
|
/* Input FIFO IRQ: write data */
|
|
stm32_cryp_irq_write_data(cryp);
|
|
if (is_gcm(cryp))
|
|
cryp->gcm_ctr++;
|
|
} else {
|
|
/* Input FIFO IRQ: write data */
|
|
stm32_cryp_irq_write_data(cryp);
|
|
}
|
|
}
|
|
|
|
/* Mask useless interrupts */
|
|
if (!cryp->payload_in && !cryp->header_in)
|
|
it_mask &= ~IMSCR_IN;
|
|
if (!cryp->payload_out)
|
|
it_mask &= ~IMSCR_OUT;
|
|
stm32_cryp_write(cryp, CRYP_IMSCR, it_mask);
|
|
|
|
if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
|
|
stm32_cryp_finish_req(cryp, 0);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t stm32_cryp_irq(int irq, void *arg)
|
|
{
|
|
struct stm32_cryp *cryp = arg;
|
|
|
|
cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
|
|
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
static struct skcipher_alg crypto_algs[] = {
|
|
{
|
|
.base.cra_name = "ecb(aes)",
|
|
.base.cra_driver_name = "stm32-ecb-aes",
|
|
.base.cra_priority = 200,
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.base.cra_alignmask = 0,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = stm32_cryp_init_tfm,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = stm32_cryp_aes_setkey,
|
|
.encrypt = stm32_cryp_aes_ecb_encrypt,
|
|
.decrypt = stm32_cryp_aes_ecb_decrypt,
|
|
},
|
|
{
|
|
.base.cra_name = "cbc(aes)",
|
|
.base.cra_driver_name = "stm32-cbc-aes",
|
|
.base.cra_priority = 200,
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.base.cra_alignmask = 0,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = stm32_cryp_init_tfm,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = stm32_cryp_aes_setkey,
|
|
.encrypt = stm32_cryp_aes_cbc_encrypt,
|
|
.decrypt = stm32_cryp_aes_cbc_decrypt,
|
|
},
|
|
{
|
|
.base.cra_name = "ctr(aes)",
|
|
.base.cra_driver_name = "stm32-ctr-aes",
|
|
.base.cra_priority = 200,
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.base.cra_alignmask = 0,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = stm32_cryp_init_tfm,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = stm32_cryp_aes_setkey,
|
|
.encrypt = stm32_cryp_aes_ctr_encrypt,
|
|
.decrypt = stm32_cryp_aes_ctr_decrypt,
|
|
},
|
|
{
|
|
.base.cra_name = "ecb(des)",
|
|
.base.cra_driver_name = "stm32-ecb-des",
|
|
.base.cra_priority = 200,
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.base.cra_blocksize = DES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.base.cra_alignmask = 0,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = stm32_cryp_init_tfm,
|
|
.min_keysize = DES_BLOCK_SIZE,
|
|
.max_keysize = DES_BLOCK_SIZE,
|
|
.setkey = stm32_cryp_des_setkey,
|
|
.encrypt = stm32_cryp_des_ecb_encrypt,
|
|
.decrypt = stm32_cryp_des_ecb_decrypt,
|
|
},
|
|
{
|
|
.base.cra_name = "cbc(des)",
|
|
.base.cra_driver_name = "stm32-cbc-des",
|
|
.base.cra_priority = 200,
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.base.cra_blocksize = DES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.base.cra_alignmask = 0,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = stm32_cryp_init_tfm,
|
|
.min_keysize = DES_BLOCK_SIZE,
|
|
.max_keysize = DES_BLOCK_SIZE,
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.setkey = stm32_cryp_des_setkey,
|
|
.encrypt = stm32_cryp_des_cbc_encrypt,
|
|
.decrypt = stm32_cryp_des_cbc_decrypt,
|
|
},
|
|
{
|
|
.base.cra_name = "ecb(des3_ede)",
|
|
.base.cra_driver_name = "stm32-ecb-des3",
|
|
.base.cra_priority = 200,
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.base.cra_blocksize = DES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.base.cra_alignmask = 0,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = stm32_cryp_init_tfm,
|
|
.min_keysize = 3 * DES_BLOCK_SIZE,
|
|
.max_keysize = 3 * DES_BLOCK_SIZE,
|
|
.setkey = stm32_cryp_tdes_setkey,
|
|
.encrypt = stm32_cryp_tdes_ecb_encrypt,
|
|
.decrypt = stm32_cryp_tdes_ecb_decrypt,
|
|
},
|
|
{
|
|
.base.cra_name = "cbc(des3_ede)",
|
|
.base.cra_driver_name = "stm32-cbc-des3",
|
|
.base.cra_priority = 200,
|
|
.base.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.base.cra_blocksize = DES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.base.cra_alignmask = 0,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.init = stm32_cryp_init_tfm,
|
|
.min_keysize = 3 * DES_BLOCK_SIZE,
|
|
.max_keysize = 3 * DES_BLOCK_SIZE,
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.setkey = stm32_cryp_tdes_setkey,
|
|
.encrypt = stm32_cryp_tdes_cbc_encrypt,
|
|
.decrypt = stm32_cryp_tdes_cbc_decrypt,
|
|
},
|
|
};
|
|
|
|
static struct aead_alg aead_algs[] = {
|
|
{
|
|
.setkey = stm32_cryp_aes_aead_setkey,
|
|
.setauthsize = stm32_cryp_aes_gcm_setauthsize,
|
|
.encrypt = stm32_cryp_aes_gcm_encrypt,
|
|
.decrypt = stm32_cryp_aes_gcm_decrypt,
|
|
.init = stm32_cryp_aes_aead_init,
|
|
.ivsize = 12,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
|
|
.base = {
|
|
.cra_name = "gcm(aes)",
|
|
.cra_driver_name = "stm32-gcm-aes",
|
|
.cra_priority = 200,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
},
|
|
{
|
|
.setkey = stm32_cryp_aes_aead_setkey,
|
|
.setauthsize = stm32_cryp_aes_ccm_setauthsize,
|
|
.encrypt = stm32_cryp_aes_ccm_encrypt,
|
|
.decrypt = stm32_cryp_aes_ccm_decrypt,
|
|
.init = stm32_cryp_aes_aead_init,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
|
|
.base = {
|
|
.cra_name = "ccm(aes)",
|
|
.cra_driver_name = "stm32-ccm-aes",
|
|
.cra_priority = 200,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct stm32_cryp_caps f7_data = {
|
|
.swap_final = true,
|
|
.padding_wa = true,
|
|
};
|
|
|
|
static const struct stm32_cryp_caps mp1_data = {
|
|
.swap_final = false,
|
|
.padding_wa = false,
|
|
};
|
|
|
|
static const struct of_device_id stm32_dt_ids[] = {
|
|
{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
|
|
{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_dt_ids);
|
|
|
|
static int stm32_cryp_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct stm32_cryp *cryp;
|
|
struct reset_control *rst;
|
|
int irq, ret;
|
|
|
|
cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
|
|
if (!cryp)
|
|
return -ENOMEM;
|
|
|
|
cryp->caps = of_device_get_match_data(dev);
|
|
if (!cryp->caps)
|
|
return -ENODEV;
|
|
|
|
cryp->dev = dev;
|
|
|
|
cryp->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(cryp->regs))
|
|
return PTR_ERR(cryp->regs);
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
|
|
stm32_cryp_irq_thread, IRQF_ONESHOT,
|
|
dev_name(dev), cryp);
|
|
if (ret) {
|
|
dev_err(dev, "Cannot grab IRQ\n");
|
|
return ret;
|
|
}
|
|
|
|
cryp->clk = devm_clk_get(dev, NULL);
|
|
if (IS_ERR(cryp->clk)) {
|
|
dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
|
|
|
|
return PTR_ERR(cryp->clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(cryp->clk);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "Failed to enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
|
|
pm_runtime_use_autosuspend(dev);
|
|
|
|
pm_runtime_get_noresume(dev);
|
|
pm_runtime_set_active(dev);
|
|
pm_runtime_enable(dev);
|
|
|
|
rst = devm_reset_control_get(dev, NULL);
|
|
if (IS_ERR(rst)) {
|
|
ret = PTR_ERR(rst);
|
|
if (ret == -EPROBE_DEFER)
|
|
goto err_rst;
|
|
} else {
|
|
reset_control_assert(rst);
|
|
udelay(2);
|
|
reset_control_deassert(rst);
|
|
}
|
|
|
|
platform_set_drvdata(pdev, cryp);
|
|
|
|
spin_lock(&cryp_list.lock);
|
|
list_add(&cryp->list, &cryp_list.dev_list);
|
|
spin_unlock(&cryp_list.lock);
|
|
|
|
/* Initialize crypto engine */
|
|
cryp->engine = crypto_engine_alloc_init(dev, 1);
|
|
if (!cryp->engine) {
|
|
dev_err(dev, "Could not init crypto engine\n");
|
|
ret = -ENOMEM;
|
|
goto err_engine1;
|
|
}
|
|
|
|
ret = crypto_engine_start(cryp->engine);
|
|
if (ret) {
|
|
dev_err(dev, "Could not start crypto engine\n");
|
|
goto err_engine2;
|
|
}
|
|
|
|
ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
|
|
if (ret) {
|
|
dev_err(dev, "Could not register algs\n");
|
|
goto err_algs;
|
|
}
|
|
|
|
ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
|
|
if (ret)
|
|
goto err_aead_algs;
|
|
|
|
dev_info(dev, "Initialized\n");
|
|
|
|
pm_runtime_put_sync(dev);
|
|
|
|
return 0;
|
|
|
|
err_aead_algs:
|
|
crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
|
|
err_algs:
|
|
err_engine2:
|
|
crypto_engine_exit(cryp->engine);
|
|
err_engine1:
|
|
spin_lock(&cryp_list.lock);
|
|
list_del(&cryp->list);
|
|
spin_unlock(&cryp_list.lock);
|
|
err_rst:
|
|
pm_runtime_disable(dev);
|
|
pm_runtime_put_noidle(dev);
|
|
|
|
clk_disable_unprepare(cryp->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int stm32_cryp_remove(struct platform_device *pdev)
|
|
{
|
|
struct stm32_cryp *cryp = platform_get_drvdata(pdev);
|
|
int ret;
|
|
|
|
if (!cryp)
|
|
return -ENODEV;
|
|
|
|
ret = pm_runtime_resume_and_get(cryp->dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
|
|
crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
|
|
|
|
crypto_engine_exit(cryp->engine);
|
|
|
|
spin_lock(&cryp_list.lock);
|
|
list_del(&cryp->list);
|
|
spin_unlock(&cryp_list.lock);
|
|
|
|
pm_runtime_disable(cryp->dev);
|
|
pm_runtime_put_noidle(cryp->dev);
|
|
|
|
clk_disable_unprepare(cryp->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int stm32_cryp_runtime_suspend(struct device *dev)
|
|
{
|
|
struct stm32_cryp *cryp = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(cryp->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_cryp_runtime_resume(struct device *dev)
|
|
{
|
|
struct stm32_cryp *cryp = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(cryp->clk);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "Failed to prepare_enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops stm32_cryp_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
|
|
pm_runtime_force_resume)
|
|
SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
|
|
stm32_cryp_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct platform_driver stm32_cryp_driver = {
|
|
.probe = stm32_cryp_probe,
|
|
.remove = stm32_cryp_remove,
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.pm = &stm32_cryp_pm_ops,
|
|
.of_match_table = stm32_dt_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(stm32_cryp_driver);
|
|
|
|
MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
|
|
MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
|
|
MODULE_LICENSE("GPL");
|