linux/fs/xfs/libxfs/xfs_alloc_btree.c
Darrick J. Wong 4a200a0978 xfs: implement masked btree key comparisons for _has_records scans
For keyspace fullness scans, we want to be able to mask off the parts of
the key that we don't care about.  For most btree types we /do/ want the
full keyspace, but for checking that a given space usage also has a full
complement of rmapbt records (even if different/multiple owners) we need
this masking so that we only track sparseness of rm_startblock, not the
whole keyspace (which is extremely sparse).

Augment the ->diff_two_keys and ->keys_contiguous helpers to take a
third union xfs_btree_key argument, and wire up xfs_rmap_has_records to
pass this through.  This third "mask" argument should contain a nonzero
value in each structure field that should be used in the key comparisons
done during the scan.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-04-11 19:00:11 -07:00

662 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_alloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_extent_busy.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_trans.h"
#include "xfs_ag.h"
static struct kmem_cache *xfs_allocbt_cur_cache;
STATIC struct xfs_btree_cur *
xfs_allocbt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
}
STATIC void
xfs_allocbt_set_root(
struct xfs_btree_cur *cur,
const union xfs_btree_ptr *ptr,
int inc)
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agf *agf = agbp->b_addr;
int btnum = cur->bc_btnum;
ASSERT(ptr->s != 0);
agf->agf_roots[btnum] = ptr->s;
be32_add_cpu(&agf->agf_levels[btnum], inc);
cur->bc_ag.pag->pagf_levels[btnum] += inc;
xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
}
STATIC int
xfs_allocbt_alloc_block(
struct xfs_btree_cur *cur,
const union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat)
{
int error;
xfs_agblock_t bno;
/* Allocate the new block from the freelist. If we can't, give up. */
error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
cur->bc_ag.agbp, &bno, 1);
if (error)
return error;
if (bno == NULLAGBLOCK) {
*stat = 0;
return 0;
}
atomic64_inc(&cur->bc_mp->m_allocbt_blks);
xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
new->s = cpu_to_be32(bno);
*stat = 1;
return 0;
}
STATIC int
xfs_allocbt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
xfs_agblock_t bno;
int error;
bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
bno, 1);
if (error)
return error;
atomic64_dec(&cur->bc_mp->m_allocbt_blks);
xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
XFS_EXTENT_BUSY_SKIP_DISCARD);
return 0;
}
/*
* Update the longest extent in the AGF
*/
STATIC void
xfs_allocbt_update_lastrec(
struct xfs_btree_cur *cur,
const struct xfs_btree_block *block,
const union xfs_btree_rec *rec,
int ptr,
int reason)
{
struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
struct xfs_perag *pag;
__be32 len;
int numrecs;
ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
switch (reason) {
case LASTREC_UPDATE:
/*
* If this is the last leaf block and it's the last record,
* then update the size of the longest extent in the AG.
*/
if (ptr != xfs_btree_get_numrecs(block))
return;
len = rec->alloc.ar_blockcount;
break;
case LASTREC_INSREC:
if (be32_to_cpu(rec->alloc.ar_blockcount) <=
be32_to_cpu(agf->agf_longest))
return;
len = rec->alloc.ar_blockcount;
break;
case LASTREC_DELREC:
numrecs = xfs_btree_get_numrecs(block);
if (ptr <= numrecs)
return;
ASSERT(ptr == numrecs + 1);
if (numrecs) {
xfs_alloc_rec_t *rrp;
rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
len = rrp->ar_blockcount;
} else {
len = 0;
}
break;
default:
ASSERT(0);
return;
}
agf->agf_longest = len;
pag = cur->bc_ag.agbp->b_pag;
pag->pagf_longest = be32_to_cpu(len);
xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
}
STATIC int
xfs_allocbt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_alloc_mnr[level != 0];
}
STATIC int
xfs_allocbt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_alloc_mxr[level != 0];
}
STATIC void
xfs_allocbt_init_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->alloc.ar_startblock = rec->alloc.ar_startblock;
key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
}
STATIC void
xfs_bnobt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
__u32 x;
x = be32_to_cpu(rec->alloc.ar_startblock);
x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
key->alloc.ar_startblock = cpu_to_be32(x);
key->alloc.ar_blockcount = 0;
}
STATIC void
xfs_cntbt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
key->alloc.ar_startblock = 0;
}
STATIC void
xfs_allocbt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
}
STATIC void
xfs_allocbt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
ptr->s = agf->agf_roots[cur->bc_btnum];
}
STATIC int64_t
xfs_bnobt_key_diff(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
const struct xfs_alloc_rec *kp = &key->alloc;
return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
}
STATIC int64_t
xfs_cntbt_key_diff(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
const struct xfs_alloc_rec *kp = &key->alloc;
int64_t diff;
diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
if (diff)
return diff;
return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
}
STATIC int64_t
xfs_bnobt_diff_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->alloc.ar_startblock);
return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
be32_to_cpu(k2->alloc.ar_startblock);
}
STATIC int64_t
xfs_cntbt_diff_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
int64_t diff;
ASSERT(!mask || (mask->alloc.ar_blockcount &&
mask->alloc.ar_startblock));
diff = be32_to_cpu(k1->alloc.ar_blockcount) -
be32_to_cpu(k2->alloc.ar_blockcount);
if (diff)
return diff;
return be32_to_cpu(k1->alloc.ar_startblock) -
be32_to_cpu(k2->alloc.ar_startblock);
}
static xfs_failaddr_t
xfs_allocbt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_perag *pag = bp->b_pag;
xfs_failaddr_t fa;
unsigned int level;
xfs_btnum_t btnum = XFS_BTNUM_BNOi;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
if (xfs_has_crc(mp)) {
fa = xfs_btree_sblock_v5hdr_verify(bp);
if (fa)
return fa;
}
/*
* The perag may not be attached during grow operations or fully
* initialized from the AGF during log recovery. Therefore we can only
* check against maximum tree depth from those contexts.
*
* Otherwise check against the per-tree limit. Peek at one of the
* verifier magic values to determine the type of tree we're verifying
* against.
*/
level = be16_to_cpu(block->bb_level);
if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
btnum = XFS_BTNUM_CNTi;
if (pag && xfs_perag_initialised_agf(pag)) {
if (level >= pag->pagf_levels[btnum])
return __this_address;
} else if (level >= mp->m_alloc_maxlevels)
return __this_address;
return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
}
static void
xfs_allocbt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_sblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_allocbt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_allocbt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_allocbt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_sblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_bnobt_buf_ops = {
.name = "xfs_bnobt",
.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
.verify_read = xfs_allocbt_read_verify,
.verify_write = xfs_allocbt_write_verify,
.verify_struct = xfs_allocbt_verify,
};
const struct xfs_buf_ops xfs_cntbt_buf_ops = {
.name = "xfs_cntbt",
.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
.verify_read = xfs_allocbt_read_verify,
.verify_write = xfs_allocbt_write_verify,
.verify_struct = xfs_allocbt_verify,
};
STATIC int
xfs_bnobt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
return be32_to_cpu(k1->alloc.ar_startblock) <
be32_to_cpu(k2->alloc.ar_startblock);
}
STATIC int
xfs_bnobt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->alloc.ar_startblock) +
be32_to_cpu(r1->alloc.ar_blockcount) <=
be32_to_cpu(r2->alloc.ar_startblock);
}
STATIC int
xfs_cntbt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
return be32_to_cpu(k1->alloc.ar_blockcount) <
be32_to_cpu(k2->alloc.ar_blockcount) ||
(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
be32_to_cpu(k1->alloc.ar_startblock) <
be32_to_cpu(k2->alloc.ar_startblock));
}
STATIC int
xfs_cntbt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->alloc.ar_blockcount) <
be32_to_cpu(r2->alloc.ar_blockcount) ||
(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
be32_to_cpu(r1->alloc.ar_startblock) <
be32_to_cpu(r2->alloc.ar_startblock));
}
STATIC enum xbtree_key_contig
xfs_allocbt_keys_contiguous(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key1,
const union xfs_btree_key *key2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->alloc.ar_startblock);
return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
be32_to_cpu(key2->alloc.ar_startblock));
}
static const struct xfs_btree_ops xfs_bnobt_ops = {
.rec_len = sizeof(xfs_alloc_rec_t),
.key_len = sizeof(xfs_alloc_key_t),
.dup_cursor = xfs_allocbt_dup_cursor,
.set_root = xfs_allocbt_set_root,
.alloc_block = xfs_allocbt_alloc_block,
.free_block = xfs_allocbt_free_block,
.update_lastrec = xfs_allocbt_update_lastrec,
.get_minrecs = xfs_allocbt_get_minrecs,
.get_maxrecs = xfs_allocbt_get_maxrecs,
.init_key_from_rec = xfs_allocbt_init_key_from_rec,
.init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
.init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
.key_diff = xfs_bnobt_key_diff,
.buf_ops = &xfs_bnobt_buf_ops,
.diff_two_keys = xfs_bnobt_diff_two_keys,
.keys_inorder = xfs_bnobt_keys_inorder,
.recs_inorder = xfs_bnobt_recs_inorder,
.keys_contiguous = xfs_allocbt_keys_contiguous,
};
static const struct xfs_btree_ops xfs_cntbt_ops = {
.rec_len = sizeof(xfs_alloc_rec_t),
.key_len = sizeof(xfs_alloc_key_t),
.dup_cursor = xfs_allocbt_dup_cursor,
.set_root = xfs_allocbt_set_root,
.alloc_block = xfs_allocbt_alloc_block,
.free_block = xfs_allocbt_free_block,
.update_lastrec = xfs_allocbt_update_lastrec,
.get_minrecs = xfs_allocbt_get_minrecs,
.get_maxrecs = xfs_allocbt_get_maxrecs,
.init_key_from_rec = xfs_allocbt_init_key_from_rec,
.init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
.key_diff = xfs_cntbt_key_diff,
.buf_ops = &xfs_cntbt_buf_ops,
.diff_two_keys = xfs_cntbt_diff_two_keys,
.keys_inorder = xfs_cntbt_keys_inorder,
.recs_inorder = xfs_cntbt_recs_inorder,
.keys_contiguous = NULL, /* not needed right now */
};
/* Allocate most of a new allocation btree cursor. */
STATIC struct xfs_btree_cur *
xfs_allocbt_init_common(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_perag *pag,
xfs_btnum_t btnum)
{
struct xfs_btree_cur *cur;
ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
xfs_allocbt_cur_cache);
cur->bc_ag.abt.active = false;
if (btnum == XFS_BTNUM_CNT) {
cur->bc_ops = &xfs_cntbt_ops;
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
} else {
cur->bc_ops = &xfs_bnobt_ops;
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
}
cur->bc_ag.pag = xfs_perag_hold(pag);
if (xfs_has_crc(mp))
cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
return cur;
}
/*
* Allocate a new allocation btree cursor.
*/
struct xfs_btree_cur * /* new alloc btree cursor */
xfs_allocbt_init_cursor(
struct xfs_mount *mp, /* file system mount point */
struct xfs_trans *tp, /* transaction pointer */
struct xfs_buf *agbp, /* buffer for agf structure */
struct xfs_perag *pag,
xfs_btnum_t btnum) /* btree identifier */
{
struct xfs_agf *agf = agbp->b_addr;
struct xfs_btree_cur *cur;
cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
if (btnum == XFS_BTNUM_CNT)
cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
else
cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
cur->bc_ag.agbp = agbp;
return cur;
}
/* Create a free space btree cursor with a fake root for staging. */
struct xfs_btree_cur *
xfs_allocbt_stage_cursor(
struct xfs_mount *mp,
struct xbtree_afakeroot *afake,
struct xfs_perag *pag,
xfs_btnum_t btnum)
{
struct xfs_btree_cur *cur;
cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
xfs_btree_stage_afakeroot(cur, afake);
return cur;
}
/*
* Install a new free space btree root. Caller is responsible for invalidating
* and freeing the old btree blocks.
*/
void
xfs_allocbt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp,
struct xfs_buf *agbp)
{
struct xfs_agf *agf = agbp->b_addr;
struct xbtree_afakeroot *afake = cur->bc_ag.afake;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
if (cur->bc_btnum == XFS_BTNUM_BNO) {
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
} else {
cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
}
}
/* Calculate number of records in an alloc btree block. */
static inline unsigned int
xfs_allocbt_block_maxrecs(
unsigned int blocklen,
bool leaf)
{
if (leaf)
return blocklen / sizeof(xfs_alloc_rec_t);
return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
}
/*
* Calculate number of records in an alloc btree block.
*/
int
xfs_allocbt_maxrecs(
struct xfs_mount *mp,
int blocklen,
int leaf)
{
blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
return xfs_allocbt_block_maxrecs(blocklen, leaf);
}
/* Free space btrees are at their largest when every other block is free. */
#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
/* Compute the max possible height for free space btrees. */
unsigned int
xfs_allocbt_maxlevels_ondisk(void)
{
unsigned int minrecs[2];
unsigned int blocklen;
blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
}
/* Calculate the freespace btree size for some records. */
xfs_extlen_t
xfs_allocbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(mp->m_alloc_mnr, len);
}
int __init
xfs_allocbt_init_cur_cache(void)
{
xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
0, 0, NULL);
if (!xfs_allocbt_cur_cache)
return -ENOMEM;
return 0;
}
void
xfs_allocbt_destroy_cur_cache(void)
{
kmem_cache_destroy(xfs_allocbt_cur_cache);
xfs_allocbt_cur_cache = NULL;
}