mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-22 05:44:31 +08:00
95151801ed
Clear RTC_FEATURE_ALARM to signal that alarms are not available instead of having a supplementary struct rtc_class_ops with a NULL .set_alarm. Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Link: https://lore.kernel.org/r/20210110231752.1418816-4-alexandre.belloni@bootlin.com
592 lines
15 KiB
C
592 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* RTC driver for the Armada 38x Marvell SoCs
|
|
*
|
|
* Copyright (C) 2015 Marvell
|
|
*
|
|
* Gregory Clement <gregory.clement@free-electrons.com>
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/rtc.h>
|
|
|
|
#define RTC_STATUS 0x0
|
|
#define RTC_STATUS_ALARM1 BIT(0)
|
|
#define RTC_STATUS_ALARM2 BIT(1)
|
|
#define RTC_IRQ1_CONF 0x4
|
|
#define RTC_IRQ2_CONF 0x8
|
|
#define RTC_IRQ_AL_EN BIT(0)
|
|
#define RTC_IRQ_FREQ_EN BIT(1)
|
|
#define RTC_IRQ_FREQ_1HZ BIT(2)
|
|
#define RTC_CCR 0x18
|
|
#define RTC_CCR_MODE BIT(15)
|
|
#define RTC_CONF_TEST 0x1C
|
|
#define RTC_NOMINAL_TIMING BIT(13)
|
|
|
|
#define RTC_TIME 0xC
|
|
#define RTC_ALARM1 0x10
|
|
#define RTC_ALARM2 0x14
|
|
|
|
/* Armada38x SoC registers */
|
|
#define RTC_38X_BRIDGE_TIMING_CTL 0x0
|
|
#define RTC_38X_PERIOD_OFFS 0
|
|
#define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
|
|
#define RTC_38X_READ_DELAY_OFFS 26
|
|
#define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
|
|
|
|
/* Armada 7K/8K registers */
|
|
#define RTC_8K_BRIDGE_TIMING_CTL0 0x0
|
|
#define RTC_8K_WRCLK_PERIOD_OFFS 0
|
|
#define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
|
|
#define RTC_8K_WRCLK_SETUP_OFFS 16
|
|
#define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
|
|
#define RTC_8K_BRIDGE_TIMING_CTL1 0x4
|
|
#define RTC_8K_READ_DELAY_OFFS 0
|
|
#define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
|
|
|
|
#define RTC_8K_ISR 0x10
|
|
#define RTC_8K_IMR 0x14
|
|
#define RTC_8K_ALARM2 BIT(0)
|
|
|
|
#define SOC_RTC_INTERRUPT 0x8
|
|
#define SOC_RTC_ALARM1 BIT(0)
|
|
#define SOC_RTC_ALARM2 BIT(1)
|
|
#define SOC_RTC_ALARM1_MASK BIT(2)
|
|
#define SOC_RTC_ALARM2_MASK BIT(3)
|
|
|
|
#define SAMPLE_NR 100
|
|
|
|
struct value_to_freq {
|
|
u32 value;
|
|
u8 freq;
|
|
};
|
|
|
|
struct armada38x_rtc {
|
|
struct rtc_device *rtc_dev;
|
|
void __iomem *regs;
|
|
void __iomem *regs_soc;
|
|
spinlock_t lock;
|
|
int irq;
|
|
bool initialized;
|
|
struct value_to_freq *val_to_freq;
|
|
const struct armada38x_rtc_data *data;
|
|
};
|
|
|
|
#define ALARM1 0
|
|
#define ALARM2 1
|
|
|
|
#define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
|
|
|
|
struct armada38x_rtc_data {
|
|
/* Initialize the RTC-MBUS bridge timing */
|
|
void (*update_mbus_timing)(struct armada38x_rtc *rtc);
|
|
u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
|
|
void (*clear_isr)(struct armada38x_rtc *rtc);
|
|
void (*unmask_interrupt)(struct armada38x_rtc *rtc);
|
|
u32 alarm;
|
|
};
|
|
|
|
/*
|
|
* According to the datasheet, the OS should wait 5us after every
|
|
* register write to the RTC hard macro so that the required update
|
|
* can occur without holding off the system bus
|
|
* According to errata RES-3124064, Write to any RTC register
|
|
* may fail. As a workaround, before writing to RTC
|
|
* register, issue a dummy write of 0x0 twice to RTC Status
|
|
* register.
|
|
*/
|
|
|
|
static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
|
|
{
|
|
writel(0, rtc->regs + RTC_STATUS);
|
|
writel(0, rtc->regs + RTC_STATUS);
|
|
writel(val, rtc->regs + offset);
|
|
udelay(5);
|
|
}
|
|
|
|
/* Update RTC-MBUS bridge timing parameters */
|
|
static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
|
|
reg &= ~RTC_38X_PERIOD_MASK;
|
|
reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
|
|
reg &= ~RTC_38X_READ_DELAY_MASK;
|
|
reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
|
|
writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
|
|
}
|
|
|
|
static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
|
|
reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
|
|
reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
|
|
reg &= ~RTC_8K_WRCLK_SETUP_MASK;
|
|
reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
|
|
writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
|
|
|
|
reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
|
|
reg &= ~RTC_8K_READ_DELAY_MASK;
|
|
reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
|
|
writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
|
|
}
|
|
|
|
static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
|
|
{
|
|
return readl(rtc->regs + rtc_reg);
|
|
}
|
|
|
|
static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
|
|
{
|
|
int i, index_max = 0, max = 0;
|
|
|
|
for (i = 0; i < SAMPLE_NR; i++) {
|
|
rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
|
|
rtc->val_to_freq[i].freq = 0;
|
|
}
|
|
|
|
for (i = 0; i < SAMPLE_NR; i++) {
|
|
int j = 0;
|
|
u32 value = rtc->val_to_freq[i].value;
|
|
|
|
while (rtc->val_to_freq[j].freq) {
|
|
if (rtc->val_to_freq[j].value == value) {
|
|
rtc->val_to_freq[j].freq++;
|
|
break;
|
|
}
|
|
j++;
|
|
}
|
|
|
|
if (!rtc->val_to_freq[j].freq) {
|
|
rtc->val_to_freq[j].value = value;
|
|
rtc->val_to_freq[j].freq = 1;
|
|
}
|
|
|
|
if (rtc->val_to_freq[j].freq > max) {
|
|
index_max = j;
|
|
max = rtc->val_to_freq[j].freq;
|
|
}
|
|
|
|
/*
|
|
* If a value already has half of the sample this is the most
|
|
* frequent one and we can stop the research right now
|
|
*/
|
|
if (max > SAMPLE_NR / 2)
|
|
break;
|
|
}
|
|
|
|
return rtc->val_to_freq[index_max].value;
|
|
}
|
|
|
|
static void armada38x_clear_isr(struct armada38x_rtc *rtc)
|
|
{
|
|
u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
|
|
|
|
writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
|
|
}
|
|
|
|
static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
|
|
{
|
|
u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
|
|
|
|
writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
|
|
}
|
|
|
|
static void armada8k_clear_isr(struct armada38x_rtc *rtc)
|
|
{
|
|
writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
|
|
}
|
|
|
|
static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
|
|
{
|
|
writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
|
|
}
|
|
|
|
static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
unsigned long time, flags;
|
|
|
|
spin_lock_irqsave(&rtc->lock, flags);
|
|
time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
|
|
spin_unlock_irqrestore(&rtc->lock, flags);
|
|
|
|
rtc_time64_to_tm(time, tm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
|
|
/* If bits [7:0] are non-zero, assume RTC was uninitialized */
|
|
if (reg & 0xff) {
|
|
rtc_delayed_write(0, rtc, RTC_CONF_TEST);
|
|
msleep(500); /* Oscillator startup time */
|
|
rtc_delayed_write(0, rtc, RTC_TIME);
|
|
rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
|
|
RTC_STATUS);
|
|
rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
|
|
}
|
|
rtc->initialized = true;
|
|
}
|
|
|
|
static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
unsigned long time, flags;
|
|
|
|
time = rtc_tm_to_time64(tm);
|
|
|
|
if (!rtc->initialized)
|
|
armada38x_rtc_reset(rtc);
|
|
|
|
spin_lock_irqsave(&rtc->lock, flags);
|
|
rtc_delayed_write(time, rtc, RTC_TIME);
|
|
spin_unlock_irqrestore(&rtc->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
|
|
{
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
unsigned long time, flags;
|
|
u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
|
|
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
|
|
u32 val;
|
|
|
|
spin_lock_irqsave(&rtc->lock, flags);
|
|
|
|
time = rtc->data->read_rtc_reg(rtc, reg);
|
|
val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
|
|
|
|
spin_unlock_irqrestore(&rtc->lock, flags);
|
|
|
|
alrm->enabled = val ? 1 : 0;
|
|
rtc_time64_to_tm(time, &alrm->time);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
|
|
{
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
|
|
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
|
|
unsigned long time, flags;
|
|
|
|
time = rtc_tm_to_time64(&alrm->time);
|
|
|
|
spin_lock_irqsave(&rtc->lock, flags);
|
|
|
|
rtc_delayed_write(time, rtc, reg);
|
|
|
|
if (alrm->enabled) {
|
|
rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
|
|
rtc->data->unmask_interrupt(rtc);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&rtc->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int armada38x_rtc_alarm_irq_enable(struct device *dev,
|
|
unsigned int enabled)
|
|
{
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rtc->lock, flags);
|
|
|
|
if (enabled)
|
|
rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
|
|
else
|
|
rtc_delayed_write(0, rtc, reg_irq);
|
|
|
|
spin_unlock_irqrestore(&rtc->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
|
|
{
|
|
struct armada38x_rtc *rtc = data;
|
|
u32 val;
|
|
int event = RTC_IRQF | RTC_AF;
|
|
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
|
|
|
|
dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
|
|
|
|
spin_lock(&rtc->lock);
|
|
|
|
rtc->data->clear_isr(rtc);
|
|
val = rtc->data->read_rtc_reg(rtc, reg_irq);
|
|
/* disable all the interrupts for alarm*/
|
|
rtc_delayed_write(0, rtc, reg_irq);
|
|
/* Ack the event */
|
|
rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
|
|
|
|
spin_unlock(&rtc->lock);
|
|
|
|
if (val & RTC_IRQ_FREQ_EN) {
|
|
if (val & RTC_IRQ_FREQ_1HZ)
|
|
event |= RTC_UF;
|
|
else
|
|
event |= RTC_PF;
|
|
}
|
|
|
|
rtc_update_irq(rtc->rtc_dev, 1, event);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* The information given in the Armada 388 functional spec is complex.
|
|
* They give two different formulas for calculating the offset value,
|
|
* but when considering "Offset" as an 8-bit signed integer, they both
|
|
* reduce down to (we shall rename "Offset" as "val" here):
|
|
*
|
|
* val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
|
|
*
|
|
* Converting to time, f = 1/t:
|
|
* val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
|
|
*
|
|
* => t_measured / t_ideal = val * resolution + 1
|
|
*
|
|
* "offset" in the RTC interface is defined as:
|
|
* t = t0 * (1 + offset * 1e-9)
|
|
* where t is the desired period, t0 is the measured period with a zero
|
|
* offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
|
|
* offset = (t_ideal / t_measured - 1) / 1e-9
|
|
*
|
|
* => t_ideal / t_measured = offset * 1e-9 + 1
|
|
*
|
|
* so:
|
|
*
|
|
* offset * 1e-9 + 1 = 1 / (val * resolution + 1)
|
|
*
|
|
* We want "resolution" to be an integer, so resolution = R * 1e-9, giving
|
|
* offset = 1e18 / (val * R + 1e9) - 1e9
|
|
* val = (1e18 / (offset + 1e9) - 1e9) / R
|
|
* with a common transformation:
|
|
* f(x) = 1e18 / (x + 1e9) - 1e9
|
|
* offset = f(val * R)
|
|
* val = f(offset) / R
|
|
*
|
|
* Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
|
|
*/
|
|
static long armada38x_ppb_convert(long ppb)
|
|
{
|
|
long div = ppb + 1000000000L;
|
|
|
|
return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
|
|
}
|
|
|
|
static int armada38x_rtc_read_offset(struct device *dev, long *offset)
|
|
{
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
unsigned long ccr, flags;
|
|
long ppb_cor;
|
|
|
|
spin_lock_irqsave(&rtc->lock, flags);
|
|
ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
|
|
spin_unlock_irqrestore(&rtc->lock, flags);
|
|
|
|
ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
|
|
/* ppb_cor + 1000000000L can never be zero */
|
|
*offset = armada38x_ppb_convert(ppb_cor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int armada38x_rtc_set_offset(struct device *dev, long offset)
|
|
{
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
unsigned long ccr = 0;
|
|
long ppb_cor, off;
|
|
|
|
/*
|
|
* The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
|
|
* need to clamp the input. This equates to -484270 .. 488558.
|
|
* Not only is this to stop out of range "off" but also to
|
|
* avoid the division by zero in armada38x_ppb_convert().
|
|
*/
|
|
offset = clamp(offset, -484270L, 488558L);
|
|
|
|
ppb_cor = armada38x_ppb_convert(offset);
|
|
|
|
/*
|
|
* Use low update mode where possible, which gives a better
|
|
* resolution of correction.
|
|
*/
|
|
off = DIV_ROUND_CLOSEST(ppb_cor, 954);
|
|
if (off > 127 || off < -128) {
|
|
ccr = RTC_CCR_MODE;
|
|
off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
|
|
}
|
|
|
|
/*
|
|
* Armada 388 requires a bit pattern in bits 14..8 depending on
|
|
* the sign bit: { 0, ~S, S, S, S, S, S }
|
|
*/
|
|
ccr |= (off & 0x3fff) ^ 0x2000;
|
|
rtc_delayed_write(ccr, rtc, RTC_CCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rtc_class_ops armada38x_rtc_ops = {
|
|
.read_time = armada38x_rtc_read_time,
|
|
.set_time = armada38x_rtc_set_time,
|
|
.read_alarm = armada38x_rtc_read_alarm,
|
|
.set_alarm = armada38x_rtc_set_alarm,
|
|
.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
|
|
.read_offset = armada38x_rtc_read_offset,
|
|
.set_offset = armada38x_rtc_set_offset,
|
|
};
|
|
|
|
static const struct armada38x_rtc_data armada38x_data = {
|
|
.update_mbus_timing = rtc_update_38x_mbus_timing_params,
|
|
.read_rtc_reg = read_rtc_register_38x_wa,
|
|
.clear_isr = armada38x_clear_isr,
|
|
.unmask_interrupt = armada38x_unmask_interrupt,
|
|
.alarm = ALARM1,
|
|
};
|
|
|
|
static const struct armada38x_rtc_data armada8k_data = {
|
|
.update_mbus_timing = rtc_update_8k_mbus_timing_params,
|
|
.read_rtc_reg = read_rtc_register,
|
|
.clear_isr = armada8k_clear_isr,
|
|
.unmask_interrupt = armada8k_unmask_interrupt,
|
|
.alarm = ALARM2,
|
|
};
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id armada38x_rtc_of_match_table[] = {
|
|
{
|
|
.compatible = "marvell,armada-380-rtc",
|
|
.data = &armada38x_data,
|
|
},
|
|
{
|
|
.compatible = "marvell,armada-8k-rtc",
|
|
.data = &armada8k_data,
|
|
},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
|
|
#endif
|
|
|
|
static __init int armada38x_rtc_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
struct armada38x_rtc *rtc;
|
|
|
|
rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
|
|
GFP_KERNEL);
|
|
if (!rtc)
|
|
return -ENOMEM;
|
|
|
|
rtc->data = of_device_get_match_data(&pdev->dev);
|
|
|
|
rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
|
|
sizeof(struct value_to_freq), GFP_KERNEL);
|
|
if (!rtc->val_to_freq)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&rtc->lock);
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
|
|
rtc->regs = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(rtc->regs))
|
|
return PTR_ERR(rtc->regs);
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
|
|
rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(rtc->regs_soc))
|
|
return PTR_ERR(rtc->regs_soc);
|
|
|
|
rtc->irq = platform_get_irq(pdev, 0);
|
|
if (rtc->irq < 0)
|
|
return rtc->irq;
|
|
|
|
rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
|
|
if (IS_ERR(rtc->rtc_dev))
|
|
return PTR_ERR(rtc->rtc_dev);
|
|
|
|
if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
|
|
0, pdev->name, rtc) < 0) {
|
|
dev_warn(&pdev->dev, "Interrupt not available.\n");
|
|
rtc->irq = -1;
|
|
}
|
|
platform_set_drvdata(pdev, rtc);
|
|
|
|
if (rtc->irq != -1)
|
|
device_init_wakeup(&pdev->dev, 1);
|
|
else
|
|
clear_bit(RTC_FEATURE_ALARM, rtc->rtc_dev->features);
|
|
|
|
/* Update RTC-MBUS bridge timing parameters */
|
|
rtc->data->update_mbus_timing(rtc);
|
|
|
|
rtc->rtc_dev->ops = &armada38x_rtc_ops;
|
|
rtc->rtc_dev->range_max = U32_MAX;
|
|
|
|
return devm_rtc_register_device(rtc->rtc_dev);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int armada38x_rtc_suspend(struct device *dev)
|
|
{
|
|
if (device_may_wakeup(dev)) {
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
|
|
return enable_irq_wake(rtc->irq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int armada38x_rtc_resume(struct device *dev)
|
|
{
|
|
if (device_may_wakeup(dev)) {
|
|
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
|
|
|
|
/* Update RTC-MBUS bridge timing parameters */
|
|
rtc->data->update_mbus_timing(rtc);
|
|
|
|
return disable_irq_wake(rtc->irq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
|
|
armada38x_rtc_suspend, armada38x_rtc_resume);
|
|
|
|
static struct platform_driver armada38x_rtc_driver = {
|
|
.driver = {
|
|
.name = "armada38x-rtc",
|
|
.pm = &armada38x_rtc_pm_ops,
|
|
.of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
|
|
},
|
|
};
|
|
|
|
module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
|
|
|
|
MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
|
|
MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
|
|
MODULE_LICENSE("GPL");
|