linux/arch/powerpc/net/bpf_jit_comp64.c
Linus Torvalds 38705613b7 powerpc updates for 4.11 part 1.
Highlights include:
 
  - Support for direct mapped LPC on POWER9, giving Linux direct access to
    devices that may be on there such as a UART.
 
  - Memory hotplug support for the Power9 Radix MMU.
 
  - Add new AUX vectors describing the processor's cache geometry, to be used by
    glibc.
 
  - The ability for a guest to ask the hypervisor to resize the guest's hash
    table, and in addition support for doing so automatically when memory is
    hotplugged into/out-of the guest. This allows the hash table to be sized
    based on the current memory usage of the guest, rather than the maximum
    possible memory usage.
 
  - Implementation of optprobes (kprobe optimisation) for powerpc.
 
 In addition there's the topic branch shared with the KVM tree, which includes
 support for guests to use the Radix MMU on Power9.
 
 Thanks to:
   Alistair Popple, Andrew Donnellan, Aneesh Kumar K.V, Anju T, Anton Blanchard,
   Benjamin Herrenschmidt, Chris Packham, Daniel Axtens, Daniel Borkmann, David
   Gibson, Finn Thain, Gautham R. Shenoy, Gavin Shan, Greg Kurz, Joel Stanley,
   John Allen, Madhavan Srinivasan, Mahesh Salgaonkar, Markus Elfring, Michael
   Neuling, Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Paul Mackerras, Ravi
   Bangoria, Reza Arbab, Shailendra Singh, Vaibhav Jain, Wei Yongjun.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJYrWj0AAoJEFHr6jzI4aWAsn4P/08Kz3TtOvDuuPGVNoO7fWOn
 ag5/zVt8R4FuCALqWpAZbVqMuUU4wLxG0RuWlmBNYYhrjMC6JxHpOSjQXxM2D7YT
 CdGTJxG414r6HMOeToL9i/z33o0m+KT07tscer+QMKlXVKCR2z0fEJch+zoPBHYA
 5eVBFpLLTtbNiX9UnrcM/vYz61d56kT4YJey9/8qbAkTAc1rMPa8ucU5UiKYJ7yX
 mF8cd7WE+7aqif9V8yN59G2rcbz+h3pbMw/gzImiYsYrUj4fLjU+VTKL5PPT+UFy
 WWBXD3MAMm1dksMMZi3hgoo2BZhDn3RkymeYi6Jo4kDknNMPZzkMxGyvaJ8Eq5H/
 bIYXdS1AbTtvaaEEuWqDFjpnChOEvj/8IeqitU0jjlql8BVjNKg/ESaaKucZr+pO
 pk2Mfvw0Tb/lxJT5qj27yq4aRsxJwdFOoPYCN7MquPp/wV2Tg5M6h4nVQ4T6Wl0S
 tMFQeCqXflhDWh0Xgr2UXpF66/YTj3Du5LasOTkgGeU30Z8TcNGFEmDWShKP3cEm
 e0oQE+OHhIGN4WSBXBAto/Gw8/0v3pXlMs+VEfeHqenwPss2sWtSwXWe8khmiy9e
 DJ48sTzj75/Zx1fiqRldw9YEnrL+NK0eOOpvzxeyKpfvdUytc+chFfEqUmO6kl3Z
 DW2UmlZxmW+b0SfexCHL
 =Icle
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "Highlights include:

   - Support for direct mapped LPC on POWER9, giving Linux direct access
     to devices that may be on there such as a UART.

   - Memory hotplug support for the Power9 Radix MMU.

   - Add new AUX vectors describing the processor's cache geometry, to
     be used by glibc.

   - The ability for a guest to ask the hypervisor to resize the guest's
     hash table, and in addition support for doing so automatically when
     memory is hotplugged into/out-of the guest. This allows the hash
     table to be sized based on the current memory usage of the guest,
     rather than the maximum possible memory usage.

   - Implementation of optprobes (kprobe optimisation) for powerpc.

  In addition there's the topic branch shared with the KVM tree, which
  includes support for guests to use the Radix MMU on Power9.

  Thanks to:
    Alistair Popple, Andrew Donnellan, Aneesh Kumar K.V, Anju T, Anton
    Blanchard, Benjamin Herrenschmidt, Chris Packham, Daniel Axtens,
    Daniel Borkmann, David Gibson, Finn Thain, Gautham R. Shenoy, Gavin
    Shan, Greg Kurz, Joel Stanley, John Allen, Madhavan Srinivasan,
    Mahesh Salgaonkar, Markus Elfring, Michael Neuling, Nathan Fontenot,
    Naveen N. Rao, Nicholas Piggin, Paul Mackerras, Ravi Bangoria, Reza
    Arbab, Shailendra Singh, Vaibhav Jain, Wei Yongjun"

* tag 'powerpc-4.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (129 commits)
  powerpc/mm/radix: Skip ptesync in pte update helpers
  powerpc/mm/radix: Use ptep_get_and_clear_full when clearing pte for full mm
  powerpc/mm/radix: Update pte update sequence for pte clear case
  powerpc/mm: Update PROTFAULT handling in the page fault path
  powerpc/xmon: Fix data-breakpoint
  powerpc/mm: Fix build break with BOOK3S_64=n and MEMORY_HOTPLUG=y
  powerpc/mm: Fix build break when CMA=n && SPAPR_TCE_IOMMU=y
  powerpc/mm: Fix build break with RADIX=y & HUGETLBFS=n
  powerpc/pseries: Fix typo in parameter description
  powerpc/kprobes: Remove kprobe_exceptions_notify()
  kprobes: Introduce weak variant of kprobe_exceptions_notify()
  powerpc/ftrace: Fix confusing help text for DISABLE_MPROFILE_KERNEL
  powerpc/powernv: Fix opal_exit tracepoint opcode
  powerpc: Add a prototype for mcount() so it can be versioned
  powerpc: Drop GPL from of_node_to_nid() export to match other arches
  powerpc/kprobes: Optimize kprobe in kretprobe_trampoline()
  powerpc/kprobes: Implement Optprobes
  powerpc/kprobes: Fixes for kprobe_lookup_name() on BE
  powerpc: Add helper to check if offset is within relative branch range
  powerpc/bpf: Introduce __PPC_SH64()
  ...
2017-02-22 10:30:38 -08:00

1078 lines
30 KiB
C

/*
* bpf_jit_comp64.c: eBPF JIT compiler
*
* Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
* IBM Corporation
*
* Based on the powerpc classic BPF JIT compiler by Matt Evans
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <asm/kprobes.h>
#include <linux/bpf.h>
#include "bpf_jit64.h"
int bpf_jit_enable __read_mostly;
static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
{
int *p = area;
/* Fill whole space with trap instructions */
while (p < (int *)((char *)area + size))
*p++ = BREAKPOINT_INSTRUCTION;
}
static inline void bpf_flush_icache(void *start, void *end)
{
smp_wmb();
flush_icache_range((unsigned long)start, (unsigned long)end);
}
static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
{
return (ctx->seen & (1 << (31 - b2p[i])));
}
static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
{
ctx->seen |= (1 << (31 - b2p[i]));
}
static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
{
/*
* We only need a stack frame if:
* - we call other functions (kernel helpers), or
* - the bpf program uses its stack area
* The latter condition is deduced from the usage of BPF_REG_FP
*/
return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP);
}
/*
* When not setting up our own stackframe, the redzone usage is:
*
* [ prev sp ] <-------------
* [ ... ] |
* sp (r1) ---> [ stack pointer ] --------------
* [ nv gpr save area ] 8*8
* [ tail_call_cnt ] 8
* [ local_tmp_var ] 8
* [ unused red zone ] 208 bytes protected
*/
static int bpf_jit_stack_local(struct codegen_context *ctx)
{
if (bpf_has_stack_frame(ctx))
return STACK_FRAME_MIN_SIZE + MAX_BPF_STACK;
else
return -(BPF_PPC_STACK_SAVE + 16);
}
static int bpf_jit_stack_tailcallcnt(struct codegen_context *ctx)
{
return bpf_jit_stack_local(ctx) + 8;
}
static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg)
{
if (reg >= BPF_PPC_NVR_MIN && reg < 32)
return (bpf_has_stack_frame(ctx) ? BPF_PPC_STACKFRAME : 0)
- (8 * (32 - reg));
pr_err("BPF JIT is asking about unknown registers");
BUG();
}
static void bpf_jit_emit_skb_loads(u32 *image, struct codegen_context *ctx)
{
/*
* Load skb->len and skb->data_len
* r3 points to skb
*/
PPC_LWZ(b2p[SKB_HLEN_REG], 3, offsetof(struct sk_buff, len));
PPC_LWZ(b2p[TMP_REG_1], 3, offsetof(struct sk_buff, data_len));
/* header_len = len - data_len */
PPC_SUB(b2p[SKB_HLEN_REG], b2p[SKB_HLEN_REG], b2p[TMP_REG_1]);
/* skb->data pointer */
PPC_BPF_LL(b2p[SKB_DATA_REG], 3, offsetof(struct sk_buff, data));
}
static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
{
int i;
/*
* Initialize tail_call_cnt if we do tail calls.
* Otherwise, put in NOPs so that it can be skipped when we are
* invoked through a tail call.
*/
if (ctx->seen & SEEN_TAILCALL) {
PPC_LI(b2p[TMP_REG_1], 0);
/* this goes in the redzone */
PPC_BPF_STL(b2p[TMP_REG_1], 1, -(BPF_PPC_STACK_SAVE + 8));
} else {
PPC_NOP();
PPC_NOP();
}
#define BPF_TAILCALL_PROLOGUE_SIZE 8
if (bpf_has_stack_frame(ctx)) {
/*
* We need a stack frame, but we don't necessarily need to
* save/restore LR unless we call other functions
*/
if (ctx->seen & SEEN_FUNC) {
EMIT(PPC_INST_MFLR | __PPC_RT(R0));
PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
}
PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
}
/*
* Back up non-volatile regs -- BPF registers 6-10
* If we haven't created our own stack frame, we save these
* in the protected zone below the previous stack frame
*/
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
if (bpf_is_seen_register(ctx, i))
PPC_BPF_STL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
/*
* Save additional non-volatile regs if we cache skb
* Also, setup skb data
*/
if (ctx->seen & SEEN_SKB) {
PPC_BPF_STL(b2p[SKB_HLEN_REG], 1,
bpf_jit_stack_offsetof(ctx, b2p[SKB_HLEN_REG]));
PPC_BPF_STL(b2p[SKB_DATA_REG], 1,
bpf_jit_stack_offsetof(ctx, b2p[SKB_DATA_REG]));
bpf_jit_emit_skb_loads(image, ctx);
}
/* Setup frame pointer to point to the bpf stack area */
if (bpf_is_seen_register(ctx, BPF_REG_FP))
PPC_ADDI(b2p[BPF_REG_FP], 1,
STACK_FRAME_MIN_SIZE + MAX_BPF_STACK);
}
static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx)
{
int i;
/* Restore NVRs */
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
if (bpf_is_seen_register(ctx, i))
PPC_BPF_LL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
/* Restore non-volatile registers used for skb cache */
if (ctx->seen & SEEN_SKB) {
PPC_BPF_LL(b2p[SKB_HLEN_REG], 1,
bpf_jit_stack_offsetof(ctx, b2p[SKB_HLEN_REG]));
PPC_BPF_LL(b2p[SKB_DATA_REG], 1,
bpf_jit_stack_offsetof(ctx, b2p[SKB_DATA_REG]));
}
/* Tear down our stack frame */
if (bpf_has_stack_frame(ctx)) {
PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
if (ctx->seen & SEEN_FUNC) {
PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
PPC_MTLR(0);
}
}
}
static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
{
bpf_jit_emit_common_epilogue(image, ctx);
/* Move result to r3 */
PPC_MR(3, b2p[BPF_REG_0]);
PPC_BLR();
}
static void bpf_jit_emit_func_call(u32 *image, struct codegen_context *ctx, u64 func)
{
#ifdef PPC64_ELF_ABI_v1
/* func points to the function descriptor */
PPC_LI64(b2p[TMP_REG_2], func);
/* Load actual entry point from function descriptor */
PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0);
/* ... and move it to LR */
PPC_MTLR(b2p[TMP_REG_1]);
/*
* Load TOC from function descriptor at offset 8.
* We can clobber r2 since we get called through a
* function pointer (so caller will save/restore r2)
* and since we don't use a TOC ourself.
*/
PPC_BPF_LL(2, b2p[TMP_REG_2], 8);
#else
/* We can clobber r12 */
PPC_FUNC_ADDR(12, func);
PPC_MTLR(12);
#endif
PPC_BLRL();
}
static void bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out)
{
/*
* By now, the eBPF program has already setup parameters in r3, r4 and r5
* r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
* r4/BPF_REG_2 - pointer to bpf_array
* r5/BPF_REG_3 - index in bpf_array
*/
int b2p_bpf_array = b2p[BPF_REG_2];
int b2p_index = b2p[BPF_REG_3];
/*
* if (index >= array->map.max_entries)
* goto out;
*/
PPC_LWZ(b2p[TMP_REG_1], b2p_bpf_array, offsetof(struct bpf_array, map.max_entries));
PPC_CMPLW(b2p_index, b2p[TMP_REG_1]);
PPC_BCC(COND_GE, out);
/*
* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out;
*/
PPC_LD(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
PPC_CMPLWI(b2p[TMP_REG_1], MAX_TAIL_CALL_CNT);
PPC_BCC(COND_GT, out);
/*
* tail_call_cnt++;
*/
PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], 1);
PPC_BPF_STL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
/* prog = array->ptrs[index]; */
PPC_MULI(b2p[TMP_REG_1], b2p_index, 8);
PPC_ADD(b2p[TMP_REG_1], b2p[TMP_REG_1], b2p_bpf_array);
PPC_LD(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_array, ptrs));
/*
* if (prog == NULL)
* goto out;
*/
PPC_CMPLDI(b2p[TMP_REG_1], 0);
PPC_BCC(COND_EQ, out);
/* goto *(prog->bpf_func + prologue_size); */
PPC_LD(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_prog, bpf_func));
#ifdef PPC64_ELF_ABI_v1
/* skip past the function descriptor */
PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1],
FUNCTION_DESCR_SIZE + BPF_TAILCALL_PROLOGUE_SIZE);
#else
PPC_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], BPF_TAILCALL_PROLOGUE_SIZE);
#endif
PPC_MTCTR(b2p[TMP_REG_1]);
/* tear down stack, restore NVRs, ... */
bpf_jit_emit_common_epilogue(image, ctx);
PPC_BCTR();
/* out: */
}
/* Assemble the body code between the prologue & epilogue */
static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
struct codegen_context *ctx,
u32 *addrs)
{
const struct bpf_insn *insn = fp->insnsi;
int flen = fp->len;
int i;
/* Start of epilogue code - will only be valid 2nd pass onwards */
u32 exit_addr = addrs[flen];
for (i = 0; i < flen; i++) {
u32 code = insn[i].code;
u32 dst_reg = b2p[insn[i].dst_reg];
u32 src_reg = b2p[insn[i].src_reg];
s16 off = insn[i].off;
s32 imm = insn[i].imm;
u64 imm64;
u8 *func;
u32 true_cond;
/*
* addrs[] maps a BPF bytecode address into a real offset from
* the start of the body code.
*/
addrs[i] = ctx->idx * 4;
/*
* As an optimization, we note down which non-volatile registers
* are used so that we can only save/restore those in our
* prologue and epilogue. We do this here regardless of whether
* the actual BPF instruction uses src/dst registers or not
* (for instance, BPF_CALL does not use them). The expectation
* is that those instructions will have src_reg/dst_reg set to
* 0. Even otherwise, we just lose some prologue/epilogue
* optimization but everything else should work without
* any issues.
*/
if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32)
bpf_set_seen_register(ctx, insn[i].dst_reg);
if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32)
bpf_set_seen_register(ctx, insn[i].src_reg);
switch (code) {
/*
* Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
*/
case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
PPC_ADD(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
PPC_SUB(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
if (BPF_OP(code) == BPF_SUB)
imm = -imm;
if (imm) {
if (imm >= -32768 && imm < 32768)
PPC_ADDI(dst_reg, dst_reg, IMM_L(imm));
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]);
}
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
if (BPF_CLASS(code) == BPF_ALU)
PPC_MULW(dst_reg, dst_reg, src_reg);
else
PPC_MULD(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
if (imm >= -32768 && imm < 32768)
PPC_MULI(dst_reg, dst_reg, IMM_L(imm));
else {
PPC_LI32(b2p[TMP_REG_1], imm);
if (BPF_CLASS(code) == BPF_ALU)
PPC_MULW(dst_reg, dst_reg,
b2p[TMP_REG_1]);
else
PPC_MULD(dst_reg, dst_reg,
b2p[TMP_REG_1]);
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
PPC_CMPWI(src_reg, 0);
PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg);
PPC_MULW(b2p[TMP_REG_1], src_reg,
b2p[TMP_REG_1]);
PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else
PPC_DIVWU(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
PPC_CMPDI(src_reg, 0);
PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVD(b2p[TMP_REG_1], dst_reg, src_reg);
PPC_MULD(b2p[TMP_REG_1], src_reg,
b2p[TMP_REG_1]);
PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else
PPC_DIVD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
if (imm == 0)
return -EINVAL;
else if (imm == 1)
goto bpf_alu32_trunc;
PPC_LI32(b2p[TMP_REG_1], imm);
switch (BPF_CLASS(code)) {
case BPF_ALU:
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVWU(b2p[TMP_REG_2], dst_reg,
b2p[TMP_REG_1]);
PPC_MULW(b2p[TMP_REG_1],
b2p[TMP_REG_1],
b2p[TMP_REG_2]);
PPC_SUB(dst_reg, dst_reg,
b2p[TMP_REG_1]);
} else
PPC_DIVWU(dst_reg, dst_reg,
b2p[TMP_REG_1]);
break;
case BPF_ALU64:
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVD(b2p[TMP_REG_2], dst_reg,
b2p[TMP_REG_1]);
PPC_MULD(b2p[TMP_REG_1],
b2p[TMP_REG_1],
b2p[TMP_REG_2]);
PPC_SUB(dst_reg, dst_reg,
b2p[TMP_REG_1]);
} else
PPC_DIVD(dst_reg, dst_reg,
b2p[TMP_REG_1]);
break;
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
case BPF_ALU64 | BPF_NEG: /* dst = -dst */
PPC_NEG(dst_reg, dst_reg);
goto bpf_alu32_trunc;
/*
* Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
*/
case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
PPC_AND(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
if (!IMM_H(imm))
PPC_ANDI(dst_reg, dst_reg, IMM_L(imm));
else {
/* Sign-extended */
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_AND(dst_reg, dst_reg, b2p[TMP_REG_1]);
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
PPC_OR(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
/* Sign-extended */
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_OR(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else {
if (IMM_L(imm))
PPC_ORI(dst_reg, dst_reg, IMM_L(imm));
if (IMM_H(imm))
PPC_ORIS(dst_reg, dst_reg, IMM_H(imm));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
PPC_XOR(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
/* Sign-extended */
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else {
if (IMM_L(imm))
PPC_XORI(dst_reg, dst_reg, IMM_L(imm));
if (IMM_H(imm))
PPC_XORIS(dst_reg, dst_reg, IMM_H(imm));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
/* slw clears top 32 bits */
PPC_SLW(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
PPC_SLD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
/* with imm 0, we still need to clear top 32 bits */
PPC_SLWI(dst_reg, dst_reg, imm);
break;
case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
if (imm != 0)
PPC_SLDI(dst_reg, dst_reg, imm);
break;
case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
PPC_SRW(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
PPC_SRD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
PPC_SRWI(dst_reg, dst_reg, imm);
break;
case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
if (imm != 0)
PPC_SRDI(dst_reg, dst_reg, imm);
break;
case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
PPC_SRAD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
if (imm != 0)
PPC_SRADI(dst_reg, dst_reg, imm);
break;
/*
* MOV
*/
case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
PPC_MR(dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
PPC_LI32(dst_reg, imm);
if (imm < 0)
goto bpf_alu32_trunc;
break;
bpf_alu32_trunc:
/* Truncate to 32-bits */
if (BPF_CLASS(code) == BPF_ALU)
PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31);
break;
/*
* BPF_FROM_BE/LE
*/
case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE:
#ifdef __BIG_ENDIAN__
if (BPF_SRC(code) == BPF_FROM_BE)
goto emit_clear;
#else /* !__BIG_ENDIAN__ */
if (BPF_SRC(code) == BPF_FROM_LE)
goto emit_clear;
#endif
switch (imm) {
case 16:
/* Rotate 8 bits left & mask with 0x0000ff00 */
PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23);
/* Rotate 8 bits right & insert LSB to reg */
PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31);
/* Move result back to dst_reg */
PPC_MR(dst_reg, b2p[TMP_REG_1]);
break;
case 32:
/*
* Rotate word left by 8 bits:
* 2 bytes are already in their final position
* -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
*/
PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31);
/* Rotate 24 bits and insert byte 1 */
PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7);
/* Rotate 24 bits and insert byte 3 */
PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23);
PPC_MR(dst_reg, b2p[TMP_REG_1]);
break;
case 64:
/*
* Way easier and faster(?) to store the value
* into stack and then use ldbrx
*
* ctx->seen will be reliable in pass2, but
* the instructions generated will remain the
* same across all passes
*/
PPC_STD(dst_reg, 1, bpf_jit_stack_local(ctx));
PPC_ADDI(b2p[TMP_REG_1], 1, bpf_jit_stack_local(ctx));
PPC_LDBRX(dst_reg, 0, b2p[TMP_REG_1]);
break;
}
break;
emit_clear:
switch (imm) {
case 16:
/* zero-extend 16 bits into 64 bits */
PPC_RLDICL(dst_reg, dst_reg, 0, 48);
break;
case 32:
/* zero-extend 32 bits into 64 bits */
PPC_RLDICL(dst_reg, dst_reg, 0, 32);
break;
case 64:
/* nop */
break;
}
break;
/*
* BPF_ST(X)
*/
case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STB(src_reg, dst_reg, off);
break;
case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STH(src_reg, dst_reg, off);
break;
case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI32(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STW(src_reg, dst_reg, off);
break;
case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI32(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STD(src_reg, dst_reg, off);
break;
/*
* BPF_STX XADD (atomic_add)
*/
/* *(u32 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_W:
/* Get EA into TMP_REG_1 */
PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
/* error if EA is not word-aligned */
PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x03);
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + 12);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
/* load value from memory into TMP_REG_2 */
PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
/* add value from src_reg into this */
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
/* store result back */
PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
/* we're done if this succeeded */
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4));
/* otherwise, let's try once more */
PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
/* exit if the store was not successful */
PPC_LI(b2p[BPF_REG_0], 0);
PPC_BCC(COND_NE, exit_addr);
break;
/* *(u64 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_DW:
PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
/* error if EA is not doubleword-aligned */
PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x07);
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (3*4));
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4));
PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_BCC(COND_NE, exit_addr);
break;
/*
* BPF_LDX
*/
/* dst = *(u8 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_B:
PPC_LBZ(dst_reg, src_reg, off);
break;
/* dst = *(u16 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_H:
PPC_LHZ(dst_reg, src_reg, off);
break;
/* dst = *(u32 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
PPC_LWZ(dst_reg, src_reg, off);
break;
/* dst = *(u64 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_DW:
PPC_LD(dst_reg, src_reg, off);
break;
/*
* Doubleword load
* 16 byte instruction that uses two 'struct bpf_insn'
*/
case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
imm64 = ((u64)(u32) insn[i].imm) |
(((u64)(u32) insn[i+1].imm) << 32);
/* Adjust for two bpf instructions */
addrs[++i] = ctx->idx * 4;
PPC_LI64(dst_reg, imm64);
break;
/*
* Return/Exit
*/
case BPF_JMP | BPF_EXIT:
/*
* If this isn't the very last instruction, branch to
* the epilogue. If we _are_ the last instruction,
* we'll just fall through to the epilogue.
*/
if (i != flen - 1)
PPC_JMP(exit_addr);
/* else fall through to the epilogue */
break;
/*
* Call kernel helper
*/
case BPF_JMP | BPF_CALL:
ctx->seen |= SEEN_FUNC;
func = (u8 *) __bpf_call_base + imm;
/* Save skb pointer if we need to re-cache skb data */
if (bpf_helper_changes_pkt_data(func))
PPC_BPF_STL(3, 1, bpf_jit_stack_local(ctx));
bpf_jit_emit_func_call(image, ctx, (u64)func);
/* move return value from r3 to BPF_REG_0 */
PPC_MR(b2p[BPF_REG_0], 3);
/* refresh skb cache */
if (bpf_helper_changes_pkt_data(func)) {
/* reload skb pointer to r3 */
PPC_BPF_LL(3, 1, bpf_jit_stack_local(ctx));
bpf_jit_emit_skb_loads(image, ctx);
}
break;
/*
* Jumps and branches
*/
case BPF_JMP | BPF_JA:
PPC_JMP(addrs[i + 1 + off]);
break;
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_X:
true_cond = COND_GT;
goto cond_branch;
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_X:
true_cond = COND_GE;
goto cond_branch;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_X:
true_cond = COND_EQ;
goto cond_branch;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_X:
true_cond = COND_NE;
goto cond_branch;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
true_cond = COND_NE;
/* Fall through */
cond_branch:
switch (code) {
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
/* unsigned comparison */
PPC_CMPLD(dst_reg, src_reg);
break;
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
/* signed comparison */
PPC_CMPD(dst_reg, src_reg);
break;
case BPF_JMP | BPF_JSET | BPF_X:
PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, src_reg);
break;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
/*
* Need sign-extended load, so only positive
* values can be used as imm in cmpldi
*/
if (imm >= 0 && imm < 32768)
PPC_CMPLDI(dst_reg, imm);
else {
/* sign-extending load */
PPC_LI32(b2p[TMP_REG_1], imm);
/* ... but unsigned comparison */
PPC_CMPLD(dst_reg, b2p[TMP_REG_1]);
}
break;
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
/*
* signed comparison, so any 16-bit value
* can be used in cmpdi
*/
if (imm >= -32768 && imm < 32768)
PPC_CMPDI(dst_reg, imm);
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_CMPD(dst_reg, b2p[TMP_REG_1]);
}
break;
case BPF_JMP | BPF_JSET | BPF_K:
/* andi does not sign-extend the immediate */
if (imm >= 0 && imm < 32768)
/* PPC_ANDI is _only/always_ dot-form */
PPC_ANDI(b2p[TMP_REG_1], dst_reg, imm);
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_AND_DOT(b2p[TMP_REG_1], dst_reg,
b2p[TMP_REG_1]);
}
break;
}
PPC_BCC(true_cond, addrs[i + 1 + off]);
break;
/*
* Loads from packet header/data
* Assume 32-bit input value in imm and X (src_reg)
*/
/* Absolute loads */
case BPF_LD | BPF_W | BPF_ABS:
func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_word);
goto common_load_abs;
case BPF_LD | BPF_H | BPF_ABS:
func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_half);
goto common_load_abs;
case BPF_LD | BPF_B | BPF_ABS:
func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_byte);
common_load_abs:
/*
* Load from [imm]
* Load into r4, which can just be passed onto
* skb load helpers as the second parameter
*/
PPC_LI32(4, imm);
goto common_load;
/* Indirect loads */
case BPF_LD | BPF_W | BPF_IND:
func = (u8 *)sk_load_word;
goto common_load_ind;
case BPF_LD | BPF_H | BPF_IND:
func = (u8 *)sk_load_half;
goto common_load_ind;
case BPF_LD | BPF_B | BPF_IND:
func = (u8 *)sk_load_byte;
common_load_ind:
/*
* Load from [src_reg + imm]
* Treat src_reg as a 32-bit value
*/
PPC_EXTSW(4, src_reg);
if (imm) {
if (imm >= -32768 && imm < 32768)
PPC_ADDI(4, 4, IMM_L(imm));
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_ADD(4, 4, b2p[TMP_REG_1]);
}
}
common_load:
ctx->seen |= SEEN_SKB;
ctx->seen |= SEEN_FUNC;
bpf_jit_emit_func_call(image, ctx, (u64)func);
/*
* Helper returns 'lt' condition on error, and an
* appropriate return value in BPF_REG_0
*/
PPC_BCC(COND_LT, exit_addr);
break;
/*
* Tail call
*/
case BPF_JMP | BPF_CALL | BPF_X:
ctx->seen |= SEEN_TAILCALL;
bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]);
break;
default:
/*
* The filter contains something cruel & unusual.
* We don't handle it, but also there shouldn't be
* anything missing from our list.
*/
pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
code, i);
return -ENOTSUPP;
}
}
/* Set end-of-body-code address for exit. */
addrs[i] = ctx->idx * 4;
return 0;
}
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
{
u32 proglen;
u32 alloclen;
u8 *image = NULL;
u32 *code_base;
u32 *addrs;
struct codegen_context cgctx;
int pass;
int flen;
struct bpf_binary_header *bpf_hdr;
struct bpf_prog *org_fp = fp;
struct bpf_prog *tmp_fp;
bool bpf_blinded = false;
if (!bpf_jit_enable)
return org_fp;
tmp_fp = bpf_jit_blind_constants(org_fp);
if (IS_ERR(tmp_fp))
return org_fp;
if (tmp_fp != org_fp) {
bpf_blinded = true;
fp = tmp_fp;
}
flen = fp->len;
addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
if (addrs == NULL) {
fp = org_fp;
goto out;
}
memset(&cgctx, 0, sizeof(struct codegen_context));
/* Scouting faux-generate pass 0 */
if (bpf_jit_build_body(fp, 0, &cgctx, addrs)) {
/* We hit something illegal or unsupported. */
fp = org_fp;
goto out;
}
/*
* Pretend to build prologue, given the features we've seen. This will
* update ctgtx.idx as it pretends to output instructions, then we can
* calculate total size from idx.
*/
bpf_jit_build_prologue(0, &cgctx);
bpf_jit_build_epilogue(0, &cgctx);
proglen = cgctx.idx * 4;
alloclen = proglen + FUNCTION_DESCR_SIZE;
bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4,
bpf_jit_fill_ill_insns);
if (!bpf_hdr) {
fp = org_fp;
goto out;
}
code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
/* Code generation passes 1-2 */
for (pass = 1; pass < 3; pass++) {
/* Now build the prologue, body code & epilogue for real. */
cgctx.idx = 0;
bpf_jit_build_prologue(code_base, &cgctx);
bpf_jit_build_body(fp, code_base, &cgctx, addrs);
bpf_jit_build_epilogue(code_base, &cgctx);
if (bpf_jit_enable > 1)
pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
proglen - (cgctx.idx * 4), cgctx.seen);
}
if (bpf_jit_enable > 1)
/*
* Note that we output the base address of the code_base
* rather than image, since opcodes are in code_base.
*/
bpf_jit_dump(flen, proglen, pass, code_base);
#ifdef PPC64_ELF_ABI_v1
/* Function descriptor nastiness: Address + TOC */
((u64 *)image)[0] = (u64)code_base;
((u64 *)image)[1] = local_paca->kernel_toc;
#endif
fp->bpf_func = (void *)image;
fp->jited = 1;
bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + (bpf_hdr->pages * PAGE_SIZE));
out:
kfree(addrs);
if (bpf_blinded)
bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
return fp;
}
/* Overriding bpf_jit_free() as we don't set images read-only. */
void bpf_jit_free(struct bpf_prog *fp)
{
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
struct bpf_binary_header *bpf_hdr = (void *)addr;
if (fp->jited)
bpf_jit_binary_free(bpf_hdr);
bpf_prog_unlock_free(fp);
}