mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 15:54:39 +08:00
975700d2cc
Previously we just allocated space for four hardware semaphores in each software semaphore object. Make software semaphore objects represent only one hardware semaphore address again by splitting the sync code into it's own object. v2: fix typo in comment Signed-off-by: Christian König <christian.koenig@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
183 lines
5.9 KiB
C
183 lines
5.9 KiB
C
/*
|
|
* Copyright 2010 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Alex Deucher
|
|
*/
|
|
#include <drm/drmP.h>
|
|
#include "radeon.h"
|
|
#include "radeon_asic.h"
|
|
#include "evergreend.h"
|
|
|
|
u32 evergreen_gpu_check_soft_reset(struct radeon_device *rdev);
|
|
|
|
/**
|
|
* evergreen_dma_fence_ring_emit - emit a fence on the DMA ring
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @fence: radeon fence object
|
|
*
|
|
* Add a DMA fence packet to the ring to write
|
|
* the fence seq number and DMA trap packet to generate
|
|
* an interrupt if needed (evergreen-SI).
|
|
*/
|
|
void evergreen_dma_fence_ring_emit(struct radeon_device *rdev,
|
|
struct radeon_fence *fence)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[fence->ring];
|
|
u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
|
|
/* write the fence */
|
|
radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0));
|
|
radeon_ring_write(ring, addr & 0xfffffffc);
|
|
radeon_ring_write(ring, (upper_32_bits(addr) & 0xff));
|
|
radeon_ring_write(ring, fence->seq);
|
|
/* generate an interrupt */
|
|
radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_TRAP, 0, 0));
|
|
/* flush HDP */
|
|
radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0));
|
|
radeon_ring_write(ring, (0xf << 16) | (HDP_MEM_COHERENCY_FLUSH_CNTL >> 2));
|
|
radeon_ring_write(ring, 1);
|
|
}
|
|
|
|
/**
|
|
* evergreen_dma_ring_ib_execute - schedule an IB on the DMA engine
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ib: IB object to schedule
|
|
*
|
|
* Schedule an IB in the DMA ring (evergreen).
|
|
*/
|
|
void evergreen_dma_ring_ib_execute(struct radeon_device *rdev,
|
|
struct radeon_ib *ib)
|
|
{
|
|
struct radeon_ring *ring = &rdev->ring[ib->ring];
|
|
|
|
if (rdev->wb.enabled) {
|
|
u32 next_rptr = ring->wptr + 4;
|
|
while ((next_rptr & 7) != 5)
|
|
next_rptr++;
|
|
next_rptr += 3;
|
|
radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 1));
|
|
radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
|
|
radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xff);
|
|
radeon_ring_write(ring, next_rptr);
|
|
}
|
|
|
|
/* The indirect buffer packet must end on an 8 DW boundary in the DMA ring.
|
|
* Pad as necessary with NOPs.
|
|
*/
|
|
while ((ring->wptr & 7) != 5)
|
|
radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0));
|
|
radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_INDIRECT_BUFFER, 0, 0));
|
|
radeon_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0));
|
|
radeon_ring_write(ring, (ib->length_dw << 12) | (upper_32_bits(ib->gpu_addr) & 0xFF));
|
|
|
|
}
|
|
|
|
/**
|
|
* evergreen_copy_dma - copy pages using the DMA engine
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @src_offset: src GPU address
|
|
* @dst_offset: dst GPU address
|
|
* @num_gpu_pages: number of GPU pages to xfer
|
|
* @fence: radeon fence object
|
|
*
|
|
* Copy GPU paging using the DMA engine (evergreen-cayman).
|
|
* Used by the radeon ttm implementation to move pages if
|
|
* registered as the asic copy callback.
|
|
*/
|
|
struct radeon_fence *evergreen_copy_dma(struct radeon_device *rdev,
|
|
uint64_t src_offset,
|
|
uint64_t dst_offset,
|
|
unsigned num_gpu_pages,
|
|
struct reservation_object *resv)
|
|
{
|
|
struct radeon_fence *fence;
|
|
struct radeon_sync sync;
|
|
int ring_index = rdev->asic->copy.dma_ring_index;
|
|
struct radeon_ring *ring = &rdev->ring[ring_index];
|
|
u32 size_in_dw, cur_size_in_dw;
|
|
int i, num_loops;
|
|
int r = 0;
|
|
|
|
radeon_sync_create(&sync);
|
|
|
|
size_in_dw = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT) / 4;
|
|
num_loops = DIV_ROUND_UP(size_in_dw, 0xfffff);
|
|
r = radeon_ring_lock(rdev, ring, num_loops * 5 + 11);
|
|
if (r) {
|
|
DRM_ERROR("radeon: moving bo (%d).\n", r);
|
|
radeon_sync_free(rdev, &sync, NULL);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
radeon_sync_resv(rdev, &sync, resv, false);
|
|
radeon_sync_rings(rdev, &sync, ring->idx);
|
|
|
|
for (i = 0; i < num_loops; i++) {
|
|
cur_size_in_dw = size_in_dw;
|
|
if (cur_size_in_dw > 0xFFFFF)
|
|
cur_size_in_dw = 0xFFFFF;
|
|
size_in_dw -= cur_size_in_dw;
|
|
radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_COPY, 0, cur_size_in_dw));
|
|
radeon_ring_write(ring, dst_offset & 0xfffffffc);
|
|
radeon_ring_write(ring, src_offset & 0xfffffffc);
|
|
radeon_ring_write(ring, upper_32_bits(dst_offset) & 0xff);
|
|
radeon_ring_write(ring, upper_32_bits(src_offset) & 0xff);
|
|
src_offset += cur_size_in_dw * 4;
|
|
dst_offset += cur_size_in_dw * 4;
|
|
}
|
|
|
|
r = radeon_fence_emit(rdev, &fence, ring->idx);
|
|
if (r) {
|
|
radeon_ring_unlock_undo(rdev, ring);
|
|
radeon_sync_free(rdev, &sync, NULL);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
radeon_ring_unlock_commit(rdev, ring, false);
|
|
radeon_sync_free(rdev, &sync, fence);
|
|
|
|
return fence;
|
|
}
|
|
|
|
/**
|
|
* evergreen_dma_is_lockup - Check if the DMA engine is locked up
|
|
*
|
|
* @rdev: radeon_device pointer
|
|
* @ring: radeon_ring structure holding ring information
|
|
*
|
|
* Check if the async DMA engine is locked up.
|
|
* Returns true if the engine appears to be locked up, false if not.
|
|
*/
|
|
bool evergreen_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
|
|
{
|
|
u32 reset_mask = evergreen_gpu_check_soft_reset(rdev);
|
|
|
|
if (!(reset_mask & RADEON_RESET_DMA)) {
|
|
radeon_ring_lockup_update(rdev, ring);
|
|
return false;
|
|
}
|
|
return radeon_ring_test_lockup(rdev, ring);
|
|
}
|
|
|
|
|