mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-27 22:24:11 +08:00
449c796768
release_pages() already could take either an array of page pointers, or an array of folio pointers. Expand it to also accept an array of encoded page pointers, which is what both the existing mlock() use and the upcoming mmu_gather use of encoded page pointers wants. Note that release_pages() won't actually use, or react to, any extra encoded bits. Instead, this is very much a case of "I have walked the array of encoded pages and done everything the extra bits tell me to do, now release it all". Also, while the "either page or folio pointers" dual use was handled with a cast of the pointer in "release_folios()", this takes a slightly different approach and uses the "transparent union" attribute to describe the set of arguments to the function: https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html which has been supported by gcc forever, but the kernel hasn't used before. That allows us to avoid using various wrappers with casts, and just use the same function regardless of use. Link: https://lkml.kernel.org/r/20221109203051.1835763-2-torvalds@linux-foundation.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1149 lines
32 KiB
C
1149 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/mm/swap.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* This file contains the default values for the operation of the
|
|
* Linux VM subsystem. Fine-tuning documentation can be found in
|
|
* Documentation/admin-guide/sysctl/vm.rst.
|
|
* Started 18.12.91
|
|
* Swap aging added 23.2.95, Stephen Tweedie.
|
|
* Buffermem limits added 12.3.98, Rik van Riel.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/percpu_counter.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/local_lock.h>
|
|
#include <linux/buffer_head.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/pagemap.h>
|
|
|
|
/* How many pages do we try to swap or page in/out together? As a power of 2 */
|
|
int page_cluster;
|
|
const int page_cluster_max = 31;
|
|
|
|
/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
|
|
struct lru_rotate {
|
|
local_lock_t lock;
|
|
struct folio_batch fbatch;
|
|
};
|
|
static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
|
|
.lock = INIT_LOCAL_LOCK(lock),
|
|
};
|
|
|
|
/*
|
|
* The following folio batches are grouped together because they are protected
|
|
* by disabling preemption (and interrupts remain enabled).
|
|
*/
|
|
struct cpu_fbatches {
|
|
local_lock_t lock;
|
|
struct folio_batch lru_add;
|
|
struct folio_batch lru_deactivate_file;
|
|
struct folio_batch lru_deactivate;
|
|
struct folio_batch lru_lazyfree;
|
|
#ifdef CONFIG_SMP
|
|
struct folio_batch activate;
|
|
#endif
|
|
};
|
|
static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
|
|
.lock = INIT_LOCAL_LOCK(lock),
|
|
};
|
|
|
|
/*
|
|
* This path almost never happens for VM activity - pages are normally freed
|
|
* via pagevecs. But it gets used by networking - and for compound pages.
|
|
*/
|
|
static void __page_cache_release(struct folio *folio)
|
|
{
|
|
if (folio_test_lru(folio)) {
|
|
struct lruvec *lruvec;
|
|
unsigned long flags;
|
|
|
|
lruvec = folio_lruvec_lock_irqsave(folio, &flags);
|
|
lruvec_del_folio(lruvec, folio);
|
|
__folio_clear_lru_flags(folio);
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
}
|
|
/* See comment on folio_test_mlocked in release_pages() */
|
|
if (unlikely(folio_test_mlocked(folio))) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
__folio_clear_mlocked(folio);
|
|
zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
|
|
count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
|
|
}
|
|
}
|
|
|
|
static void __folio_put_small(struct folio *folio)
|
|
{
|
|
__page_cache_release(folio);
|
|
mem_cgroup_uncharge(folio);
|
|
free_unref_page(&folio->page, 0);
|
|
}
|
|
|
|
static void __folio_put_large(struct folio *folio)
|
|
{
|
|
/*
|
|
* __page_cache_release() is supposed to be called for thp, not for
|
|
* hugetlb. This is because hugetlb page does never have PageLRU set
|
|
* (it's never listed to any LRU lists) and no memcg routines should
|
|
* be called for hugetlb (it has a separate hugetlb_cgroup.)
|
|
*/
|
|
if (!folio_test_hugetlb(folio))
|
|
__page_cache_release(folio);
|
|
destroy_large_folio(folio);
|
|
}
|
|
|
|
void __folio_put(struct folio *folio)
|
|
{
|
|
if (unlikely(folio_is_zone_device(folio)))
|
|
free_zone_device_page(&folio->page);
|
|
else if (unlikely(folio_test_large(folio)))
|
|
__folio_put_large(folio);
|
|
else
|
|
__folio_put_small(folio);
|
|
}
|
|
EXPORT_SYMBOL(__folio_put);
|
|
|
|
/**
|
|
* put_pages_list() - release a list of pages
|
|
* @pages: list of pages threaded on page->lru
|
|
*
|
|
* Release a list of pages which are strung together on page.lru.
|
|
*/
|
|
void put_pages_list(struct list_head *pages)
|
|
{
|
|
struct folio *folio, *next;
|
|
|
|
list_for_each_entry_safe(folio, next, pages, lru) {
|
|
if (!folio_put_testzero(folio)) {
|
|
list_del(&folio->lru);
|
|
continue;
|
|
}
|
|
if (folio_test_large(folio)) {
|
|
list_del(&folio->lru);
|
|
__folio_put_large(folio);
|
|
continue;
|
|
}
|
|
/* LRU flag must be clear because it's passed using the lru */
|
|
}
|
|
|
|
free_unref_page_list(pages);
|
|
INIT_LIST_HEAD(pages);
|
|
}
|
|
EXPORT_SYMBOL(put_pages_list);
|
|
|
|
/*
|
|
* get_kernel_pages() - pin kernel pages in memory
|
|
* @kiov: An array of struct kvec structures
|
|
* @nr_segs: number of segments to pin
|
|
* @write: pinning for read/write, currently ignored
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_segs long.
|
|
*
|
|
* Returns number of pages pinned. This may be fewer than the number requested.
|
|
* If nr_segs is 0 or negative, returns 0. If no pages were pinned, returns 0.
|
|
* Each page returned must be released with a put_page() call when it is
|
|
* finished with.
|
|
*/
|
|
int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
|
|
struct page **pages)
|
|
{
|
|
int seg;
|
|
|
|
for (seg = 0; seg < nr_segs; seg++) {
|
|
if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
|
|
return seg;
|
|
|
|
pages[seg] = kmap_to_page(kiov[seg].iov_base);
|
|
get_page(pages[seg]);
|
|
}
|
|
|
|
return seg;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_kernel_pages);
|
|
|
|
typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
|
|
|
|
static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
int was_unevictable = folio_test_clear_unevictable(folio);
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
|
|
/*
|
|
* Is an smp_mb__after_atomic() still required here, before
|
|
* folio_evictable() tests the mlocked flag, to rule out the possibility
|
|
* of stranding an evictable folio on an unevictable LRU? I think
|
|
* not, because __munlock_page() only clears the mlocked flag
|
|
* while the LRU lock is held.
|
|
*
|
|
* (That is not true of __page_cache_release(), and not necessarily
|
|
* true of release_pages(): but those only clear the mlocked flag after
|
|
* folio_put_testzero() has excluded any other users of the folio.)
|
|
*/
|
|
if (folio_evictable(folio)) {
|
|
if (was_unevictable)
|
|
__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
|
|
} else {
|
|
folio_clear_active(folio);
|
|
folio_set_unevictable(folio);
|
|
/*
|
|
* folio->mlock_count = !!folio_test_mlocked(folio)?
|
|
* But that leaves __mlock_page() in doubt whether another
|
|
* actor has already counted the mlock or not. Err on the
|
|
* safe side, underestimate, let page reclaim fix it, rather
|
|
* than leaving a page on the unevictable LRU indefinitely.
|
|
*/
|
|
folio->mlock_count = 0;
|
|
if (!was_unevictable)
|
|
__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
|
|
}
|
|
|
|
lruvec_add_folio(lruvec, folio);
|
|
trace_mm_lru_insertion(folio);
|
|
}
|
|
|
|
static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
|
|
{
|
|
int i;
|
|
struct lruvec *lruvec = NULL;
|
|
unsigned long flags = 0;
|
|
|
|
for (i = 0; i < folio_batch_count(fbatch); i++) {
|
|
struct folio *folio = fbatch->folios[i];
|
|
|
|
/* block memcg migration while the folio moves between lru */
|
|
if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
|
|
continue;
|
|
|
|
lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
|
|
move_fn(lruvec, folio);
|
|
|
|
folio_set_lru(folio);
|
|
}
|
|
|
|
if (lruvec)
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
folios_put(fbatch->folios, folio_batch_count(fbatch));
|
|
folio_batch_init(fbatch);
|
|
}
|
|
|
|
static void folio_batch_add_and_move(struct folio_batch *fbatch,
|
|
struct folio *folio, move_fn_t move_fn)
|
|
{
|
|
if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
|
|
!lru_cache_disabled())
|
|
return;
|
|
folio_batch_move_lru(fbatch, move_fn);
|
|
}
|
|
|
|
static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (!folio_test_unevictable(folio)) {
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
lruvec_add_folio_tail(lruvec, folio);
|
|
__count_vm_events(PGROTATED, folio_nr_pages(folio));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Writeback is about to end against a folio which has been marked for
|
|
* immediate reclaim. If it still appears to be reclaimable, move it
|
|
* to the tail of the inactive list.
|
|
*
|
|
* folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
|
|
*/
|
|
void folio_rotate_reclaimable(struct folio *folio)
|
|
{
|
|
if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
|
|
!folio_test_unevictable(folio) && folio_test_lru(folio)) {
|
|
struct folio_batch *fbatch;
|
|
unsigned long flags;
|
|
|
|
folio_get(folio);
|
|
local_lock_irqsave(&lru_rotate.lock, flags);
|
|
fbatch = this_cpu_ptr(&lru_rotate.fbatch);
|
|
folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
|
|
local_unlock_irqrestore(&lru_rotate.lock, flags);
|
|
}
|
|
}
|
|
|
|
void lru_note_cost(struct lruvec *lruvec, bool file,
|
|
unsigned int nr_io, unsigned int nr_rotated)
|
|
{
|
|
unsigned long cost;
|
|
|
|
/*
|
|
* Reflect the relative cost of incurring IO and spending CPU
|
|
* time on rotations. This doesn't attempt to make a precise
|
|
* comparison, it just says: if reloads are about comparable
|
|
* between the LRU lists, or rotations are overwhelmingly
|
|
* different between them, adjust scan balance for CPU work.
|
|
*/
|
|
cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
|
|
|
|
do {
|
|
unsigned long lrusize;
|
|
|
|
/*
|
|
* Hold lruvec->lru_lock is safe here, since
|
|
* 1) The pinned lruvec in reclaim, or
|
|
* 2) From a pre-LRU page during refault (which also holds the
|
|
* rcu lock, so would be safe even if the page was on the LRU
|
|
* and could move simultaneously to a new lruvec).
|
|
*/
|
|
spin_lock_irq(&lruvec->lru_lock);
|
|
/* Record cost event */
|
|
if (file)
|
|
lruvec->file_cost += cost;
|
|
else
|
|
lruvec->anon_cost += cost;
|
|
|
|
/*
|
|
* Decay previous events
|
|
*
|
|
* Because workloads change over time (and to avoid
|
|
* overflow) we keep these statistics as a floating
|
|
* average, which ends up weighing recent refaults
|
|
* more than old ones.
|
|
*/
|
|
lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
|
|
lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
|
|
lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
|
|
lruvec_page_state(lruvec, NR_ACTIVE_FILE);
|
|
|
|
if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
|
|
lruvec->file_cost /= 2;
|
|
lruvec->anon_cost /= 2;
|
|
}
|
|
spin_unlock_irq(&lruvec->lru_lock);
|
|
} while ((lruvec = parent_lruvec(lruvec)));
|
|
}
|
|
|
|
void lru_note_cost_refault(struct folio *folio)
|
|
{
|
|
lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
|
|
folio_nr_pages(folio), 0);
|
|
}
|
|
|
|
static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_set_active(folio);
|
|
lruvec_add_folio(lruvec, folio);
|
|
trace_mm_lru_activate(folio);
|
|
|
|
__count_vm_events(PGACTIVATE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void folio_activate_drain(int cpu)
|
|
{
|
|
struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
|
|
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, folio_activate_fn);
|
|
}
|
|
|
|
void folio_activate(struct folio *folio)
|
|
{
|
|
if (folio_test_lru(folio) && !folio_test_active(folio) &&
|
|
!folio_test_unevictable(folio)) {
|
|
struct folio_batch *fbatch;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.activate);
|
|
folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static inline void folio_activate_drain(int cpu)
|
|
{
|
|
}
|
|
|
|
void folio_activate(struct folio *folio)
|
|
{
|
|
struct lruvec *lruvec;
|
|
|
|
if (folio_test_clear_lru(folio)) {
|
|
lruvec = folio_lruvec_lock_irq(folio);
|
|
folio_activate_fn(lruvec, folio);
|
|
unlock_page_lruvec_irq(lruvec);
|
|
folio_set_lru(folio);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void __lru_cache_activate_folio(struct folio *folio)
|
|
{
|
|
struct folio_batch *fbatch;
|
|
int i;
|
|
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
|
|
|
|
/*
|
|
* Search backwards on the optimistic assumption that the folio being
|
|
* activated has just been added to this batch. Note that only
|
|
* the local batch is examined as a !LRU folio could be in the
|
|
* process of being released, reclaimed, migrated or on a remote
|
|
* batch that is currently being drained. Furthermore, marking
|
|
* a remote batch's folio active potentially hits a race where
|
|
* a folio is marked active just after it is added to the inactive
|
|
* list causing accounting errors and BUG_ON checks to trigger.
|
|
*/
|
|
for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
|
|
struct folio *batch_folio = fbatch->folios[i];
|
|
|
|
if (batch_folio == folio) {
|
|
folio_set_active(folio);
|
|
break;
|
|
}
|
|
}
|
|
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
|
|
#ifdef CONFIG_LRU_GEN
|
|
static void folio_inc_refs(struct folio *folio)
|
|
{
|
|
unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
|
|
|
|
if (folio_test_unevictable(folio))
|
|
return;
|
|
|
|
if (!folio_test_referenced(folio)) {
|
|
folio_set_referenced(folio);
|
|
return;
|
|
}
|
|
|
|
if (!folio_test_workingset(folio)) {
|
|
folio_set_workingset(folio);
|
|
return;
|
|
}
|
|
|
|
/* see the comment on MAX_NR_TIERS */
|
|
do {
|
|
new_flags = old_flags & LRU_REFS_MASK;
|
|
if (new_flags == LRU_REFS_MASK)
|
|
break;
|
|
|
|
new_flags += BIT(LRU_REFS_PGOFF);
|
|
new_flags |= old_flags & ~LRU_REFS_MASK;
|
|
} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
|
|
}
|
|
#else
|
|
static void folio_inc_refs(struct folio *folio)
|
|
{
|
|
}
|
|
#endif /* CONFIG_LRU_GEN */
|
|
|
|
/*
|
|
* Mark a page as having seen activity.
|
|
*
|
|
* inactive,unreferenced -> inactive,referenced
|
|
* inactive,referenced -> active,unreferenced
|
|
* active,unreferenced -> active,referenced
|
|
*
|
|
* When a newly allocated page is not yet visible, so safe for non-atomic ops,
|
|
* __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
|
|
*/
|
|
void folio_mark_accessed(struct folio *folio)
|
|
{
|
|
if (lru_gen_enabled()) {
|
|
folio_inc_refs(folio);
|
|
return;
|
|
}
|
|
|
|
if (!folio_test_referenced(folio)) {
|
|
folio_set_referenced(folio);
|
|
} else if (folio_test_unevictable(folio)) {
|
|
/*
|
|
* Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
|
|
* this list is never rotated or maintained, so marking an
|
|
* unevictable page accessed has no effect.
|
|
*/
|
|
} else if (!folio_test_active(folio)) {
|
|
/*
|
|
* If the folio is on the LRU, queue it for activation via
|
|
* cpu_fbatches.activate. Otherwise, assume the folio is in a
|
|
* folio_batch, mark it active and it'll be moved to the active
|
|
* LRU on the next drain.
|
|
*/
|
|
if (folio_test_lru(folio))
|
|
folio_activate(folio);
|
|
else
|
|
__lru_cache_activate_folio(folio);
|
|
folio_clear_referenced(folio);
|
|
workingset_activation(folio);
|
|
}
|
|
if (folio_test_idle(folio))
|
|
folio_clear_idle(folio);
|
|
}
|
|
EXPORT_SYMBOL(folio_mark_accessed);
|
|
|
|
/**
|
|
* folio_add_lru - Add a folio to an LRU list.
|
|
* @folio: The folio to be added to the LRU.
|
|
*
|
|
* Queue the folio for addition to the LRU. The decision on whether
|
|
* to add the page to the [in]active [file|anon] list is deferred until the
|
|
* folio_batch is drained. This gives a chance for the caller of folio_add_lru()
|
|
* have the folio added to the active list using folio_mark_accessed().
|
|
*/
|
|
void folio_add_lru(struct folio *folio)
|
|
{
|
|
struct folio_batch *fbatch;
|
|
|
|
VM_BUG_ON_FOLIO(folio_test_active(folio) &&
|
|
folio_test_unevictable(folio), folio);
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
|
|
/* see the comment in lru_gen_add_folio() */
|
|
if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
|
|
lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
|
|
folio_set_active(folio);
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
|
|
folio_batch_add_and_move(fbatch, folio, lru_add_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
EXPORT_SYMBOL(folio_add_lru);
|
|
|
|
/**
|
|
* folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
|
|
* @folio: The folio to be added to the LRU.
|
|
* @vma: VMA in which the folio is mapped.
|
|
*
|
|
* If the VMA is mlocked, @folio is added to the unevictable list.
|
|
* Otherwise, it is treated the same way as folio_add_lru().
|
|
*/
|
|
void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
|
|
{
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
|
|
if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
|
|
mlock_new_page(&folio->page);
|
|
else
|
|
folio_add_lru(folio);
|
|
}
|
|
|
|
/*
|
|
* If the folio cannot be invalidated, it is moved to the
|
|
* inactive list to speed up its reclaim. It is moved to the
|
|
* head of the list, rather than the tail, to give the flusher
|
|
* threads some time to write it out, as this is much more
|
|
* effective than the single-page writeout from reclaim.
|
|
*
|
|
* If the folio isn't mapped and dirty/writeback, the folio
|
|
* could be reclaimed asap using the reclaim flag.
|
|
*
|
|
* 1. active, mapped folio -> none
|
|
* 2. active, dirty/writeback folio -> inactive, head, reclaim
|
|
* 3. inactive, mapped folio -> none
|
|
* 4. inactive, dirty/writeback folio -> inactive, head, reclaim
|
|
* 5. inactive, clean -> inactive, tail
|
|
* 6. Others -> none
|
|
*
|
|
* In 4, it moves to the head of the inactive list so the folio is
|
|
* written out by flusher threads as this is much more efficient
|
|
* than the single-page writeout from reclaim.
|
|
*/
|
|
static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
bool active = folio_test_active(folio);
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
if (folio_test_unevictable(folio))
|
|
return;
|
|
|
|
/* Some processes are using the folio */
|
|
if (folio_mapped(folio))
|
|
return;
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
folio_clear_referenced(folio);
|
|
|
|
if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
|
|
/*
|
|
* Setting the reclaim flag could race with
|
|
* folio_end_writeback() and confuse readahead. But the
|
|
* race window is _really_ small and it's not a critical
|
|
* problem.
|
|
*/
|
|
lruvec_add_folio(lruvec, folio);
|
|
folio_set_reclaim(folio);
|
|
} else {
|
|
/*
|
|
* The folio's writeback ended while it was in the batch.
|
|
* We move that folio to the tail of the inactive list.
|
|
*/
|
|
lruvec_add_folio_tail(lruvec, folio);
|
|
__count_vm_events(PGROTATED, nr_pages);
|
|
}
|
|
|
|
if (active) {
|
|
__count_vm_events(PGDEACTIVATE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
folio_clear_referenced(folio);
|
|
lruvec_add_folio(lruvec, folio);
|
|
|
|
__count_vm_events(PGDEACTIVATE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
|
|
!folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
folio_clear_referenced(folio);
|
|
/*
|
|
* Lazyfree folios are clean anonymous folios. They have
|
|
* the swapbacked flag cleared, to distinguish them from normal
|
|
* anonymous folios
|
|
*/
|
|
folio_clear_swapbacked(folio);
|
|
lruvec_add_folio(lruvec, folio);
|
|
|
|
__count_vm_events(PGLAZYFREE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drain pages out of the cpu's folio_batch.
|
|
* Either "cpu" is the current CPU, and preemption has already been
|
|
* disabled; or "cpu" is being hot-unplugged, and is already dead.
|
|
*/
|
|
void lru_add_drain_cpu(int cpu)
|
|
{
|
|
struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
|
|
struct folio_batch *fbatch = &fbatches->lru_add;
|
|
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_add_fn);
|
|
|
|
fbatch = &per_cpu(lru_rotate.fbatch, cpu);
|
|
/* Disabling interrupts below acts as a compiler barrier. */
|
|
if (data_race(folio_batch_count(fbatch))) {
|
|
unsigned long flags;
|
|
|
|
/* No harm done if a racing interrupt already did this */
|
|
local_lock_irqsave(&lru_rotate.lock, flags);
|
|
folio_batch_move_lru(fbatch, lru_move_tail_fn);
|
|
local_unlock_irqrestore(&lru_rotate.lock, flags);
|
|
}
|
|
|
|
fbatch = &fbatches->lru_deactivate_file;
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
|
|
|
|
fbatch = &fbatches->lru_deactivate;
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_deactivate_fn);
|
|
|
|
fbatch = &fbatches->lru_lazyfree;
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_lazyfree_fn);
|
|
|
|
folio_activate_drain(cpu);
|
|
}
|
|
|
|
/**
|
|
* deactivate_file_folio() - Deactivate a file folio.
|
|
* @folio: Folio to deactivate.
|
|
*
|
|
* This function hints to the VM that @folio is a good reclaim candidate,
|
|
* for example if its invalidation fails due to the folio being dirty
|
|
* or under writeback.
|
|
*
|
|
* Context: Caller holds a reference on the folio.
|
|
*/
|
|
void deactivate_file_folio(struct folio *folio)
|
|
{
|
|
struct folio_batch *fbatch;
|
|
|
|
/* Deactivating an unevictable folio will not accelerate reclaim */
|
|
if (folio_test_unevictable(folio))
|
|
return;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
|
|
folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
|
|
/*
|
|
* deactivate_page - deactivate a page
|
|
* @page: page to deactivate
|
|
*
|
|
* deactivate_page() moves @page to the inactive list if @page was on the active
|
|
* list and was not an unevictable page. This is done to accelerate the reclaim
|
|
* of @page.
|
|
*/
|
|
void deactivate_page(struct page *page)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
|
|
if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
|
|
(folio_test_active(folio) || lru_gen_enabled())) {
|
|
struct folio_batch *fbatch;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
|
|
folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mark_page_lazyfree - make an anon page lazyfree
|
|
* @page: page to deactivate
|
|
*
|
|
* mark_page_lazyfree() moves @page to the inactive file list.
|
|
* This is done to accelerate the reclaim of @page.
|
|
*/
|
|
void mark_page_lazyfree(struct page *page)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
|
|
if (folio_test_lru(folio) && folio_test_anon(folio) &&
|
|
folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
|
|
!folio_test_unevictable(folio)) {
|
|
struct folio_batch *fbatch;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
|
|
folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
}
|
|
|
|
void lru_add_drain(void)
|
|
{
|
|
local_lock(&cpu_fbatches.lock);
|
|
lru_add_drain_cpu(smp_processor_id());
|
|
local_unlock(&cpu_fbatches.lock);
|
|
mlock_page_drain_local();
|
|
}
|
|
|
|
/*
|
|
* It's called from per-cpu workqueue context in SMP case so
|
|
* lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
|
|
* the same cpu. It shouldn't be a problem in !SMP case since
|
|
* the core is only one and the locks will disable preemption.
|
|
*/
|
|
static void lru_add_and_bh_lrus_drain(void)
|
|
{
|
|
local_lock(&cpu_fbatches.lock);
|
|
lru_add_drain_cpu(smp_processor_id());
|
|
local_unlock(&cpu_fbatches.lock);
|
|
invalidate_bh_lrus_cpu();
|
|
mlock_page_drain_local();
|
|
}
|
|
|
|
void lru_add_drain_cpu_zone(struct zone *zone)
|
|
{
|
|
local_lock(&cpu_fbatches.lock);
|
|
lru_add_drain_cpu(smp_processor_id());
|
|
drain_local_pages(zone);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
mlock_page_drain_local();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
|
|
|
|
static void lru_add_drain_per_cpu(struct work_struct *dummy)
|
|
{
|
|
lru_add_and_bh_lrus_drain();
|
|
}
|
|
|
|
static bool cpu_needs_drain(unsigned int cpu)
|
|
{
|
|
struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
|
|
|
|
/* Check these in order of likelihood that they're not zero */
|
|
return folio_batch_count(&fbatches->lru_add) ||
|
|
data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
|
|
folio_batch_count(&fbatches->lru_deactivate_file) ||
|
|
folio_batch_count(&fbatches->lru_deactivate) ||
|
|
folio_batch_count(&fbatches->lru_lazyfree) ||
|
|
folio_batch_count(&fbatches->activate) ||
|
|
need_mlock_page_drain(cpu) ||
|
|
has_bh_in_lru(cpu, NULL);
|
|
}
|
|
|
|
/*
|
|
* Doesn't need any cpu hotplug locking because we do rely on per-cpu
|
|
* kworkers being shut down before our page_alloc_cpu_dead callback is
|
|
* executed on the offlined cpu.
|
|
* Calling this function with cpu hotplug locks held can actually lead
|
|
* to obscure indirect dependencies via WQ context.
|
|
*/
|
|
static inline void __lru_add_drain_all(bool force_all_cpus)
|
|
{
|
|
/*
|
|
* lru_drain_gen - Global pages generation number
|
|
*
|
|
* (A) Definition: global lru_drain_gen = x implies that all generations
|
|
* 0 < n <= x are already *scheduled* for draining.
|
|
*
|
|
* This is an optimization for the highly-contended use case where a
|
|
* user space workload keeps constantly generating a flow of pages for
|
|
* each CPU.
|
|
*/
|
|
static unsigned int lru_drain_gen;
|
|
static struct cpumask has_work;
|
|
static DEFINE_MUTEX(lock);
|
|
unsigned cpu, this_gen;
|
|
|
|
/*
|
|
* Make sure nobody triggers this path before mm_percpu_wq is fully
|
|
* initialized.
|
|
*/
|
|
if (WARN_ON(!mm_percpu_wq))
|
|
return;
|
|
|
|
/*
|
|
* Guarantee folio_batch counter stores visible by this CPU
|
|
* are visible to other CPUs before loading the current drain
|
|
* generation.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* (B) Locally cache global LRU draining generation number
|
|
*
|
|
* The read barrier ensures that the counter is loaded before the mutex
|
|
* is taken. It pairs with smp_mb() inside the mutex critical section
|
|
* at (D).
|
|
*/
|
|
this_gen = smp_load_acquire(&lru_drain_gen);
|
|
|
|
mutex_lock(&lock);
|
|
|
|
/*
|
|
* (C) Exit the draining operation if a newer generation, from another
|
|
* lru_add_drain_all(), was already scheduled for draining. Check (A).
|
|
*/
|
|
if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
|
|
goto done;
|
|
|
|
/*
|
|
* (D) Increment global generation number
|
|
*
|
|
* Pairs with smp_load_acquire() at (B), outside of the critical
|
|
* section. Use a full memory barrier to guarantee that the
|
|
* new global drain generation number is stored before loading
|
|
* folio_batch counters.
|
|
*
|
|
* This pairing must be done here, before the for_each_online_cpu loop
|
|
* below which drains the page vectors.
|
|
*
|
|
* Let x, y, and z represent some system CPU numbers, where x < y < z.
|
|
* Assume CPU #z is in the middle of the for_each_online_cpu loop
|
|
* below and has already reached CPU #y's per-cpu data. CPU #x comes
|
|
* along, adds some pages to its per-cpu vectors, then calls
|
|
* lru_add_drain_all().
|
|
*
|
|
* If the paired barrier is done at any later step, e.g. after the
|
|
* loop, CPU #x will just exit at (C) and miss flushing out all of its
|
|
* added pages.
|
|
*/
|
|
WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
|
|
smp_mb();
|
|
|
|
cpumask_clear(&has_work);
|
|
for_each_online_cpu(cpu) {
|
|
struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
|
|
|
|
if (cpu_needs_drain(cpu)) {
|
|
INIT_WORK(work, lru_add_drain_per_cpu);
|
|
queue_work_on(cpu, mm_percpu_wq, work);
|
|
__cpumask_set_cpu(cpu, &has_work);
|
|
}
|
|
}
|
|
|
|
for_each_cpu(cpu, &has_work)
|
|
flush_work(&per_cpu(lru_add_drain_work, cpu));
|
|
|
|
done:
|
|
mutex_unlock(&lock);
|
|
}
|
|
|
|
void lru_add_drain_all(void)
|
|
{
|
|
__lru_add_drain_all(false);
|
|
}
|
|
#else
|
|
void lru_add_drain_all(void)
|
|
{
|
|
lru_add_drain();
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
atomic_t lru_disable_count = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* lru_cache_disable() needs to be called before we start compiling
|
|
* a list of pages to be migrated using isolate_lru_page().
|
|
* It drains pages on LRU cache and then disable on all cpus until
|
|
* lru_cache_enable is called.
|
|
*
|
|
* Must be paired with a call to lru_cache_enable().
|
|
*/
|
|
void lru_cache_disable(void)
|
|
{
|
|
atomic_inc(&lru_disable_count);
|
|
/*
|
|
* Readers of lru_disable_count are protected by either disabling
|
|
* preemption or rcu_read_lock:
|
|
*
|
|
* preempt_disable, local_irq_disable [bh_lru_lock()]
|
|
* rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
|
|
* preempt_disable [local_lock !CONFIG_PREEMPT_RT]
|
|
*
|
|
* Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
|
|
* preempt_disable() regions of code. So any CPU which sees
|
|
* lru_disable_count = 0 will have exited the critical
|
|
* section when synchronize_rcu() returns.
|
|
*/
|
|
synchronize_rcu_expedited();
|
|
#ifdef CONFIG_SMP
|
|
__lru_add_drain_all(true);
|
|
#else
|
|
lru_add_and_bh_lrus_drain();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* release_pages - batched put_page()
|
|
* @arg: array of pages to release
|
|
* @nr: number of pages
|
|
*
|
|
* Decrement the reference count on all the pages in @arg. If it
|
|
* fell to zero, remove the page from the LRU and free it.
|
|
*
|
|
* Note that the argument can be an array of pages, encoded pages,
|
|
* or folio pointers. We ignore any encoded bits, and turn any of
|
|
* them into just a folio that gets free'd.
|
|
*/
|
|
void release_pages(release_pages_arg arg, int nr)
|
|
{
|
|
int i;
|
|
struct encoded_page **encoded = arg.encoded_pages;
|
|
LIST_HEAD(pages_to_free);
|
|
struct lruvec *lruvec = NULL;
|
|
unsigned long flags = 0;
|
|
unsigned int lock_batch;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct folio *folio;
|
|
|
|
/* Turn any of the argument types into a folio */
|
|
folio = page_folio(encoded_page_ptr(encoded[i]));
|
|
|
|
/*
|
|
* Make sure the IRQ-safe lock-holding time does not get
|
|
* excessive with a continuous string of pages from the
|
|
* same lruvec. The lock is held only if lruvec != NULL.
|
|
*/
|
|
if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
lruvec = NULL;
|
|
}
|
|
|
|
if (is_huge_zero_page(&folio->page))
|
|
continue;
|
|
|
|
if (folio_is_zone_device(folio)) {
|
|
if (lruvec) {
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
lruvec = NULL;
|
|
}
|
|
if (put_devmap_managed_page(&folio->page))
|
|
continue;
|
|
if (folio_put_testzero(folio))
|
|
free_zone_device_page(&folio->page);
|
|
continue;
|
|
}
|
|
|
|
if (!folio_put_testzero(folio))
|
|
continue;
|
|
|
|
if (folio_test_large(folio)) {
|
|
if (lruvec) {
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
lruvec = NULL;
|
|
}
|
|
__folio_put_large(folio);
|
|
continue;
|
|
}
|
|
|
|
if (folio_test_lru(folio)) {
|
|
struct lruvec *prev_lruvec = lruvec;
|
|
|
|
lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
|
|
&flags);
|
|
if (prev_lruvec != lruvec)
|
|
lock_batch = 0;
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
__folio_clear_lru_flags(folio);
|
|
}
|
|
|
|
/*
|
|
* In rare cases, when truncation or holepunching raced with
|
|
* munlock after VM_LOCKED was cleared, Mlocked may still be
|
|
* found set here. This does not indicate a problem, unless
|
|
* "unevictable_pgs_cleared" appears worryingly large.
|
|
*/
|
|
if (unlikely(folio_test_mlocked(folio))) {
|
|
__folio_clear_mlocked(folio);
|
|
zone_stat_sub_folio(folio, NR_MLOCK);
|
|
count_vm_event(UNEVICTABLE_PGCLEARED);
|
|
}
|
|
|
|
list_add(&folio->lru, &pages_to_free);
|
|
}
|
|
if (lruvec)
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
|
|
mem_cgroup_uncharge_list(&pages_to_free);
|
|
free_unref_page_list(&pages_to_free);
|
|
}
|
|
EXPORT_SYMBOL(release_pages);
|
|
|
|
/*
|
|
* The pages which we're about to release may be in the deferred lru-addition
|
|
* queues. That would prevent them from really being freed right now. That's
|
|
* OK from a correctness point of view but is inefficient - those pages may be
|
|
* cache-warm and we want to give them back to the page allocator ASAP.
|
|
*
|
|
* So __pagevec_release() will drain those queues here.
|
|
* folio_batch_move_lru() calls folios_put() directly to avoid
|
|
* mutual recursion.
|
|
*/
|
|
void __pagevec_release(struct pagevec *pvec)
|
|
{
|
|
if (!pvec->percpu_pvec_drained) {
|
|
lru_add_drain();
|
|
pvec->percpu_pvec_drained = true;
|
|
}
|
|
release_pages(pvec->pages, pagevec_count(pvec));
|
|
pagevec_reinit(pvec);
|
|
}
|
|
EXPORT_SYMBOL(__pagevec_release);
|
|
|
|
/**
|
|
* folio_batch_remove_exceptionals() - Prune non-folios from a batch.
|
|
* @fbatch: The batch to prune
|
|
*
|
|
* find_get_entries() fills a batch with both folios and shadow/swap/DAX
|
|
* entries. This function prunes all the non-folio entries from @fbatch
|
|
* without leaving holes, so that it can be passed on to folio-only batch
|
|
* operations.
|
|
*/
|
|
void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
|
|
struct folio *folio = fbatch->folios[i];
|
|
if (!xa_is_value(folio))
|
|
fbatch->folios[j++] = folio;
|
|
}
|
|
fbatch->nr = j;
|
|
}
|
|
|
|
unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
|
|
struct address_space *mapping, pgoff_t *index, pgoff_t end,
|
|
xa_mark_t tag)
|
|
{
|
|
pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
|
|
PAGEVEC_SIZE, pvec->pages);
|
|
return pagevec_count(pvec);
|
|
}
|
|
EXPORT_SYMBOL(pagevec_lookup_range_tag);
|
|
|
|
/*
|
|
* Perform any setup for the swap system
|
|
*/
|
|
void __init swap_setup(void)
|
|
{
|
|
unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
|
|
|
|
/* Use a smaller cluster for small-memory machines */
|
|
if (megs < 16)
|
|
page_cluster = 2;
|
|
else
|
|
page_cluster = 3;
|
|
/*
|
|
* Right now other parts of the system means that we
|
|
* _really_ don't want to cluster much more
|
|
*/
|
|
}
|