linux/fs/f2fs/file.c
Chao Yu 7c1a000d46 f2fs: add SPDX license identifiers
Remove the verbose license text from f2fs files and replace them with
SPDX tags.  This does not change the license of any of the code.

Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-09-12 13:07:10 -07:00

3099 lines
72 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/file.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/stat.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/compat.h>
#include <linux/uaccess.h>
#include <linux/mount.h>
#include <linux/pagevec.h>
#include <linux/uio.h>
#include <linux/uuid.h>
#include <linux/file.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "acl.h"
#include "gc.h"
#include "trace.h"
#include <trace/events/f2fs.h>
static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
vm_fault_t ret;
down_read(&F2FS_I(inode)->i_mmap_sem);
ret = filemap_fault(vmf);
up_read(&F2FS_I(inode)->i_mmap_sem);
return ret;
}
static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vmf->vma->vm_file);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
int err;
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto err;
}
sb_start_pagefault(inode->i_sb);
f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
/* block allocation */
f2fs_lock_op(sbi);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_reserve_block(&dn, page->index);
if (err) {
f2fs_unlock_op(sbi);
goto out;
}
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
f2fs_balance_fs(sbi, dn.node_changed);
file_update_time(vmf->vma->vm_file);
down_read(&F2FS_I(inode)->i_mmap_sem);
lock_page(page);
if (unlikely(page->mapping != inode->i_mapping ||
page_offset(page) > i_size_read(inode) ||
!PageUptodate(page))) {
unlock_page(page);
err = -EFAULT;
goto out_sem;
}
/*
* check to see if the page is mapped already (no holes)
*/
if (PageMappedToDisk(page))
goto mapped;
/* page is wholly or partially inside EOF */
if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
i_size_read(inode)) {
loff_t offset;
offset = i_size_read(inode) & ~PAGE_MASK;
zero_user_segment(page, offset, PAGE_SIZE);
}
set_page_dirty(page);
if (!PageUptodate(page))
SetPageUptodate(page);
f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
trace_f2fs_vm_page_mkwrite(page, DATA);
mapped:
/* fill the page */
f2fs_wait_on_page_writeback(page, DATA, false);
/* wait for GCed page writeback via META_MAPPING */
f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
out_sem:
up_read(&F2FS_I(inode)->i_mmap_sem);
out:
sb_end_pagefault(inode->i_sb);
f2fs_update_time(sbi, REQ_TIME);
err:
return block_page_mkwrite_return(err);
}
static const struct vm_operations_struct f2fs_file_vm_ops = {
.fault = f2fs_filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = f2fs_vm_page_mkwrite,
};
static int get_parent_ino(struct inode *inode, nid_t *pino)
{
struct dentry *dentry;
inode = igrab(inode);
dentry = d_find_any_alias(inode);
iput(inode);
if (!dentry)
return 0;
*pino = parent_ino(dentry);
dput(dentry);
return 1;
}
static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
enum cp_reason_type cp_reason = CP_NO_NEEDED;
if (!S_ISREG(inode->i_mode))
cp_reason = CP_NON_REGULAR;
else if (inode->i_nlink != 1)
cp_reason = CP_HARDLINK;
else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
cp_reason = CP_SB_NEED_CP;
else if (file_wrong_pino(inode))
cp_reason = CP_WRONG_PINO;
else if (!f2fs_space_for_roll_forward(sbi))
cp_reason = CP_NO_SPC_ROLL;
else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
cp_reason = CP_NODE_NEED_CP;
else if (test_opt(sbi, FASTBOOT))
cp_reason = CP_FASTBOOT_MODE;
else if (F2FS_OPTION(sbi).active_logs == 2)
cp_reason = CP_SPEC_LOG_NUM;
else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
f2fs_need_dentry_mark(sbi, inode->i_ino) &&
f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
TRANS_DIR_INO))
cp_reason = CP_RECOVER_DIR;
return cp_reason;
}
static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
{
struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
bool ret = false;
/* But we need to avoid that there are some inode updates */
if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
ret = true;
f2fs_put_page(i, 0);
return ret;
}
static void try_to_fix_pino(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
nid_t pino;
down_write(&fi->i_sem);
if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
get_parent_ino(inode, &pino)) {
f2fs_i_pino_write(inode, pino);
file_got_pino(inode);
}
up_write(&fi->i_sem);
}
static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
int datasync, bool atomic)
{
struct inode *inode = file->f_mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t ino = inode->i_ino;
int ret = 0;
enum cp_reason_type cp_reason = 0;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
unsigned int seq_id = 0;
if (unlikely(f2fs_readonly(inode->i_sb)))
return 0;
trace_f2fs_sync_file_enter(inode);
/* if fdatasync is triggered, let's do in-place-update */
if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
set_inode_flag(inode, FI_NEED_IPU);
ret = file_write_and_wait_range(file, start, end);
clear_inode_flag(inode, FI_NEED_IPU);
if (ret) {
trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
return ret;
}
/* if the inode is dirty, let's recover all the time */
if (!f2fs_skip_inode_update(inode, datasync)) {
f2fs_write_inode(inode, NULL);
goto go_write;
}
/*
* if there is no written data, don't waste time to write recovery info.
*/
if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
/* it may call write_inode just prior to fsync */
if (need_inode_page_update(sbi, ino))
goto go_write;
if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
f2fs_exist_written_data(sbi, ino, UPDATE_INO))
goto flush_out;
goto out;
}
go_write:
/*
* Both of fdatasync() and fsync() are able to be recovered from
* sudden-power-off.
*/
down_read(&F2FS_I(inode)->i_sem);
cp_reason = need_do_checkpoint(inode);
up_read(&F2FS_I(inode)->i_sem);
if (cp_reason) {
/* all the dirty node pages should be flushed for POR */
ret = f2fs_sync_fs(inode->i_sb, 1);
/*
* We've secured consistency through sync_fs. Following pino
* will be used only for fsynced inodes after checkpoint.
*/
try_to_fix_pino(inode);
clear_inode_flag(inode, FI_APPEND_WRITE);
clear_inode_flag(inode, FI_UPDATE_WRITE);
goto out;
}
sync_nodes:
atomic_inc(&sbi->wb_sync_req[NODE]);
ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
atomic_dec(&sbi->wb_sync_req[NODE]);
if (ret)
goto out;
/* if cp_error was enabled, we should avoid infinite loop */
if (unlikely(f2fs_cp_error(sbi))) {
ret = -EIO;
goto out;
}
if (f2fs_need_inode_block_update(sbi, ino)) {
f2fs_mark_inode_dirty_sync(inode, true);
f2fs_write_inode(inode, NULL);
goto sync_nodes;
}
/*
* If it's atomic_write, it's just fine to keep write ordering. So
* here we don't need to wait for node write completion, since we use
* node chain which serializes node blocks. If one of node writes are
* reordered, we can see simply broken chain, resulting in stopping
* roll-forward recovery. It means we'll recover all or none node blocks
* given fsync mark.
*/
if (!atomic) {
ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
if (ret)
goto out;
}
/* once recovery info is written, don't need to tack this */
f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
clear_inode_flag(inode, FI_APPEND_WRITE);
flush_out:
if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
ret = f2fs_issue_flush(sbi, inode->i_ino);
if (!ret) {
f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
clear_inode_flag(inode, FI_UPDATE_WRITE);
f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
}
f2fs_update_time(sbi, REQ_TIME);
out:
trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
f2fs_trace_ios(NULL, 1);
return ret;
}
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
return -EIO;
return f2fs_do_sync_file(file, start, end, datasync, false);
}
static pgoff_t __get_first_dirty_index(struct address_space *mapping,
pgoff_t pgofs, int whence)
{
struct page *page;
int nr_pages;
if (whence != SEEK_DATA)
return 0;
/* find first dirty page index */
nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
1, &page);
if (!nr_pages)
return ULONG_MAX;
pgofs = page->index;
put_page(page);
return pgofs;
}
static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
pgoff_t dirty, pgoff_t pgofs, int whence)
{
switch (whence) {
case SEEK_DATA:
if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
is_valid_data_blkaddr(sbi, blkaddr))
return true;
break;
case SEEK_HOLE:
if (blkaddr == NULL_ADDR)
return true;
break;
}
return false;
}
static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
loff_t maxbytes = inode->i_sb->s_maxbytes;
struct dnode_of_data dn;
pgoff_t pgofs, end_offset, dirty;
loff_t data_ofs = offset;
loff_t isize;
int err = 0;
inode_lock(inode);
isize = i_size_read(inode);
if (offset >= isize)
goto fail;
/* handle inline data case */
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
if (whence == SEEK_HOLE)
data_ofs = isize;
goto found;
}
pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
if (err && err != -ENOENT) {
goto fail;
} else if (err == -ENOENT) {
/* direct node does not exists */
if (whence == SEEK_DATA) {
pgofs = f2fs_get_next_page_offset(&dn, pgofs);
continue;
} else {
goto found;
}
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
/* find data/hole in dnode block */
for (; dn.ofs_in_node < end_offset;
dn.ofs_in_node++, pgofs++,
data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
block_t blkaddr;
blkaddr = datablock_addr(dn.inode,
dn.node_page, dn.ofs_in_node);
if (__is_valid_data_blkaddr(blkaddr) &&
!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
blkaddr, DATA_GENERIC)) {
f2fs_put_dnode(&dn);
goto fail;
}
if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
pgofs, whence)) {
f2fs_put_dnode(&dn);
goto found;
}
}
f2fs_put_dnode(&dn);
}
if (whence == SEEK_DATA)
goto fail;
found:
if (whence == SEEK_HOLE && data_ofs > isize)
data_ofs = isize;
inode_unlock(inode);
return vfs_setpos(file, data_ofs, maxbytes);
fail:
inode_unlock(inode);
return -ENXIO;
}
static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
loff_t maxbytes = inode->i_sb->s_maxbytes;
switch (whence) {
case SEEK_SET:
case SEEK_CUR:
case SEEK_END:
return generic_file_llseek_size(file, offset, whence,
maxbytes, i_size_read(inode));
case SEEK_DATA:
case SEEK_HOLE:
if (offset < 0)
return -ENXIO;
return f2fs_seek_block(file, offset, whence);
}
return -EINVAL;
}
static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file_inode(file);
int err;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
/* we don't need to use inline_data strictly */
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
file_accessed(file);
vma->vm_ops = &f2fs_file_vm_ops;
return 0;
}
static int f2fs_file_open(struct inode *inode, struct file *filp)
{
int err = fscrypt_file_open(inode, filp);
if (err)
return err;
filp->f_mode |= FMODE_NOWAIT;
return dquot_file_open(inode, filp);
}
void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct f2fs_node *raw_node;
int nr_free = 0, ofs = dn->ofs_in_node, len = count;
__le32 *addr;
int base = 0;
if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
base = get_extra_isize(dn->inode);
raw_node = F2FS_NODE(dn->node_page);
addr = blkaddr_in_node(raw_node) + base + ofs;
for (; count > 0; count--, addr++, dn->ofs_in_node++) {
block_t blkaddr = le32_to_cpu(*addr);
if (blkaddr == NULL_ADDR)
continue;
dn->data_blkaddr = NULL_ADDR;
f2fs_set_data_blkaddr(dn);
if (__is_valid_data_blkaddr(blkaddr) &&
!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
continue;
f2fs_invalidate_blocks(sbi, blkaddr);
if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
nr_free++;
}
if (nr_free) {
pgoff_t fofs;
/*
* once we invalidate valid blkaddr in range [ofs, ofs + count],
* we will invalidate all blkaddr in the whole range.
*/
fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
dn->inode) + ofs;
f2fs_update_extent_cache_range(dn, fofs, 0, len);
dec_valid_block_count(sbi, dn->inode, nr_free);
}
dn->ofs_in_node = ofs;
f2fs_update_time(sbi, REQ_TIME);
trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
dn->ofs_in_node, nr_free);
}
void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
{
f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
}
static int truncate_partial_data_page(struct inode *inode, u64 from,
bool cache_only)
{
loff_t offset = from & (PAGE_SIZE - 1);
pgoff_t index = from >> PAGE_SHIFT;
struct address_space *mapping = inode->i_mapping;
struct page *page;
if (!offset && !cache_only)
return 0;
if (cache_only) {
page = find_lock_page(mapping, index);
if (page && PageUptodate(page))
goto truncate_out;
f2fs_put_page(page, 1);
return 0;
}
page = f2fs_get_lock_data_page(inode, index, true);
if (IS_ERR(page))
return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
truncate_out:
f2fs_wait_on_page_writeback(page, DATA, true);
zero_user(page, offset, PAGE_SIZE - offset);
/* An encrypted inode should have a key and truncate the last page. */
f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
if (!cache_only)
set_page_dirty(page);
f2fs_put_page(page, 1);
return 0;
}
int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
pgoff_t free_from;
int count = 0, err = 0;
struct page *ipage;
bool truncate_page = false;
trace_f2fs_truncate_blocks_enter(inode, from);
free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
if (free_from >= sbi->max_file_blocks)
goto free_partial;
if (lock)
f2fs_lock_op(sbi);
ipage = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto out;
}
if (f2fs_has_inline_data(inode)) {
f2fs_truncate_inline_inode(inode, ipage, from);
f2fs_put_page(ipage, 1);
truncate_page = true;
goto out;
}
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
if (err) {
if (err == -ENOENT)
goto free_next;
goto out;
}
count = ADDRS_PER_PAGE(dn.node_page, inode);
count -= dn.ofs_in_node;
f2fs_bug_on(sbi, count < 0);
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
f2fs_truncate_data_blocks_range(&dn, count);
free_from += count;
}
f2fs_put_dnode(&dn);
free_next:
err = f2fs_truncate_inode_blocks(inode, free_from);
out:
if (lock)
f2fs_unlock_op(sbi);
free_partial:
/* lastly zero out the first data page */
if (!err)
err = truncate_partial_data_page(inode, from, truncate_page);
trace_f2fs_truncate_blocks_exit(inode, err);
return err;
}
int f2fs_truncate(struct inode *inode)
{
int err;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return 0;
trace_f2fs_truncate(inode);
if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
f2fs_show_injection_info(FAULT_TRUNCATE);
return -EIO;
}
/* we should check inline_data size */
if (!f2fs_may_inline_data(inode)) {
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
}
err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
if (err)
return err;
inode->i_mtime = inode->i_ctime = current_time(inode);
f2fs_mark_inode_dirty_sync(inode, false);
return 0;
}
int f2fs_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_inode *ri;
unsigned int flags;
if (f2fs_has_extra_attr(inode) &&
f2fs_sb_has_inode_crtime(inode->i_sb) &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
stat->result_mask |= STATX_BTIME;
stat->btime.tv_sec = fi->i_crtime.tv_sec;
stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
}
flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
if (flags & F2FS_APPEND_FL)
stat->attributes |= STATX_ATTR_APPEND;
if (flags & F2FS_COMPR_FL)
stat->attributes |= STATX_ATTR_COMPRESSED;
if (f2fs_encrypted_inode(inode))
stat->attributes |= STATX_ATTR_ENCRYPTED;
if (flags & F2FS_IMMUTABLE_FL)
stat->attributes |= STATX_ATTR_IMMUTABLE;
if (flags & F2FS_NODUMP_FL)
stat->attributes |= STATX_ATTR_NODUMP;
stat->attributes_mask |= (STATX_ATTR_APPEND |
STATX_ATTR_COMPRESSED |
STATX_ATTR_ENCRYPTED |
STATX_ATTR_IMMUTABLE |
STATX_ATTR_NODUMP);
generic_fillattr(inode, stat);
/* we need to show initial sectors used for inline_data/dentries */
if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
f2fs_has_inline_dentry(inode))
stat->blocks += (stat->size + 511) >> 9;
return 0;
}
#ifdef CONFIG_F2FS_FS_POSIX_ACL
static void __setattr_copy(struct inode *inode, const struct iattr *attr)
{
unsigned int ia_valid = attr->ia_valid;
if (ia_valid & ATTR_UID)
inode->i_uid = attr->ia_uid;
if (ia_valid & ATTR_GID)
inode->i_gid = attr->ia_gid;
if (ia_valid & ATTR_ATIME)
inode->i_atime = timespec64_trunc(attr->ia_atime,
inode->i_sb->s_time_gran);
if (ia_valid & ATTR_MTIME)
inode->i_mtime = timespec64_trunc(attr->ia_mtime,
inode->i_sb->s_time_gran);
if (ia_valid & ATTR_CTIME)
inode->i_ctime = timespec64_trunc(attr->ia_ctime,
inode->i_sb->s_time_gran);
if (ia_valid & ATTR_MODE) {
umode_t mode = attr->ia_mode;
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
mode &= ~S_ISGID;
set_acl_inode(inode, mode);
}
}
#else
#define __setattr_copy setattr_copy
#endif
int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
int err;
bool size_changed = false;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
err = setattr_prepare(dentry, attr);
if (err)
return err;
err = fscrypt_prepare_setattr(dentry, attr);
if (err)
return err;
if (is_quota_modification(inode, attr)) {
err = dquot_initialize(inode);
if (err)
return err;
}
if ((attr->ia_valid & ATTR_UID &&
!uid_eq(attr->ia_uid, inode->i_uid)) ||
(attr->ia_valid & ATTR_GID &&
!gid_eq(attr->ia_gid, inode->i_gid))) {
err = dquot_transfer(inode, attr);
if (err)
return err;
}
if (attr->ia_valid & ATTR_SIZE) {
bool to_smaller = (attr->ia_size <= i_size_read(inode));
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
down_write(&F2FS_I(inode)->i_mmap_sem);
truncate_setsize(inode, attr->ia_size);
if (to_smaller)
err = f2fs_truncate(inode);
/*
* do not trim all blocks after i_size if target size is
* larger than i_size.
*/
up_write(&F2FS_I(inode)->i_mmap_sem);
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
if (err)
return err;
if (!to_smaller) {
/* should convert inline inode here */
if (!f2fs_may_inline_data(inode)) {
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
}
inode->i_mtime = inode->i_ctime = current_time(inode);
}
down_write(&F2FS_I(inode)->i_sem);
F2FS_I(inode)->last_disk_size = i_size_read(inode);
up_write(&F2FS_I(inode)->i_sem);
size_changed = true;
}
__setattr_copy(inode, attr);
if (attr->ia_valid & ATTR_MODE) {
err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
inode->i_mode = F2FS_I(inode)->i_acl_mode;
clear_inode_flag(inode, FI_ACL_MODE);
}
}
/* file size may changed here */
f2fs_mark_inode_dirty_sync(inode, size_changed);
/* inode change will produce dirty node pages flushed by checkpoint */
f2fs_balance_fs(F2FS_I_SB(inode), true);
return err;
}
const struct inode_operations f2fs_file_inode_operations = {
.getattr = f2fs_getattr,
.setattr = f2fs_setattr,
.get_acl = f2fs_get_acl,
.set_acl = f2fs_set_acl,
#ifdef CONFIG_F2FS_FS_XATTR
.listxattr = f2fs_listxattr,
#endif
.fiemap = f2fs_fiemap,
};
static int fill_zero(struct inode *inode, pgoff_t index,
loff_t start, loff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page;
if (!len)
return 0;
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
page = f2fs_get_new_data_page(inode, NULL, index, false);
f2fs_unlock_op(sbi);
if (IS_ERR(page))
return PTR_ERR(page);
f2fs_wait_on_page_writeback(page, DATA, true);
zero_user(page, start, len);
set_page_dirty(page);
f2fs_put_page(page, 1);
return 0;
}
int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
{
int err;
while (pg_start < pg_end) {
struct dnode_of_data dn;
pgoff_t end_offset, count;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
if (err) {
if (err == -ENOENT) {
pg_start = f2fs_get_next_page_offset(&dn,
pg_start);
continue;
}
return err;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
f2fs_truncate_data_blocks_range(&dn, count);
f2fs_put_dnode(&dn);
pg_start += count;
}
return 0;
}
static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
{
pgoff_t pg_start, pg_end;
loff_t off_start, off_end;
int ret;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
off_start = offset & (PAGE_SIZE - 1);
off_end = (offset + len) & (PAGE_SIZE - 1);
if (pg_start == pg_end) {
ret = fill_zero(inode, pg_start, off_start,
off_end - off_start);
if (ret)
return ret;
} else {
if (off_start) {
ret = fill_zero(inode, pg_start++, off_start,
PAGE_SIZE - off_start);
if (ret)
return ret;
}
if (off_end) {
ret = fill_zero(inode, pg_end, 0, off_end);
if (ret)
return ret;
}
if (pg_start < pg_end) {
struct address_space *mapping = inode->i_mapping;
loff_t blk_start, blk_end;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
f2fs_balance_fs(sbi, true);
blk_start = (loff_t)pg_start << PAGE_SHIFT;
blk_end = (loff_t)pg_end << PAGE_SHIFT;
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
down_write(&F2FS_I(inode)->i_mmap_sem);
truncate_inode_pages_range(mapping, blk_start,
blk_end - 1);
f2fs_lock_op(sbi);
ret = f2fs_truncate_hole(inode, pg_start, pg_end);
f2fs_unlock_op(sbi);
up_write(&F2FS_I(inode)->i_mmap_sem);
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
}
}
return ret;
}
static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
int *do_replace, pgoff_t off, pgoff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
int ret, done, i;
next_dnode:
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
if (ret && ret != -ENOENT) {
return ret;
} else if (ret == -ENOENT) {
if (dn.max_level == 0)
return -ENOENT;
done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
blkaddr += done;
do_replace += done;
goto next;
}
done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
dn.ofs_in_node, len);
for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
*blkaddr = datablock_addr(dn.inode,
dn.node_page, dn.ofs_in_node);
if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
if (test_opt(sbi, LFS)) {
f2fs_put_dnode(&dn);
return -ENOTSUPP;
}
/* do not invalidate this block address */
f2fs_update_data_blkaddr(&dn, NULL_ADDR);
*do_replace = 1;
}
}
f2fs_put_dnode(&dn);
next:
len -= done;
off += done;
if (len)
goto next_dnode;
return 0;
}
static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
int *do_replace, pgoff_t off, int len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
int ret, i;
for (i = 0; i < len; i++, do_replace++, blkaddr++) {
if (*do_replace == 0)
continue;
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
if (ret) {
dec_valid_block_count(sbi, inode, 1);
f2fs_invalidate_blocks(sbi, *blkaddr);
} else {
f2fs_update_data_blkaddr(&dn, *blkaddr);
}
f2fs_put_dnode(&dn);
}
return 0;
}
static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
block_t *blkaddr, int *do_replace,
pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
pgoff_t i = 0;
int ret;
while (i < len) {
if (blkaddr[i] == NULL_ADDR && !full) {
i++;
continue;
}
if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
struct dnode_of_data dn;
struct node_info ni;
size_t new_size;
pgoff_t ilen;
set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
if (ret)
return ret;
ret = f2fs_get_node_info(sbi, dn.nid, &ni);
if (ret) {
f2fs_put_dnode(&dn);
return ret;
}
ilen = min((pgoff_t)
ADDRS_PER_PAGE(dn.node_page, dst_inode) -
dn.ofs_in_node, len - i);
do {
dn.data_blkaddr = datablock_addr(dn.inode,
dn.node_page, dn.ofs_in_node);
f2fs_truncate_data_blocks_range(&dn, 1);
if (do_replace[i]) {
f2fs_i_blocks_write(src_inode,
1, false, false);
f2fs_i_blocks_write(dst_inode,
1, true, false);
f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
blkaddr[i], ni.version, true, false);
do_replace[i] = 0;
}
dn.ofs_in_node++;
i++;
new_size = (dst + i) << PAGE_SHIFT;
if (dst_inode->i_size < new_size)
f2fs_i_size_write(dst_inode, new_size);
} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
f2fs_put_dnode(&dn);
} else {
struct page *psrc, *pdst;
psrc = f2fs_get_lock_data_page(src_inode,
src + i, true);
if (IS_ERR(psrc))
return PTR_ERR(psrc);
pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
true);
if (IS_ERR(pdst)) {
f2fs_put_page(psrc, 1);
return PTR_ERR(pdst);
}
f2fs_copy_page(psrc, pdst);
set_page_dirty(pdst);
f2fs_put_page(pdst, 1);
f2fs_put_page(psrc, 1);
ret = f2fs_truncate_hole(src_inode,
src + i, src + i + 1);
if (ret)
return ret;
i++;
}
}
return 0;
}
static int __exchange_data_block(struct inode *src_inode,
struct inode *dst_inode, pgoff_t src, pgoff_t dst,
pgoff_t len, bool full)
{
block_t *src_blkaddr;
int *do_replace;
pgoff_t olen;
int ret;
while (len) {
olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
array_size(olen, sizeof(block_t)),
GFP_KERNEL);
if (!src_blkaddr)
return -ENOMEM;
do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
array_size(olen, sizeof(int)),
GFP_KERNEL);
if (!do_replace) {
kvfree(src_blkaddr);
return -ENOMEM;
}
ret = __read_out_blkaddrs(src_inode, src_blkaddr,
do_replace, src, olen);
if (ret)
goto roll_back;
ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
do_replace, src, dst, olen, full);
if (ret)
goto roll_back;
src += olen;
dst += olen;
len -= olen;
kvfree(src_blkaddr);
kvfree(do_replace);
}
return 0;
roll_back:
__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
kvfree(src_blkaddr);
kvfree(do_replace);
return ret;
}
static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
pgoff_t start = offset >> PAGE_SHIFT;
pgoff_t end = (offset + len) >> PAGE_SHIFT;
int ret;
f2fs_balance_fs(sbi, true);
/* avoid gc operation during block exchange */
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
down_write(&F2FS_I(inode)->i_mmap_sem);
f2fs_lock_op(sbi);
f2fs_drop_extent_tree(inode);
truncate_pagecache(inode, offset);
ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
f2fs_unlock_op(sbi);
up_write(&F2FS_I(inode)->i_mmap_sem);
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
return ret;
}
static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
{
loff_t new_size;
int ret;
if (offset + len >= i_size_read(inode))
return -EINVAL;
/* collapse range should be aligned to block size of f2fs. */
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
return -EINVAL;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
/* write out all dirty pages from offset */
ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
if (ret)
return ret;
ret = f2fs_do_collapse(inode, offset, len);
if (ret)
return ret;
/* write out all moved pages, if possible */
down_write(&F2FS_I(inode)->i_mmap_sem);
filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
truncate_pagecache(inode, offset);
new_size = i_size_read(inode) - len;
truncate_pagecache(inode, new_size);
ret = f2fs_truncate_blocks(inode, new_size, true);
up_write(&F2FS_I(inode)->i_mmap_sem);
if (!ret)
f2fs_i_size_write(inode, new_size);
return ret;
}
static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
pgoff_t end)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
pgoff_t index = start;
unsigned int ofs_in_node = dn->ofs_in_node;
blkcnt_t count = 0;
int ret;
for (; index < end; index++, dn->ofs_in_node++) {
if (datablock_addr(dn->inode, dn->node_page,
dn->ofs_in_node) == NULL_ADDR)
count++;
}
dn->ofs_in_node = ofs_in_node;
ret = f2fs_reserve_new_blocks(dn, count);
if (ret)
return ret;
dn->ofs_in_node = ofs_in_node;
for (index = start; index < end; index++, dn->ofs_in_node++) {
dn->data_blkaddr = datablock_addr(dn->inode,
dn->node_page, dn->ofs_in_node);
/*
* f2fs_reserve_new_blocks will not guarantee entire block
* allocation.
*/
if (dn->data_blkaddr == NULL_ADDR) {
ret = -ENOSPC;
break;
}
if (dn->data_blkaddr != NEW_ADDR) {
f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
dn->data_blkaddr = NEW_ADDR;
f2fs_set_data_blkaddr(dn);
}
}
f2fs_update_extent_cache_range(dn, start, 0, index - start);
return ret;
}
static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
int mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct address_space *mapping = inode->i_mapping;
pgoff_t index, pg_start, pg_end;
loff_t new_size = i_size_read(inode);
loff_t off_start, off_end;
int ret = 0;
ret = inode_newsize_ok(inode, (len + offset));
if (ret)
return ret;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
if (ret)
return ret;
pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
off_start = offset & (PAGE_SIZE - 1);
off_end = (offset + len) & (PAGE_SIZE - 1);
if (pg_start == pg_end) {
ret = fill_zero(inode, pg_start, off_start,
off_end - off_start);
if (ret)
return ret;
new_size = max_t(loff_t, new_size, offset + len);
} else {
if (off_start) {
ret = fill_zero(inode, pg_start++, off_start,
PAGE_SIZE - off_start);
if (ret)
return ret;
new_size = max_t(loff_t, new_size,
(loff_t)pg_start << PAGE_SHIFT);
}
for (index = pg_start; index < pg_end;) {
struct dnode_of_data dn;
unsigned int end_offset;
pgoff_t end;
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
down_write(&F2FS_I(inode)->i_mmap_sem);
truncate_pagecache_range(inode,
(loff_t)index << PAGE_SHIFT,
((loff_t)pg_end << PAGE_SHIFT) - 1);
f2fs_lock_op(sbi);
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
if (ret) {
f2fs_unlock_op(sbi);
up_write(&F2FS_I(inode)->i_mmap_sem);
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
goto out;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
end = min(pg_end, end_offset - dn.ofs_in_node + index);
ret = f2fs_do_zero_range(&dn, index, end);
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
up_write(&F2FS_I(inode)->i_mmap_sem);
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
f2fs_balance_fs(sbi, dn.node_changed);
if (ret)
goto out;
index = end;
new_size = max_t(loff_t, new_size,
(loff_t)index << PAGE_SHIFT);
}
if (off_end) {
ret = fill_zero(inode, pg_end, 0, off_end);
if (ret)
goto out;
new_size = max_t(loff_t, new_size, offset + len);
}
}
out:
if (new_size > i_size_read(inode)) {
if (mode & FALLOC_FL_KEEP_SIZE)
file_set_keep_isize(inode);
else
f2fs_i_size_write(inode, new_size);
}
return ret;
}
static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
pgoff_t nr, pg_start, pg_end, delta, idx;
loff_t new_size;
int ret = 0;
new_size = i_size_read(inode) + len;
ret = inode_newsize_ok(inode, new_size);
if (ret)
return ret;
if (offset >= i_size_read(inode))
return -EINVAL;
/* insert range should be aligned to block size of f2fs. */
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
return -EINVAL;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
f2fs_balance_fs(sbi, true);
down_write(&F2FS_I(inode)->i_mmap_sem);
ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
up_write(&F2FS_I(inode)->i_mmap_sem);
if (ret)
return ret;
/* write out all dirty pages from offset */
ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
if (ret)
return ret;
pg_start = offset >> PAGE_SHIFT;
pg_end = (offset + len) >> PAGE_SHIFT;
delta = pg_end - pg_start;
idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
/* avoid gc operation during block exchange */
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
down_write(&F2FS_I(inode)->i_mmap_sem);
truncate_pagecache(inode, offset);
while (!ret && idx > pg_start) {
nr = idx - pg_start;
if (nr > delta)
nr = delta;
idx -= nr;
f2fs_lock_op(sbi);
f2fs_drop_extent_tree(inode);
ret = __exchange_data_block(inode, inode, idx,
idx + delta, nr, false);
f2fs_unlock_op(sbi);
}
up_write(&F2FS_I(inode)->i_mmap_sem);
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
/* write out all moved pages, if possible */
down_write(&F2FS_I(inode)->i_mmap_sem);
filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
truncate_pagecache(inode, offset);
up_write(&F2FS_I(inode)->i_mmap_sem);
if (!ret)
f2fs_i_size_write(inode, new_size);
return ret;
}
static int expand_inode_data(struct inode *inode, loff_t offset,
loff_t len, int mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
pgoff_t pg_end;
loff_t new_size = i_size_read(inode);
loff_t off_end;
int err;
err = inode_newsize_ok(inode, (len + offset));
if (err)
return err;
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
f2fs_balance_fs(sbi, true);
pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
off_end = (offset + len) & (PAGE_SIZE - 1);
map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
map.m_len = pg_end - map.m_lblk;
if (off_end)
map.m_len++;
err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
if (err) {
pgoff_t last_off;
if (!map.m_len)
return err;
last_off = map.m_lblk + map.m_len - 1;
/* update new size to the failed position */
new_size = (last_off == pg_end) ? offset + len :
(loff_t)(last_off + 1) << PAGE_SHIFT;
} else {
new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
}
if (new_size > i_size_read(inode)) {
if (mode & FALLOC_FL_KEEP_SIZE)
file_set_keep_isize(inode);
else
f2fs_i_size_write(inode, new_size);
}
return err;
}
static long f2fs_fallocate(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct inode *inode = file_inode(file);
long ret = 0;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
/* f2fs only support ->fallocate for regular file */
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (f2fs_encrypted_inode(inode) &&
(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
return -EOPNOTSUPP;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
FALLOC_FL_INSERT_RANGE))
return -EOPNOTSUPP;
inode_lock(inode);
if (mode & FALLOC_FL_PUNCH_HOLE) {
if (offset >= inode->i_size)
goto out;
ret = punch_hole(inode, offset, len);
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
ret = f2fs_collapse_range(inode, offset, len);
} else if (mode & FALLOC_FL_ZERO_RANGE) {
ret = f2fs_zero_range(inode, offset, len, mode);
} else if (mode & FALLOC_FL_INSERT_RANGE) {
ret = f2fs_insert_range(inode, offset, len);
} else {
ret = expand_inode_data(inode, offset, len, mode);
}
if (!ret) {
inode->i_mtime = inode->i_ctime = current_time(inode);
f2fs_mark_inode_dirty_sync(inode, false);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
}
out:
inode_unlock(inode);
trace_f2fs_fallocate(inode, mode, offset, len, ret);
return ret;
}
static int f2fs_release_file(struct inode *inode, struct file *filp)
{
/*
* f2fs_relase_file is called at every close calls. So we should
* not drop any inmemory pages by close called by other process.
*/
if (!(filp->f_mode & FMODE_WRITE) ||
atomic_read(&inode->i_writecount) != 1)
return 0;
/* some remained atomic pages should discarded */
if (f2fs_is_atomic_file(inode))
f2fs_drop_inmem_pages(inode);
if (f2fs_is_volatile_file(inode)) {
set_inode_flag(inode, FI_DROP_CACHE);
filemap_fdatawrite(inode->i_mapping);
clear_inode_flag(inode, FI_DROP_CACHE);
clear_inode_flag(inode, FI_VOLATILE_FILE);
stat_dec_volatile_write(inode);
}
return 0;
}
static int f2fs_file_flush(struct file *file, fl_owner_t id)
{
struct inode *inode = file_inode(file);
/*
* If the process doing a transaction is crashed, we should do
* roll-back. Otherwise, other reader/write can see corrupted database
* until all the writers close its file. Since this should be done
* before dropping file lock, it needs to do in ->flush.
*/
if (f2fs_is_atomic_file(inode) &&
F2FS_I(inode)->inmem_task == current)
f2fs_drop_inmem_pages(inode);
return 0;
}
static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
unsigned int flags = fi->i_flags;
if (f2fs_encrypted_inode(inode))
flags |= F2FS_ENCRYPT_FL;
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
flags |= F2FS_INLINE_DATA_FL;
flags &= F2FS_FL_USER_VISIBLE;
return put_user(flags, (int __user *)arg);
}
static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
unsigned int oldflags;
/* Is it quota file? Do not allow user to mess with it */
if (IS_NOQUOTA(inode))
return -EPERM;
flags = f2fs_mask_flags(inode->i_mode, flags);
oldflags = fi->i_flags;
if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
if (!capable(CAP_LINUX_IMMUTABLE))
return -EPERM;
flags = flags & F2FS_FL_USER_MODIFIABLE;
flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
fi->i_flags = flags;
if (fi->i_flags & F2FS_PROJINHERIT_FL)
set_inode_flag(inode, FI_PROJ_INHERIT);
else
clear_inode_flag(inode, FI_PROJ_INHERIT);
inode->i_ctime = current_time(inode);
f2fs_set_inode_flags(inode);
f2fs_mark_inode_dirty_sync(inode, false);
return 0;
}
static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
unsigned int flags;
int ret;
if (!inode_owner_or_capable(inode))
return -EACCES;
if (get_user(flags, (int __user *)arg))
return -EFAULT;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
ret = __f2fs_ioc_setflags(inode, flags);
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
return put_user(inode->i_generation, (int __user *)arg);
}
static int f2fs_ioc_start_atomic_write(struct file *filp)
{
struct inode *inode = file_inode(filp);
int ret;
if (!inode_owner_or_capable(inode))
return -EACCES;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (f2fs_is_atomic_file(inode)) {
if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
ret = -EINVAL;
goto out;
}
ret = f2fs_convert_inline_inode(inode);
if (ret)
goto out;
down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
if (!get_dirty_pages(inode))
goto skip_flush;
f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
"Unexpected flush for atomic writes: ino=%lu, npages=%u",
inode->i_ino, get_dirty_pages(inode));
ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
if (ret) {
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
goto out;
}
skip_flush:
set_inode_flag(inode, FI_ATOMIC_FILE);
clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
F2FS_I(inode)->inmem_task = current;
stat_inc_atomic_write(inode);
stat_update_max_atomic_write(inode);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_commit_atomic_write(struct file *filp)
{
struct inode *inode = file_inode(filp);
int ret;
if (!inode_owner_or_capable(inode))
return -EACCES;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
f2fs_balance_fs(F2FS_I_SB(inode), true);
inode_lock(inode);
if (f2fs_is_volatile_file(inode)) {
ret = -EINVAL;
goto err_out;
}
if (f2fs_is_atomic_file(inode)) {
ret = f2fs_commit_inmem_pages(inode);
if (ret)
goto err_out;
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
if (!ret) {
clear_inode_flag(inode, FI_ATOMIC_FILE);
F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
stat_dec_atomic_write(inode);
}
} else {
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
}
err_out:
if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
ret = -EINVAL;
}
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_start_volatile_write(struct file *filp)
{
struct inode *inode = file_inode(filp);
int ret;
if (!inode_owner_or_capable(inode))
return -EACCES;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (f2fs_is_volatile_file(inode))
goto out;
ret = f2fs_convert_inline_inode(inode);
if (ret)
goto out;
stat_inc_volatile_write(inode);
stat_update_max_volatile_write(inode);
set_inode_flag(inode, FI_VOLATILE_FILE);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_release_volatile_write(struct file *filp)
{
struct inode *inode = file_inode(filp);
int ret;
if (!inode_owner_or_capable(inode))
return -EACCES;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (!f2fs_is_volatile_file(inode))
goto out;
if (!f2fs_is_first_block_written(inode)) {
ret = truncate_partial_data_page(inode, 0, true);
goto out;
}
ret = punch_hole(inode, 0, F2FS_BLKSIZE);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_abort_volatile_write(struct file *filp)
{
struct inode *inode = file_inode(filp);
int ret;
if (!inode_owner_or_capable(inode))
return -EACCES;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (f2fs_is_atomic_file(inode))
f2fs_drop_inmem_pages(inode);
if (f2fs_is_volatile_file(inode)) {
clear_inode_flag(inode, FI_VOLATILE_FILE);
stat_dec_volatile_write(inode);
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
}
clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
inode_unlock(inode);
mnt_drop_write_file(filp);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return ret;
}
static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct super_block *sb = sbi->sb;
__u32 in;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(in, (__u32 __user *)arg))
return -EFAULT;
if (in != F2FS_GOING_DOWN_FULLSYNC) {
ret = mnt_want_write_file(filp);
if (ret)
return ret;
}
switch (in) {
case F2FS_GOING_DOWN_FULLSYNC:
sb = freeze_bdev(sb->s_bdev);
if (IS_ERR(sb)) {
ret = PTR_ERR(sb);
goto out;
}
if (sb) {
f2fs_stop_checkpoint(sbi, false);
set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
thaw_bdev(sb->s_bdev, sb);
}
break;
case F2FS_GOING_DOWN_METASYNC:
/* do checkpoint only */
ret = f2fs_sync_fs(sb, 1);
if (ret)
goto out;
f2fs_stop_checkpoint(sbi, false);
set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
break;
case F2FS_GOING_DOWN_NOSYNC:
f2fs_stop_checkpoint(sbi, false);
set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
break;
case F2FS_GOING_DOWN_METAFLUSH:
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
f2fs_stop_checkpoint(sbi, false);
set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
break;
default:
ret = -EINVAL;
goto out;
}
f2fs_stop_gc_thread(sbi);
f2fs_stop_discard_thread(sbi);
f2fs_drop_discard_cmd(sbi);
clear_opt(sbi, DISCARD);
f2fs_update_time(sbi, REQ_TIME);
out:
if (in != F2FS_GOING_DOWN_FULLSYNC)
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct super_block *sb = inode->i_sb;
struct request_queue *q = bdev_get_queue(sb->s_bdev);
struct fstrim_range range;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!f2fs_hw_support_discard(F2FS_SB(sb)))
return -EOPNOTSUPP;
if (copy_from_user(&range, (struct fstrim_range __user *)arg,
sizeof(range)))
return -EFAULT;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
range.minlen = max((unsigned int)range.minlen,
q->limits.discard_granularity);
ret = f2fs_trim_fs(F2FS_SB(sb), &range);
mnt_drop_write_file(filp);
if (ret < 0)
return ret;
if (copy_to_user((struct fstrim_range __user *)arg, &range,
sizeof(range)))
return -EFAULT;
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return 0;
}
static bool uuid_is_nonzero(__u8 u[16])
{
int i;
for (i = 0; i < 16; i++)
if (u[i])
return true;
return false;
}
static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
if (!f2fs_sb_has_encrypt(inode->i_sb))
return -EOPNOTSUPP;
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
}
static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
{
if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
return -EOPNOTSUPP;
return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
}
static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int err;
if (!f2fs_sb_has_encrypt(inode->i_sb))
return -EOPNOTSUPP;
err = mnt_want_write_file(filp);
if (err)
return err;
down_write(&sbi->sb_lock);
if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
goto got_it;
/* update superblock with uuid */
generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
err = f2fs_commit_super(sbi, false);
if (err) {
/* undo new data */
memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
goto out_err;
}
got_it:
if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
16))
err = -EFAULT;
out_err:
up_write(&sbi->sb_lock);
mnt_drop_write_file(filp);
return err;
}
static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
__u32 sync;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(sync, (__u32 __user *)arg))
return -EFAULT;
if (f2fs_readonly(sbi->sb))
return -EROFS;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
if (!sync) {
if (!mutex_trylock(&sbi->gc_mutex)) {
ret = -EBUSY;
goto out;
}
} else {
mutex_lock(&sbi->gc_mutex);
}
ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
out:
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_gc_range range;
u64 end;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
sizeof(range)))
return -EFAULT;
if (f2fs_readonly(sbi->sb))
return -EROFS;
end = range.start + range.len;
if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
return -EINVAL;
}
ret = mnt_want_write_file(filp);
if (ret)
return ret;
do_more:
if (!range.sync) {
if (!mutex_trylock(&sbi->gc_mutex)) {
ret = -EBUSY;
goto out;
}
} else {
mutex_lock(&sbi->gc_mutex);
}
ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
range.start += sbi->blocks_per_seg;
if (range.start <= end)
goto do_more;
out:
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (f2fs_readonly(sbi->sb))
return -EROFS;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
ret = f2fs_sync_fs(sbi->sb, 1);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
struct file *filp,
struct f2fs_defragment *range)
{
struct inode *inode = file_inode(filp);
struct f2fs_map_blocks map = { .m_next_extent = NULL,
.m_seg_type = NO_CHECK_TYPE };
struct extent_info ei = {0, 0, 0};
pgoff_t pg_start, pg_end, next_pgofs;
unsigned int blk_per_seg = sbi->blocks_per_seg;
unsigned int total = 0, sec_num;
block_t blk_end = 0;
bool fragmented = false;
int err;
/* if in-place-update policy is enabled, don't waste time here */
if (f2fs_should_update_inplace(inode, NULL))
return -EINVAL;
pg_start = range->start >> PAGE_SHIFT;
pg_end = (range->start + range->len) >> PAGE_SHIFT;
f2fs_balance_fs(sbi, true);
inode_lock(inode);
/* writeback all dirty pages in the range */
err = filemap_write_and_wait_range(inode->i_mapping, range->start,
range->start + range->len - 1);
if (err)
goto out;
/*
* lookup mapping info in extent cache, skip defragmenting if physical
* block addresses are continuous.
*/
if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
if (ei.fofs + ei.len >= pg_end)
goto out;
}
map.m_lblk = pg_start;
map.m_next_pgofs = &next_pgofs;
/*
* lookup mapping info in dnode page cache, skip defragmenting if all
* physical block addresses are continuous even if there are hole(s)
* in logical blocks.
*/
while (map.m_lblk < pg_end) {
map.m_len = pg_end - map.m_lblk;
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
if (err)
goto out;
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
map.m_lblk = next_pgofs;
continue;
}
if (blk_end && blk_end != map.m_pblk)
fragmented = true;
/* record total count of block that we're going to move */
total += map.m_len;
blk_end = map.m_pblk + map.m_len;
map.m_lblk += map.m_len;
}
if (!fragmented)
goto out;
sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
/*
* make sure there are enough free section for LFS allocation, this can
* avoid defragment running in SSR mode when free section are allocated
* intensively
*/
if (has_not_enough_free_secs(sbi, 0, sec_num)) {
err = -EAGAIN;
goto out;
}
map.m_lblk = pg_start;
map.m_len = pg_end - pg_start;
total = 0;
while (map.m_lblk < pg_end) {
pgoff_t idx;
int cnt = 0;
do_map:
map.m_len = pg_end - map.m_lblk;
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
if (err)
goto clear_out;
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
map.m_lblk = next_pgofs;
continue;
}
set_inode_flag(inode, FI_DO_DEFRAG);
idx = map.m_lblk;
while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
struct page *page;
page = f2fs_get_lock_data_page(inode, idx, true);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto clear_out;
}
set_page_dirty(page);
f2fs_put_page(page, 1);
idx++;
cnt++;
total++;
}
map.m_lblk = idx;
if (idx < pg_end && cnt < blk_per_seg)
goto do_map;
clear_inode_flag(inode, FI_DO_DEFRAG);
err = filemap_fdatawrite(inode->i_mapping);
if (err)
goto out;
}
clear_out:
clear_inode_flag(inode, FI_DO_DEFRAG);
out:
inode_unlock(inode);
if (!err)
range->len = (u64)total << PAGE_SHIFT;
return err;
}
static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_defragment range;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
return -EINVAL;
if (f2fs_readonly(sbi->sb))
return -EROFS;
if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
sizeof(range)))
return -EFAULT;
/* verify alignment of offset & size */
if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
return -EINVAL;
if (unlikely((range.start + range.len) >> PAGE_SHIFT >
sbi->max_file_blocks))
return -EINVAL;
err = mnt_want_write_file(filp);
if (err)
return err;
err = f2fs_defragment_range(sbi, filp, &range);
mnt_drop_write_file(filp);
f2fs_update_time(sbi, REQ_TIME);
if (err < 0)
return err;
if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
sizeof(range)))
return -EFAULT;
return 0;
}
static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out, size_t len)
{
struct inode *src = file_inode(file_in);
struct inode *dst = file_inode(file_out);
struct f2fs_sb_info *sbi = F2FS_I_SB(src);
size_t olen = len, dst_max_i_size = 0;
size_t dst_osize;
int ret;
if (file_in->f_path.mnt != file_out->f_path.mnt ||
src->i_sb != dst->i_sb)
return -EXDEV;
if (unlikely(f2fs_readonly(src->i_sb)))
return -EROFS;
if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
return -EINVAL;
if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
return -EOPNOTSUPP;
if (src == dst) {
if (pos_in == pos_out)
return 0;
if (pos_out > pos_in && pos_out < pos_in + len)
return -EINVAL;
}
inode_lock(src);
if (src != dst) {
ret = -EBUSY;
if (!inode_trylock(dst))
goto out;
}
ret = -EINVAL;
if (pos_in + len > src->i_size || pos_in + len < pos_in)
goto out_unlock;
if (len == 0)
olen = len = src->i_size - pos_in;
if (pos_in + len == src->i_size)
len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
if (len == 0) {
ret = 0;
goto out_unlock;
}
dst_osize = dst->i_size;
if (pos_out + olen > dst->i_size)
dst_max_i_size = pos_out + olen;
/* verify the end result is block aligned */
if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
goto out_unlock;
ret = f2fs_convert_inline_inode(src);
if (ret)
goto out_unlock;
ret = f2fs_convert_inline_inode(dst);
if (ret)
goto out_unlock;
/* write out all dirty pages from offset */
ret = filemap_write_and_wait_range(src->i_mapping,
pos_in, pos_in + len);
if (ret)
goto out_unlock;
ret = filemap_write_and_wait_range(dst->i_mapping,
pos_out, pos_out + len);
if (ret)
goto out_unlock;
f2fs_balance_fs(sbi, true);
down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
if (src != dst) {
ret = -EBUSY;
if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
goto out_src;
}
f2fs_lock_op(sbi);
ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
pos_out >> F2FS_BLKSIZE_BITS,
len >> F2FS_BLKSIZE_BITS, false);
if (!ret) {
if (dst_max_i_size)
f2fs_i_size_write(dst, dst_max_i_size);
else if (dst_osize != dst->i_size)
f2fs_i_size_write(dst, dst_osize);
}
f2fs_unlock_op(sbi);
if (src != dst)
up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
out_src:
up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
out_unlock:
if (src != dst)
inode_unlock(dst);
out:
inode_unlock(src);
return ret;
}
static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
{
struct f2fs_move_range range;
struct fd dst;
int err;
if (!(filp->f_mode & FMODE_READ) ||
!(filp->f_mode & FMODE_WRITE))
return -EBADF;
if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
sizeof(range)))
return -EFAULT;
dst = fdget(range.dst_fd);
if (!dst.file)
return -EBADF;
if (!(dst.file->f_mode & FMODE_WRITE)) {
err = -EBADF;
goto err_out;
}
err = mnt_want_write_file(filp);
if (err)
goto err_out;
err = f2fs_move_file_range(filp, range.pos_in, dst.file,
range.pos_out, range.len);
mnt_drop_write_file(filp);
if (err)
goto err_out;
if (copy_to_user((struct f2fs_move_range __user *)arg,
&range, sizeof(range)))
err = -EFAULT;
err_out:
fdput(dst);
return err;
}
static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct sit_info *sm = SIT_I(sbi);
unsigned int start_segno = 0, end_segno = 0;
unsigned int dev_start_segno = 0, dev_end_segno = 0;
struct f2fs_flush_device range;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (f2fs_readonly(sbi->sb))
return -EROFS;
if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
sizeof(range)))
return -EFAULT;
if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
sbi->segs_per_sec != 1) {
f2fs_msg(sbi->sb, KERN_WARNING,
"Can't flush %u in %d for segs_per_sec %u != 1\n",
range.dev_num, sbi->s_ndevs,
sbi->segs_per_sec);
return -EINVAL;
}
ret = mnt_want_write_file(filp);
if (ret)
return ret;
if (range.dev_num != 0)
dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
start_segno = sm->last_victim[FLUSH_DEVICE];
if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
start_segno = dev_start_segno;
end_segno = min(start_segno + range.segments, dev_end_segno);
while (start_segno < end_segno) {
if (!mutex_trylock(&sbi->gc_mutex)) {
ret = -EBUSY;
goto out;
}
sm->last_victim[GC_CB] = end_segno + 1;
sm->last_victim[GC_GREEDY] = end_segno + 1;
sm->last_victim[ALLOC_NEXT] = end_segno + 1;
ret = f2fs_gc(sbi, true, true, start_segno);
if (ret == -EAGAIN)
ret = 0;
else if (ret < 0)
break;
start_segno++;
}
out:
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
/* Must validate to set it with SQLite behavior in Android. */
sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
return put_user(sb_feature, (u32 __user *)arg);
}
#ifdef CONFIG_QUOTA
static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
{
struct inode *inode = file_inode(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct super_block *sb = sbi->sb;
struct dquot *transfer_to[MAXQUOTAS] = {};
struct page *ipage;
kprojid_t kprojid;
int err;
if (!f2fs_sb_has_project_quota(sb)) {
if (projid != F2FS_DEF_PROJID)
return -EOPNOTSUPP;
else
return 0;
}
if (!f2fs_has_extra_attr(inode))
return -EOPNOTSUPP;
kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
return 0;
err = -EPERM;
/* Is it quota file? Do not allow user to mess with it */
if (IS_NOQUOTA(inode))
return err;
ipage = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
i_projid)) {
err = -EOVERFLOW;
f2fs_put_page(ipage, 1);
return err;
}
f2fs_put_page(ipage, 1);
err = dquot_initialize(inode);
if (err)
return err;
transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
if (!IS_ERR(transfer_to[PRJQUOTA])) {
err = __dquot_transfer(inode, transfer_to);
dqput(transfer_to[PRJQUOTA]);
if (err)
goto out_dirty;
}
F2FS_I(inode)->i_projid = kprojid;
inode->i_ctime = current_time(inode);
out_dirty:
f2fs_mark_inode_dirty_sync(inode, true);
return err;
}
#else
static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
{
if (projid != F2FS_DEF_PROJID)
return -EOPNOTSUPP;
return 0;
}
#endif
/* Transfer internal flags to xflags */
static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
{
__u32 xflags = 0;
if (iflags & F2FS_SYNC_FL)
xflags |= FS_XFLAG_SYNC;
if (iflags & F2FS_IMMUTABLE_FL)
xflags |= FS_XFLAG_IMMUTABLE;
if (iflags & F2FS_APPEND_FL)
xflags |= FS_XFLAG_APPEND;
if (iflags & F2FS_NODUMP_FL)
xflags |= FS_XFLAG_NODUMP;
if (iflags & F2FS_NOATIME_FL)
xflags |= FS_XFLAG_NOATIME;
if (iflags & F2FS_PROJINHERIT_FL)
xflags |= FS_XFLAG_PROJINHERIT;
return xflags;
}
#define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
/* Transfer xflags flags to internal */
static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
{
unsigned long iflags = 0;
if (xflags & FS_XFLAG_SYNC)
iflags |= F2FS_SYNC_FL;
if (xflags & FS_XFLAG_IMMUTABLE)
iflags |= F2FS_IMMUTABLE_FL;
if (xflags & FS_XFLAG_APPEND)
iflags |= F2FS_APPEND_FL;
if (xflags & FS_XFLAG_NODUMP)
iflags |= F2FS_NODUMP_FL;
if (xflags & FS_XFLAG_NOATIME)
iflags |= F2FS_NOATIME_FL;
if (xflags & FS_XFLAG_PROJINHERIT)
iflags |= F2FS_PROJINHERIT_FL;
return iflags;
}
static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct fsxattr fa;
memset(&fa, 0, sizeof(struct fsxattr));
fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
F2FS_FL_USER_VISIBLE);
if (f2fs_sb_has_project_quota(inode->i_sb))
fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
fi->i_projid);
if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
return -EFAULT;
return 0;
}
static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa)
{
/*
* Project Quota ID state is only allowed to change from within the init
* namespace. Enforce that restriction only if we are trying to change
* the quota ID state. Everything else is allowed in user namespaces.
*/
if (current_user_ns() == &init_user_ns)
return 0;
if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid)
return -EINVAL;
if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) {
if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT))
return -EINVAL;
} else {
if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT)
return -EINVAL;
}
return 0;
}
static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct fsxattr fa;
unsigned int flags;
int err;
if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
return -EFAULT;
/* Make sure caller has proper permission */
if (!inode_owner_or_capable(inode))
return -EACCES;
if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
return -EOPNOTSUPP;
flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
if (f2fs_mask_flags(inode->i_mode, flags) != flags)
return -EOPNOTSUPP;
err = mnt_want_write_file(filp);
if (err)
return err;
inode_lock(inode);
err = f2fs_ioctl_check_project(inode, &fa);
if (err)
goto out;
flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
(flags & F2FS_FL_XFLAG_VISIBLE);
err = __f2fs_ioc_setflags(inode, flags);
if (err)
goto out;
err = f2fs_ioc_setproject(filp, fa.fsx_projid);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return err;
}
int f2fs_pin_file_control(struct inode *inode, bool inc)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
/* Use i_gc_failures for normal file as a risk signal. */
if (inc)
f2fs_i_gc_failures_write(inode,
fi->i_gc_failures[GC_FAILURE_PIN] + 1);
if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
f2fs_msg(sbi->sb, KERN_WARNING,
"%s: Enable GC = ino %lx after %x GC trials\n",
__func__, inode->i_ino,
fi->i_gc_failures[GC_FAILURE_PIN]);
clear_inode_flag(inode, FI_PIN_FILE);
return -EAGAIN;
}
return 0;
}
static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
__u32 pin;
int ret = 0;
if (!inode_owner_or_capable(inode))
return -EACCES;
if (get_user(pin, (__u32 __user *)arg))
return -EFAULT;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (f2fs_readonly(F2FS_I_SB(inode)->sb))
return -EROFS;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (f2fs_should_update_outplace(inode, NULL)) {
ret = -EINVAL;
goto out;
}
if (!pin) {
clear_inode_flag(inode, FI_PIN_FILE);
f2fs_i_gc_failures_write(inode, 0);
goto done;
}
if (f2fs_pin_file_control(inode, false)) {
ret = -EAGAIN;
goto out;
}
ret = f2fs_convert_inline_inode(inode);
if (ret)
goto out;
set_inode_flag(inode, FI_PIN_FILE);
ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
done:
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
__u32 pin = 0;
if (is_inode_flag_set(inode, FI_PIN_FILE))
pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
return put_user(pin, (u32 __user *)arg);
}
int f2fs_precache_extents(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_map_blocks map;
pgoff_t m_next_extent;
loff_t end;
int err;
if (is_inode_flag_set(inode, FI_NO_EXTENT))
return -EOPNOTSUPP;
map.m_lblk = 0;
map.m_next_pgofs = NULL;
map.m_next_extent = &m_next_extent;
map.m_seg_type = NO_CHECK_TYPE;
end = F2FS_I_SB(inode)->max_file_blocks;
while (map.m_lblk < end) {
map.m_len = end - map.m_lblk;
down_write(&fi->i_gc_rwsem[WRITE]);
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
up_write(&fi->i_gc_rwsem[WRITE]);
if (err)
return err;
map.m_lblk = m_next_extent;
}
return err;
}
static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
{
return f2fs_precache_extents(file_inode(filp));
}
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
return -EIO;
switch (cmd) {
case F2FS_IOC_GETFLAGS:
return f2fs_ioc_getflags(filp, arg);
case F2FS_IOC_SETFLAGS:
return f2fs_ioc_setflags(filp, arg);
case F2FS_IOC_GETVERSION:
return f2fs_ioc_getversion(filp, arg);
case F2FS_IOC_START_ATOMIC_WRITE:
return f2fs_ioc_start_atomic_write(filp);
case F2FS_IOC_COMMIT_ATOMIC_WRITE:
return f2fs_ioc_commit_atomic_write(filp);
case F2FS_IOC_START_VOLATILE_WRITE:
return f2fs_ioc_start_volatile_write(filp);
case F2FS_IOC_RELEASE_VOLATILE_WRITE:
return f2fs_ioc_release_volatile_write(filp);
case F2FS_IOC_ABORT_VOLATILE_WRITE:
return f2fs_ioc_abort_volatile_write(filp);
case F2FS_IOC_SHUTDOWN:
return f2fs_ioc_shutdown(filp, arg);
case FITRIM:
return f2fs_ioc_fitrim(filp, arg);
case F2FS_IOC_SET_ENCRYPTION_POLICY:
return f2fs_ioc_set_encryption_policy(filp, arg);
case F2FS_IOC_GET_ENCRYPTION_POLICY:
return f2fs_ioc_get_encryption_policy(filp, arg);
case F2FS_IOC_GET_ENCRYPTION_PWSALT:
return f2fs_ioc_get_encryption_pwsalt(filp, arg);
case F2FS_IOC_GARBAGE_COLLECT:
return f2fs_ioc_gc(filp, arg);
case F2FS_IOC_GARBAGE_COLLECT_RANGE:
return f2fs_ioc_gc_range(filp, arg);
case F2FS_IOC_WRITE_CHECKPOINT:
return f2fs_ioc_write_checkpoint(filp, arg);
case F2FS_IOC_DEFRAGMENT:
return f2fs_ioc_defragment(filp, arg);
case F2FS_IOC_MOVE_RANGE:
return f2fs_ioc_move_range(filp, arg);
case F2FS_IOC_FLUSH_DEVICE:
return f2fs_ioc_flush_device(filp, arg);
case F2FS_IOC_GET_FEATURES:
return f2fs_ioc_get_features(filp, arg);
case F2FS_IOC_FSGETXATTR:
return f2fs_ioc_fsgetxattr(filp, arg);
case F2FS_IOC_FSSETXATTR:
return f2fs_ioc_fssetxattr(filp, arg);
case F2FS_IOC_GET_PIN_FILE:
return f2fs_ioc_get_pin_file(filp, arg);
case F2FS_IOC_SET_PIN_FILE:
return f2fs_ioc_set_pin_file(filp, arg);
case F2FS_IOC_PRECACHE_EXTENTS:
return f2fs_ioc_precache_extents(filp, arg);
default:
return -ENOTTY;
}
}
static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
ssize_t ret;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
return -EINVAL;
if (!inode_trylock(inode)) {
if (iocb->ki_flags & IOCB_NOWAIT)
return -EAGAIN;
inode_lock(inode);
}
ret = generic_write_checks(iocb, from);
if (ret > 0) {
bool preallocated = false;
size_t target_size = 0;
int err;
if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
set_inode_flag(inode, FI_NO_PREALLOC);
if ((iocb->ki_flags & IOCB_NOWAIT) &&
(iocb->ki_flags & IOCB_DIRECT)) {
if (!f2fs_overwrite_io(inode, iocb->ki_pos,
iov_iter_count(from)) ||
f2fs_has_inline_data(inode) ||
f2fs_force_buffered_io(inode, WRITE)) {
clear_inode_flag(inode,
FI_NO_PREALLOC);
inode_unlock(inode);
return -EAGAIN;
}
} else {
preallocated = true;
target_size = iocb->ki_pos + iov_iter_count(from);
err = f2fs_preallocate_blocks(iocb, from);
if (err) {
clear_inode_flag(inode, FI_NO_PREALLOC);
inode_unlock(inode);
return err;
}
}
ret = __generic_file_write_iter(iocb, from);
clear_inode_flag(inode, FI_NO_PREALLOC);
/* if we couldn't write data, we should deallocate blocks. */
if (preallocated && i_size_read(inode) < target_size)
f2fs_truncate(inode);
if (ret > 0)
f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
}
inode_unlock(inode);
if (ret > 0)
ret = generic_write_sync(iocb, ret);
return ret;
}
#ifdef CONFIG_COMPAT
long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case F2FS_IOC32_GETFLAGS:
cmd = F2FS_IOC_GETFLAGS;
break;
case F2FS_IOC32_SETFLAGS:
cmd = F2FS_IOC_SETFLAGS;
break;
case F2FS_IOC32_GETVERSION:
cmd = F2FS_IOC_GETVERSION;
break;
case F2FS_IOC_START_ATOMIC_WRITE:
case F2FS_IOC_COMMIT_ATOMIC_WRITE:
case F2FS_IOC_START_VOLATILE_WRITE:
case F2FS_IOC_RELEASE_VOLATILE_WRITE:
case F2FS_IOC_ABORT_VOLATILE_WRITE:
case F2FS_IOC_SHUTDOWN:
case F2FS_IOC_SET_ENCRYPTION_POLICY:
case F2FS_IOC_GET_ENCRYPTION_PWSALT:
case F2FS_IOC_GET_ENCRYPTION_POLICY:
case F2FS_IOC_GARBAGE_COLLECT:
case F2FS_IOC_GARBAGE_COLLECT_RANGE:
case F2FS_IOC_WRITE_CHECKPOINT:
case F2FS_IOC_DEFRAGMENT:
case F2FS_IOC_MOVE_RANGE:
case F2FS_IOC_FLUSH_DEVICE:
case F2FS_IOC_GET_FEATURES:
case F2FS_IOC_FSGETXATTR:
case F2FS_IOC_FSSETXATTR:
case F2FS_IOC_GET_PIN_FILE:
case F2FS_IOC_SET_PIN_FILE:
case F2FS_IOC_PRECACHE_EXTENTS:
break;
default:
return -ENOIOCTLCMD;
}
return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
}
#endif
const struct file_operations f2fs_file_operations = {
.llseek = f2fs_llseek,
.read_iter = generic_file_read_iter,
.write_iter = f2fs_file_write_iter,
.open = f2fs_file_open,
.release = f2fs_release_file,
.mmap = f2fs_file_mmap,
.flush = f2fs_file_flush,
.fsync = f2fs_sync_file,
.fallocate = f2fs_fallocate,
.unlocked_ioctl = f2fs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = f2fs_compat_ioctl,
#endif
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
};