mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-29 14:05:19 +08:00
0df4adf868
Move all stat code specific to aead into the aead code. While we're at it, change the stats so that bytes and counts are always incremented even in case of error. This allows the reference counting to be removed as we can now increment the counters prior to the operation. After the operation we simply increase the error count if necessary. This is safe as errors can only occur synchronously (or rather, the existing code already ignored asynchronous errors which are only visible to the callback function). Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
553 lines
19 KiB
C
553 lines
19 KiB
C
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
/*
|
|
* AEAD: Authenticated Encryption with Associated Data
|
|
*
|
|
* Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
|
|
*/
|
|
|
|
#ifndef _CRYPTO_AEAD_H
|
|
#define _CRYPTO_AEAD_H
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/container_of.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
|
|
/**
|
|
* DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
|
|
*
|
|
* The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
|
|
* (listed as type "aead" in /proc/crypto)
|
|
*
|
|
* The most prominent examples for this type of encryption is GCM and CCM.
|
|
* However, the kernel supports other types of AEAD ciphers which are defined
|
|
* with the following cipher string:
|
|
*
|
|
* authenc(keyed message digest, block cipher)
|
|
*
|
|
* For example: authenc(hmac(sha256), cbc(aes))
|
|
*
|
|
* The example code provided for the symmetric key cipher operation applies
|
|
* here as well. Naturally all *skcipher* symbols must be exchanged the *aead*
|
|
* pendants discussed in the following. In addition, for the AEAD operation,
|
|
* the aead_request_set_ad function must be used to set the pointer to the
|
|
* associated data memory location before performing the encryption or
|
|
* decryption operation. Another deviation from the asynchronous block cipher
|
|
* operation is that the caller should explicitly check for -EBADMSG of the
|
|
* crypto_aead_decrypt. That error indicates an authentication error, i.e.
|
|
* a breach in the integrity of the message. In essence, that -EBADMSG error
|
|
* code is the key bonus an AEAD cipher has over "standard" block chaining
|
|
* modes.
|
|
*
|
|
* Memory Structure:
|
|
*
|
|
* The source scatterlist must contain the concatenation of
|
|
* associated data || plaintext or ciphertext.
|
|
*
|
|
* The destination scatterlist has the same layout, except that the plaintext
|
|
* (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
|
|
* during encryption (resp. decryption). The authentication tag is generated
|
|
* during the encryption operation and appended to the ciphertext. During
|
|
* decryption, the authentication tag is consumed along with the ciphertext and
|
|
* used to verify the integrity of the plaintext and the associated data.
|
|
*
|
|
* In-place encryption/decryption is enabled by using the same scatterlist
|
|
* pointer for both the source and destination.
|
|
*
|
|
* Even in the out-of-place case, space must be reserved in the destination for
|
|
* the associated data, even though it won't be written to. This makes the
|
|
* in-place and out-of-place cases more consistent. It is permissible for the
|
|
* "destination" associated data to alias the "source" associated data.
|
|
*
|
|
* As with the other scatterlist crypto APIs, zero-length scatterlist elements
|
|
* are not allowed in the used part of the scatterlist. Thus, if there is no
|
|
* associated data, the first element must point to the plaintext/ciphertext.
|
|
*
|
|
* To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
|
|
* rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes
|
|
* of the associated data buffer must contain a second copy of the IV. This is
|
|
* in addition to the copy passed to aead_request_set_crypt(). These two IV
|
|
* copies must not differ; different implementations of the same algorithm may
|
|
* behave differently in that case. Note that the algorithm might not actually
|
|
* treat the IV as associated data; nevertheless the length passed to
|
|
* aead_request_set_ad() must include it.
|
|
*/
|
|
|
|
struct crypto_aead;
|
|
struct scatterlist;
|
|
|
|
/**
|
|
* struct aead_request - AEAD request
|
|
* @base: Common attributes for async crypto requests
|
|
* @assoclen: Length in bytes of associated data for authentication
|
|
* @cryptlen: Length of data to be encrypted or decrypted
|
|
* @iv: Initialisation vector
|
|
* @src: Source data
|
|
* @dst: Destination data
|
|
* @__ctx: Start of private context data
|
|
*/
|
|
struct aead_request {
|
|
struct crypto_async_request base;
|
|
|
|
unsigned int assoclen;
|
|
unsigned int cryptlen;
|
|
|
|
u8 *iv;
|
|
|
|
struct scatterlist *src;
|
|
struct scatterlist *dst;
|
|
|
|
void *__ctx[] CRYPTO_MINALIGN_ATTR;
|
|
};
|
|
|
|
/*
|
|
* struct crypto_istat_aead - statistics for AEAD algorithm
|
|
* @encrypt_cnt: number of encrypt requests
|
|
* @encrypt_tlen: total data size handled by encrypt requests
|
|
* @decrypt_cnt: number of decrypt requests
|
|
* @decrypt_tlen: total data size handled by decrypt requests
|
|
* @err_cnt: number of error for AEAD requests
|
|
*/
|
|
struct crypto_istat_aead {
|
|
atomic64_t encrypt_cnt;
|
|
atomic64_t encrypt_tlen;
|
|
atomic64_t decrypt_cnt;
|
|
atomic64_t decrypt_tlen;
|
|
atomic64_t err_cnt;
|
|
};
|
|
|
|
/**
|
|
* struct aead_alg - AEAD cipher definition
|
|
* @maxauthsize: Set the maximum authentication tag size supported by the
|
|
* transformation. A transformation may support smaller tag sizes.
|
|
* As the authentication tag is a message digest to ensure the
|
|
* integrity of the encrypted data, a consumer typically wants the
|
|
* largest authentication tag possible as defined by this
|
|
* variable.
|
|
* @setauthsize: Set authentication size for the AEAD transformation. This
|
|
* function is used to specify the consumer requested size of the
|
|
* authentication tag to be either generated by the transformation
|
|
* during encryption or the size of the authentication tag to be
|
|
* supplied during the decryption operation. This function is also
|
|
* responsible for checking the authentication tag size for
|
|
* validity.
|
|
* @setkey: see struct skcipher_alg
|
|
* @encrypt: see struct skcipher_alg
|
|
* @decrypt: see struct skcipher_alg
|
|
* @stat: statistics for AEAD algorithm
|
|
* @ivsize: see struct skcipher_alg
|
|
* @chunksize: see struct skcipher_alg
|
|
* @init: Initialize the cryptographic transformation object. This function
|
|
* is used to initialize the cryptographic transformation object.
|
|
* This function is called only once at the instantiation time, right
|
|
* after the transformation context was allocated. In case the
|
|
* cryptographic hardware has some special requirements which need to
|
|
* be handled by software, this function shall check for the precise
|
|
* requirement of the transformation and put any software fallbacks
|
|
* in place.
|
|
* @exit: Deinitialize the cryptographic transformation object. This is a
|
|
* counterpart to @init, used to remove various changes set in
|
|
* @init.
|
|
* @base: Definition of a generic crypto cipher algorithm.
|
|
*
|
|
* All fields except @ivsize is mandatory and must be filled.
|
|
*/
|
|
struct aead_alg {
|
|
int (*setkey)(struct crypto_aead *tfm, const u8 *key,
|
|
unsigned int keylen);
|
|
int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
|
|
int (*encrypt)(struct aead_request *req);
|
|
int (*decrypt)(struct aead_request *req);
|
|
int (*init)(struct crypto_aead *tfm);
|
|
void (*exit)(struct crypto_aead *tfm);
|
|
|
|
#ifdef CONFIG_CRYPTO_STATS
|
|
struct crypto_istat_aead stat;
|
|
#endif
|
|
|
|
unsigned int ivsize;
|
|
unsigned int maxauthsize;
|
|
unsigned int chunksize;
|
|
|
|
struct crypto_alg base;
|
|
};
|
|
|
|
struct crypto_aead {
|
|
unsigned int authsize;
|
|
unsigned int reqsize;
|
|
|
|
struct crypto_tfm base;
|
|
};
|
|
|
|
static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
|
|
{
|
|
return container_of(tfm, struct crypto_aead, base);
|
|
}
|
|
|
|
/**
|
|
* crypto_alloc_aead() - allocate AEAD cipher handle
|
|
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
|
|
* AEAD cipher
|
|
* @type: specifies the type of the cipher
|
|
* @mask: specifies the mask for the cipher
|
|
*
|
|
* Allocate a cipher handle for an AEAD. The returned struct
|
|
* crypto_aead is the cipher handle that is required for any subsequent
|
|
* API invocation for that AEAD.
|
|
*
|
|
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
|
|
* of an error, PTR_ERR() returns the error code.
|
|
*/
|
|
struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
|
|
|
|
static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
|
|
{
|
|
return &tfm->base;
|
|
}
|
|
|
|
/**
|
|
* crypto_free_aead() - zeroize and free aead handle
|
|
* @tfm: cipher handle to be freed
|
|
*
|
|
* If @tfm is a NULL or error pointer, this function does nothing.
|
|
*/
|
|
static inline void crypto_free_aead(struct crypto_aead *tfm)
|
|
{
|
|
crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
|
|
}
|
|
|
|
static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
|
|
{
|
|
return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
|
|
}
|
|
|
|
static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
|
|
{
|
|
return container_of(crypto_aead_tfm(tfm)->__crt_alg,
|
|
struct aead_alg, base);
|
|
}
|
|
|
|
static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
|
|
{
|
|
return alg->ivsize;
|
|
}
|
|
|
|
/**
|
|
* crypto_aead_ivsize() - obtain IV size
|
|
* @tfm: cipher handle
|
|
*
|
|
* The size of the IV for the aead referenced by the cipher handle is
|
|
* returned. This IV size may be zero if the cipher does not need an IV.
|
|
*
|
|
* Return: IV size in bytes
|
|
*/
|
|
static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
|
|
{
|
|
return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
|
|
}
|
|
|
|
/**
|
|
* crypto_aead_authsize() - obtain maximum authentication data size
|
|
* @tfm: cipher handle
|
|
*
|
|
* The maximum size of the authentication data for the AEAD cipher referenced
|
|
* by the AEAD cipher handle is returned. The authentication data size may be
|
|
* zero if the cipher implements a hard-coded maximum.
|
|
*
|
|
* The authentication data may also be known as "tag value".
|
|
*
|
|
* Return: authentication data size / tag size in bytes
|
|
*/
|
|
static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
|
|
{
|
|
return tfm->authsize;
|
|
}
|
|
|
|
static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
|
|
{
|
|
return alg->maxauthsize;
|
|
}
|
|
|
|
static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
|
|
{
|
|
return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
|
|
}
|
|
|
|
/**
|
|
* crypto_aead_blocksize() - obtain block size of cipher
|
|
* @tfm: cipher handle
|
|
*
|
|
* The block size for the AEAD referenced with the cipher handle is returned.
|
|
* The caller may use that information to allocate appropriate memory for the
|
|
* data returned by the encryption or decryption operation
|
|
*
|
|
* Return: block size of cipher
|
|
*/
|
|
static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
|
|
{
|
|
return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
|
|
}
|
|
|
|
static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
|
|
{
|
|
return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
|
|
}
|
|
|
|
static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
|
|
{
|
|
return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
|
|
}
|
|
|
|
static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
|
|
{
|
|
crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
|
|
}
|
|
|
|
static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
|
|
{
|
|
crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
|
|
}
|
|
|
|
/**
|
|
* crypto_aead_setkey() - set key for cipher
|
|
* @tfm: cipher handle
|
|
* @key: buffer holding the key
|
|
* @keylen: length of the key in bytes
|
|
*
|
|
* The caller provided key is set for the AEAD referenced by the cipher
|
|
* handle.
|
|
*
|
|
* Note, the key length determines the cipher type. Many block ciphers implement
|
|
* different cipher modes depending on the key size, such as AES-128 vs AES-192
|
|
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
|
|
* is performed.
|
|
*
|
|
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
|
|
*/
|
|
int crypto_aead_setkey(struct crypto_aead *tfm,
|
|
const u8 *key, unsigned int keylen);
|
|
|
|
/**
|
|
* crypto_aead_setauthsize() - set authentication data size
|
|
* @tfm: cipher handle
|
|
* @authsize: size of the authentication data / tag in bytes
|
|
*
|
|
* Set the authentication data size / tag size. AEAD requires an authentication
|
|
* tag (or MAC) in addition to the associated data.
|
|
*
|
|
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
|
|
*/
|
|
int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
|
|
|
|
static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
|
|
{
|
|
return __crypto_aead_cast(req->base.tfm);
|
|
}
|
|
|
|
/**
|
|
* crypto_aead_encrypt() - encrypt plaintext
|
|
* @req: reference to the aead_request handle that holds all information
|
|
* needed to perform the cipher operation
|
|
*
|
|
* Encrypt plaintext data using the aead_request handle. That data structure
|
|
* and how it is filled with data is discussed with the aead_request_*
|
|
* functions.
|
|
*
|
|
* IMPORTANT NOTE The encryption operation creates the authentication data /
|
|
* tag. That data is concatenated with the created ciphertext.
|
|
* The ciphertext memory size is therefore the given number of
|
|
* block cipher blocks + the size defined by the
|
|
* crypto_aead_setauthsize invocation. The caller must ensure
|
|
* that sufficient memory is available for the ciphertext and
|
|
* the authentication tag.
|
|
*
|
|
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
|
|
*/
|
|
int crypto_aead_encrypt(struct aead_request *req);
|
|
|
|
/**
|
|
* crypto_aead_decrypt() - decrypt ciphertext
|
|
* @req: reference to the aead_request handle that holds all information
|
|
* needed to perform the cipher operation
|
|
*
|
|
* Decrypt ciphertext data using the aead_request handle. That data structure
|
|
* and how it is filled with data is discussed with the aead_request_*
|
|
* functions.
|
|
*
|
|
* IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
|
|
* authentication data / tag. That authentication data / tag
|
|
* must have the size defined by the crypto_aead_setauthsize
|
|
* invocation.
|
|
*
|
|
*
|
|
* Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
|
|
* cipher operation performs the authentication of the data during the
|
|
* decryption operation. Therefore, the function returns this error if
|
|
* the authentication of the ciphertext was unsuccessful (i.e. the
|
|
* integrity of the ciphertext or the associated data was violated);
|
|
* < 0 if an error occurred.
|
|
*/
|
|
int crypto_aead_decrypt(struct aead_request *req);
|
|
|
|
/**
|
|
* DOC: Asynchronous AEAD Request Handle
|
|
*
|
|
* The aead_request data structure contains all pointers to data required for
|
|
* the AEAD cipher operation. This includes the cipher handle (which can be
|
|
* used by multiple aead_request instances), pointer to plaintext and
|
|
* ciphertext, asynchronous callback function, etc. It acts as a handle to the
|
|
* aead_request_* API calls in a similar way as AEAD handle to the
|
|
* crypto_aead_* API calls.
|
|
*/
|
|
|
|
/**
|
|
* crypto_aead_reqsize() - obtain size of the request data structure
|
|
* @tfm: cipher handle
|
|
*
|
|
* Return: number of bytes
|
|
*/
|
|
static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
|
|
{
|
|
return tfm->reqsize;
|
|
}
|
|
|
|
/**
|
|
* aead_request_set_tfm() - update cipher handle reference in request
|
|
* @req: request handle to be modified
|
|
* @tfm: cipher handle that shall be added to the request handle
|
|
*
|
|
* Allow the caller to replace the existing aead handle in the request
|
|
* data structure with a different one.
|
|
*/
|
|
static inline void aead_request_set_tfm(struct aead_request *req,
|
|
struct crypto_aead *tfm)
|
|
{
|
|
req->base.tfm = crypto_aead_tfm(tfm);
|
|
}
|
|
|
|
/**
|
|
* aead_request_alloc() - allocate request data structure
|
|
* @tfm: cipher handle to be registered with the request
|
|
* @gfp: memory allocation flag that is handed to kmalloc by the API call.
|
|
*
|
|
* Allocate the request data structure that must be used with the AEAD
|
|
* encrypt and decrypt API calls. During the allocation, the provided aead
|
|
* handle is registered in the request data structure.
|
|
*
|
|
* Return: allocated request handle in case of success, or NULL if out of memory
|
|
*/
|
|
static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
|
|
gfp_t gfp)
|
|
{
|
|
struct aead_request *req;
|
|
|
|
req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
|
|
|
|
if (likely(req))
|
|
aead_request_set_tfm(req, tfm);
|
|
|
|
return req;
|
|
}
|
|
|
|
/**
|
|
* aead_request_free() - zeroize and free request data structure
|
|
* @req: request data structure cipher handle to be freed
|
|
*/
|
|
static inline void aead_request_free(struct aead_request *req)
|
|
{
|
|
kfree_sensitive(req);
|
|
}
|
|
|
|
/**
|
|
* aead_request_set_callback() - set asynchronous callback function
|
|
* @req: request handle
|
|
* @flags: specify zero or an ORing of the flags
|
|
* CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
|
|
* increase the wait queue beyond the initial maximum size;
|
|
* CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
|
|
* @compl: callback function pointer to be registered with the request handle
|
|
* @data: The data pointer refers to memory that is not used by the kernel
|
|
* crypto API, but provided to the callback function for it to use. Here,
|
|
* the caller can provide a reference to memory the callback function can
|
|
* operate on. As the callback function is invoked asynchronously to the
|
|
* related functionality, it may need to access data structures of the
|
|
* related functionality which can be referenced using this pointer. The
|
|
* callback function can access the memory via the "data" field in the
|
|
* crypto_async_request data structure provided to the callback function.
|
|
*
|
|
* Setting the callback function that is triggered once the cipher operation
|
|
* completes
|
|
*
|
|
* The callback function is registered with the aead_request handle and
|
|
* must comply with the following template::
|
|
*
|
|
* void callback_function(struct crypto_async_request *req, int error)
|
|
*/
|
|
static inline void aead_request_set_callback(struct aead_request *req,
|
|
u32 flags,
|
|
crypto_completion_t compl,
|
|
void *data)
|
|
{
|
|
req->base.complete = compl;
|
|
req->base.data = data;
|
|
req->base.flags = flags;
|
|
}
|
|
|
|
/**
|
|
* aead_request_set_crypt - set data buffers
|
|
* @req: request handle
|
|
* @src: source scatter / gather list
|
|
* @dst: destination scatter / gather list
|
|
* @cryptlen: number of bytes to process from @src
|
|
* @iv: IV for the cipher operation which must comply with the IV size defined
|
|
* by crypto_aead_ivsize()
|
|
*
|
|
* Setting the source data and destination data scatter / gather lists which
|
|
* hold the associated data concatenated with the plaintext or ciphertext. See
|
|
* below for the authentication tag.
|
|
*
|
|
* For encryption, the source is treated as the plaintext and the
|
|
* destination is the ciphertext. For a decryption operation, the use is
|
|
* reversed - the source is the ciphertext and the destination is the plaintext.
|
|
*
|
|
* The memory structure for cipher operation has the following structure:
|
|
*
|
|
* - AEAD encryption input: assoc data || plaintext
|
|
* - AEAD encryption output: assoc data || ciphertext || auth tag
|
|
* - AEAD decryption input: assoc data || ciphertext || auth tag
|
|
* - AEAD decryption output: assoc data || plaintext
|
|
*
|
|
* Albeit the kernel requires the presence of the AAD buffer, however,
|
|
* the kernel does not fill the AAD buffer in the output case. If the
|
|
* caller wants to have that data buffer filled, the caller must either
|
|
* use an in-place cipher operation (i.e. same memory location for
|
|
* input/output memory location).
|
|
*/
|
|
static inline void aead_request_set_crypt(struct aead_request *req,
|
|
struct scatterlist *src,
|
|
struct scatterlist *dst,
|
|
unsigned int cryptlen, u8 *iv)
|
|
{
|
|
req->src = src;
|
|
req->dst = dst;
|
|
req->cryptlen = cryptlen;
|
|
req->iv = iv;
|
|
}
|
|
|
|
/**
|
|
* aead_request_set_ad - set associated data information
|
|
* @req: request handle
|
|
* @assoclen: number of bytes in associated data
|
|
*
|
|
* Setting the AD information. This function sets the length of
|
|
* the associated data.
|
|
*/
|
|
static inline void aead_request_set_ad(struct aead_request *req,
|
|
unsigned int assoclen)
|
|
{
|
|
req->assoclen = assoclen;
|
|
}
|
|
|
|
#endif /* _CRYPTO_AEAD_H */
|