linux/arch/x86/kernel/alternative.c
Linus Torvalds 7e062cda7d Networking changes for 5.19.
Core
 ----
 
  - Support TCPv6 segmentation offload with super-segments larger than
    64k bytes using the IPv6 Jumbogram extension header (AKA BIG TCP).
 
  - Generalize skb freeing deferral to per-cpu lists, instead of
    per-socket lists.
 
  - Add a netdev statistic for packets dropped due to L2 address
    mismatch (rx_otherhost_dropped).
 
  - Continue work annotating skb drop reasons.
 
  - Accept alternative netdev names (ALT_IFNAME) in more netlink
    requests.
 
  - Add VLAN support for AF_PACKET SOCK_RAW GSO.
 
  - Allow receiving skb mark from the socket as a cmsg.
 
  - Enable memcg accounting for veth queues, sysctl tables and IPv6.
 
 BPF
 ---
 
  - Add libbpf support for User Statically-Defined Tracing (USDTs).
 
  - Speed up symbol resolution for kprobes multi-link attachments.
 
  - Support storing typed pointers to referenced and unreferenced
    objects in BPF maps.
 
  - Add support for BPF link iterator.
 
  - Introduce access to remote CPU map elements in BPF per-cpu map.
 
  - Allow middle-of-the-road settings for the
    kernel.unprivileged_bpf_disabled sysctl.
 
  - Implement basic types of dynamic pointers e.g. to allow for
    dynamically sized ringbuf reservations without extra memory copies.
 
 Protocols
 ---------
 
  - Retire port only listening_hash table, add a second bind table
    hashed by port and address. Avoid linear list walk when binding
    to very popular ports (e.g. 443).
 
  - Add bridge FDB bulk flush filtering support allowing user space
    to remove all FDB entries matching a condition.
 
  - Introduce accept_unsolicited_na sysctl for IPv6 to implement
    router-side changes for RFC9131.
 
  - Support for MPTCP path manager in user space.
 
  - Add MPTCP support for fallback to regular TCP for connections
    that have never connected additional subflows or transmitted
    out-of-sequence data (partial support for RFC8684 fallback).
 
  - Avoid races in MPTCP-level window tracking, stabilize and improve
    throughput.
 
  - Support lockless operation of GRE tunnels with seq numbers enabled.
 
  - WiFi support for host based BSS color collision detection.
 
  - Add support for SO_TXTIME/SCM_TXTIME on CAN sockets.
 
  - Support transmission w/o flow control in CAN ISOTP (ISO 15765-2).
 
  - Support zero-copy Tx with TLS 1.2 crypto offload (sendfile).
 
  - Allow matching on the number of VLAN tags via tc-flower.
 
  - Add tracepoint for tcp_set_ca_state().
 
 Driver API
 ----------
 
  - Improve error reporting from classifier and action offload.
 
  - Add support for listing line cards in switches (devlink).
 
  - Add helpers for reporting page pool statistics with ethtool -S.
 
  - Add support for reading clock cycles when using PTP virtual clocks,
    instead of having the driver convert to time before reporting.
    This makes it possible to report time from different vclocks.
 
  - Support configuring low-latency Tx descriptor push via ethtool.
 
  - Separate Clause 22 and Clause 45 MDIO accesses more explicitly.
 
 New hardware / drivers
 ----------------------
 
  - Ethernet:
    - Marvell's Octeon NIC PCI Endpoint support (octeon_ep)
    - Sunplus SP7021 SoC (sp7021_emac)
    - Add support for Renesas RZ/V2M (in ravb)
    - Add support for MediaTek mt7986 switches (in mtk_eth_soc)
 
  - Ethernet PHYs:
    - ADIN1100 industrial PHYs (w/ 10BASE-T1L and SQI reporting)
    - TI DP83TD510 PHY
    - Microchip LAN8742/LAN88xx PHYs
 
  - WiFi:
    - Driver for pureLiFi X, XL, XC devices (plfxlc)
    - Driver for Silicon Labs devices (wfx)
    - Support for WCN6750 (in ath11k)
    - Support Realtek 8852ce devices (in rtw89)
 
  - Mobile:
    - MediaTek T700 modems (Intel 5G 5000 M.2 cards)
 
  - CAN:
   - ctucanfd: add support for CTU CAN FD open-source IP core
     from Czech Technical University in Prague
 
 Drivers
 -------
 
  - Delete a number of old drivers still using virt_to_bus().
 
  - Ethernet NICs:
    - intel: support TSO on tunnels MPLS
    - broadcom: support multi-buffer XDP
    - nfp: support VF rate limiting
    - sfc: use hardware tx timestamps for more than PTP
    - mlx5: multi-port eswitch support
    - hyper-v: add support for XDP_REDIRECT
    - atlantic: XDP support (including multi-buffer)
    - macb: improve real-time perf by deferring Tx processing to NAPI
 
  - High-speed Ethernet switches:
    - mlxsw: implement basic line card information querying
    - prestera: add support for traffic policing on ingress and egress
 
  - Embedded Ethernet switches:
    - lan966x: add support for packet DMA (FDMA)
    - lan966x: add support for PTP programmable pins
    - ti: cpsw_new: enable bc/mc storm prevention
 
  - Qualcomm 802.11ax WiFi (ath11k):
    - Wake-on-WLAN support for QCA6390 and WCN6855
    - device recovery (firmware restart) support
    - support setting Specific Absorption Rate (SAR) for WCN6855
    - read country code from SMBIOS for WCN6855/QCA6390
    - enable keep-alive during WoWLAN suspend
    - implement remain-on-channel support
 
  - MediaTek WiFi (mt76):
    - support Wireless Ethernet Dispatch offloading packet movement
      between the Ethernet switch and WiFi interfaces
    - non-standard VHT MCS10-11 support
    - mt7921 AP mode support
    - mt7921 IPv6 NS offload support
 
  - Ethernet PHYs:
    - micrel: ksz9031/ksz9131: cabletest support
    - lan87xx: SQI support for T1 PHYs
    - lan937x: add interrupt support for link detection
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmKNMPQACgkQMUZtbf5S
 IrsRARAAuDyYs6jFYB3p+xazZdOnbF4iAgVv71+DQGvmsCl6CB9OrsNZMlvE85OL
 Q3gjcRbgjrkN4lhgI8DmiGYbsUJnAvVjFdNjccz1Z/vTLYvuIM0ol54MUp5S+9WY
 StncOJkOGJxxR/Gi5gzVmejPDsysU3Jik+hm/fpIcz8pybXxAsFKU5waY5qfl+/T
 TZepfV0VCfqRDjqcF1qA5+jJZNU8pdodQlZ1+mh8bwu6Jk1ZkWkj6Ov8MWdwQldr
 LnPeK/9hIGzkdJYHZfajxA3t8D0K5CHzSuih2bJ9ry8ZXgVBkXEThew778/R5izW
 uB0YZs9COFlrIP7XHjtRTy/2xHOdYIPlj2nWhVdfuQDX8Crvt4VRN6EZ1rjko1ZJ
 WanfG6WHF8NH5pXBRQbh3kIMKBnYn6OIzuCfCQSqd+niHcxFIM4vRiggeXI5C5TW
 vJgEWfK6X+NfDiFVa3xyCrEmp5ieA/pNecpwd8rVkql+MtFAAw4vfsotLKOJEAru
 J/XL6UE+YuLqIJV9ACZ9x1AFXXAo661jOxBunOo4VXhXVzWS9lYYz5r5ryIkgT/8
 /Fr0zjANJWgfIuNdIBtYfQ4qG+LozGq038VA06RhFUAZ5tF9DzhqJs2Q2AFuWWBC
 ewCePJVqo1j2Ceq2mGonXRt47OEnlePoOxTk9W+cKZb7ZWE+zEo=
 =Wjii
 -----END PGP SIGNATURE-----

Merge tag 'net-next-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:
 "Core
  ----

   - Support TCPv6 segmentation offload with super-segments larger than
     64k bytes using the IPv6 Jumbogram extension header (AKA BIG TCP).

   - Generalize skb freeing deferral to per-cpu lists, instead of
     per-socket lists.

   - Add a netdev statistic for packets dropped due to L2 address
     mismatch (rx_otherhost_dropped).

   - Continue work annotating skb drop reasons.

   - Accept alternative netdev names (ALT_IFNAME) in more netlink
     requests.

   - Add VLAN support for AF_PACKET SOCK_RAW GSO.

   - Allow receiving skb mark from the socket as a cmsg.

   - Enable memcg accounting for veth queues, sysctl tables and IPv6.

  BPF
  ---

   - Add libbpf support for User Statically-Defined Tracing (USDTs).

   - Speed up symbol resolution for kprobes multi-link attachments.

   - Support storing typed pointers to referenced and unreferenced
     objects in BPF maps.

   - Add support for BPF link iterator.

   - Introduce access to remote CPU map elements in BPF per-cpu map.

   - Allow middle-of-the-road settings for the
     kernel.unprivileged_bpf_disabled sysctl.

   - Implement basic types of dynamic pointers e.g. to allow for
     dynamically sized ringbuf reservations without extra memory copies.

  Protocols
  ---------

   - Retire port only listening_hash table, add a second bind table
     hashed by port and address. Avoid linear list walk when binding to
     very popular ports (e.g. 443).

   - Add bridge FDB bulk flush filtering support allowing user space to
     remove all FDB entries matching a condition.

   - Introduce accept_unsolicited_na sysctl for IPv6 to implement
     router-side changes for RFC9131.

   - Support for MPTCP path manager in user space.

   - Add MPTCP support for fallback to regular TCP for connections that
     have never connected additional subflows or transmitted
     out-of-sequence data (partial support for RFC8684 fallback).

   - Avoid races in MPTCP-level window tracking, stabilize and improve
     throughput.

   - Support lockless operation of GRE tunnels with seq numbers enabled.

   - WiFi support for host based BSS color collision detection.

   - Add support for SO_TXTIME/SCM_TXTIME on CAN sockets.

   - Support transmission w/o flow control in CAN ISOTP (ISO 15765-2).

   - Support zero-copy Tx with TLS 1.2 crypto offload (sendfile).

   - Allow matching on the number of VLAN tags via tc-flower.

   - Add tracepoint for tcp_set_ca_state().

  Driver API
  ----------

   - Improve error reporting from classifier and action offload.

   - Add support for listing line cards in switches (devlink).

   - Add helpers for reporting page pool statistics with ethtool -S.

   - Add support for reading clock cycles when using PTP virtual clocks,
     instead of having the driver convert to time before reporting. This
     makes it possible to report time from different vclocks.

   - Support configuring low-latency Tx descriptor push via ethtool.

   - Separate Clause 22 and Clause 45 MDIO accesses more explicitly.

  New hardware / drivers
  ----------------------

   - Ethernet:
      - Marvell's Octeon NIC PCI Endpoint support (octeon_ep)
      - Sunplus SP7021 SoC (sp7021_emac)
      - Add support for Renesas RZ/V2M (in ravb)
      - Add support for MediaTek mt7986 switches (in mtk_eth_soc)

   - Ethernet PHYs:
      - ADIN1100 industrial PHYs (w/ 10BASE-T1L and SQI reporting)
      - TI DP83TD510 PHY
      - Microchip LAN8742/LAN88xx PHYs

   - WiFi:
      - Driver for pureLiFi X, XL, XC devices (plfxlc)
      - Driver for Silicon Labs devices (wfx)
      - Support for WCN6750 (in ath11k)
      - Support Realtek 8852ce devices (in rtw89)

   - Mobile:
      - MediaTek T700 modems (Intel 5G 5000 M.2 cards)

   - CAN:
      - ctucanfd: add support for CTU CAN FD open-source IP core from
        Czech Technical University in Prague

  Drivers
  -------

   - Delete a number of old drivers still using virt_to_bus().

   - Ethernet NICs:
      - intel: support TSO on tunnels MPLS
      - broadcom: support multi-buffer XDP
      - nfp: support VF rate limiting
      - sfc: use hardware tx timestamps for more than PTP
      - mlx5: multi-port eswitch support
      - hyper-v: add support for XDP_REDIRECT
      - atlantic: XDP support (including multi-buffer)
      - macb: improve real-time perf by deferring Tx processing to NAPI

   - High-speed Ethernet switches:
      - mlxsw: implement basic line card information querying
      - prestera: add support for traffic policing on ingress and egress

   - Embedded Ethernet switches:
      - lan966x: add support for packet DMA (FDMA)
      - lan966x: add support for PTP programmable pins
      - ti: cpsw_new: enable bc/mc storm prevention

   - Qualcomm 802.11ax WiFi (ath11k):
      - Wake-on-WLAN support for QCA6390 and WCN6855
      - device recovery (firmware restart) support
      - support setting Specific Absorption Rate (SAR) for WCN6855
      - read country code from SMBIOS for WCN6855/QCA6390
      - enable keep-alive during WoWLAN suspend
      - implement remain-on-channel support

   - MediaTek WiFi (mt76):
      - support Wireless Ethernet Dispatch offloading packet movement
        between the Ethernet switch and WiFi interfaces
      - non-standard VHT MCS10-11 support
      - mt7921 AP mode support
      - mt7921 IPv6 NS offload support

   - Ethernet PHYs:
      - micrel: ksz9031/ksz9131: cabletest support
      - lan87xx: SQI support for T1 PHYs
      - lan937x: add interrupt support for link detection"

* tag 'net-next-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1809 commits)
  ptp: ocp: Add firmware header checks
  ptp: ocp: fix PPS source selector debugfs reporting
  ptp: ocp: add .init function for sma_op vector
  ptp: ocp: vectorize the sma accessor functions
  ptp: ocp: constify selectors
  ptp: ocp: parameterize input/output sma selectors
  ptp: ocp: revise firmware display
  ptp: ocp: add Celestica timecard PCI ids
  ptp: ocp: Remove #ifdefs around PCI IDs
  ptp: ocp: 32-bit fixups for pci start address
  Revert "net/smc: fix listen processing for SMC-Rv2"
  ath6kl: Use cc-disable-warning to disable -Wdangling-pointer
  selftests/bpf: Dynptr tests
  bpf: Add dynptr data slices
  bpf: Add bpf_dynptr_read and bpf_dynptr_write
  bpf: Dynptr support for ring buffers
  bpf: Add bpf_dynptr_from_mem for local dynptrs
  bpf: Add verifier support for dynptrs
  bpf: Suppress 'passing zero to PTR_ERR' warning
  bpf: Introduce bpf_arch_text_invalidate for bpf_prog_pack
  ...
2022-05-25 12:22:58 -07:00

1637 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) "SMP alternatives: " fmt
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/perf_event.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/stringify.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/memory.h>
#include <linux/stop_machine.h>
#include <linux/slab.h>
#include <linux/kdebug.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/bsearch.h>
#include <linux/sync_core.h>
#include <asm/text-patching.h>
#include <asm/alternative.h>
#include <asm/sections.h>
#include <asm/mce.h>
#include <asm/nmi.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/insn.h>
#include <asm/io.h>
#include <asm/fixmap.h>
#include <asm/paravirt.h>
#include <asm/asm-prototypes.h>
int __read_mostly alternatives_patched;
EXPORT_SYMBOL_GPL(alternatives_patched);
#define MAX_PATCH_LEN (255-1)
static int __initdata_or_module debug_alternative;
static int __init debug_alt(char *str)
{
debug_alternative = 1;
return 1;
}
__setup("debug-alternative", debug_alt);
static int noreplace_smp;
static int __init setup_noreplace_smp(char *str)
{
noreplace_smp = 1;
return 1;
}
__setup("noreplace-smp", setup_noreplace_smp);
#define DPRINTK(fmt, args...) \
do { \
if (debug_alternative) \
printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
} while (0)
#define DUMP_BYTES(buf, len, fmt, args...) \
do { \
if (unlikely(debug_alternative)) { \
int j; \
\
if (!(len)) \
break; \
\
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
for (j = 0; j < (len) - 1; j++) \
printk(KERN_CONT "%02hhx ", buf[j]); \
printk(KERN_CONT "%02hhx\n", buf[j]); \
} \
} while (0)
static const unsigned char x86nops[] =
{
BYTES_NOP1,
BYTES_NOP2,
BYTES_NOP3,
BYTES_NOP4,
BYTES_NOP5,
BYTES_NOP6,
BYTES_NOP7,
BYTES_NOP8,
};
const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
{
NULL,
x86nops,
x86nops + 1,
x86nops + 1 + 2,
x86nops + 1 + 2 + 3,
x86nops + 1 + 2 + 3 + 4,
x86nops + 1 + 2 + 3 + 4 + 5,
x86nops + 1 + 2 + 3 + 4 + 5 + 6,
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
};
/* Use this to add nops to a buffer, then text_poke the whole buffer. */
static void __init_or_module add_nops(void *insns, unsigned int len)
{
while (len > 0) {
unsigned int noplen = len;
if (noplen > ASM_NOP_MAX)
noplen = ASM_NOP_MAX;
memcpy(insns, x86_nops[noplen], noplen);
insns += noplen;
len -= noplen;
}
}
extern s32 __retpoline_sites[], __retpoline_sites_end[];
extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
extern s32 __smp_locks[], __smp_locks_end[];
void text_poke_early(void *addr, const void *opcode, size_t len);
/*
* Are we looking at a near JMP with a 1 or 4-byte displacement.
*/
static inline bool is_jmp(const u8 opcode)
{
return opcode == 0xeb || opcode == 0xe9;
}
static void __init_or_module
recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
{
u8 *next_rip, *tgt_rip;
s32 n_dspl, o_dspl;
int repl_len;
if (a->replacementlen != 5)
return;
o_dspl = *(s32 *)(insn_buff + 1);
/* next_rip of the replacement JMP */
next_rip = repl_insn + a->replacementlen;
/* target rip of the replacement JMP */
tgt_rip = next_rip + o_dspl;
n_dspl = tgt_rip - orig_insn;
DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
if (tgt_rip - orig_insn >= 0) {
if (n_dspl - 2 <= 127)
goto two_byte_jmp;
else
goto five_byte_jmp;
/* negative offset */
} else {
if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
goto two_byte_jmp;
else
goto five_byte_jmp;
}
two_byte_jmp:
n_dspl -= 2;
insn_buff[0] = 0xeb;
insn_buff[1] = (s8)n_dspl;
add_nops(insn_buff + 2, 3);
repl_len = 2;
goto done;
five_byte_jmp:
n_dspl -= 5;
insn_buff[0] = 0xe9;
*(s32 *)&insn_buff[1] = n_dspl;
repl_len = 5;
done:
DPRINTK("final displ: 0x%08x, JMP 0x%lx",
n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
}
/*
* optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
*
* @instr: instruction byte stream
* @instrlen: length of the above
* @off: offset within @instr where the first NOP has been detected
*
* Return: number of NOPs found (and replaced).
*/
static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
{
unsigned long flags;
int i = off, nnops;
while (i < instrlen) {
if (instr[i] != 0x90)
break;
i++;
}
nnops = i - off;
if (nnops <= 1)
return nnops;
local_irq_save(flags);
add_nops(instr + off, nnops);
local_irq_restore(flags);
DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
return nnops;
}
/*
* "noinline" to cause control flow change and thus invalidate I$ and
* cause refetch after modification.
*/
static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
{
struct insn insn;
int i = 0;
/*
* Jump over the non-NOP insns and optimize single-byte NOPs into bigger
* ones.
*/
for (;;) {
if (insn_decode_kernel(&insn, &instr[i]))
return;
/*
* See if this and any potentially following NOPs can be
* optimized.
*/
if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
i += optimize_nops_range(instr, len, i);
else
i += insn.length;
if (i >= len)
return;
}
}
/*
* Replace instructions with better alternatives for this CPU type. This runs
* before SMP is initialized to avoid SMP problems with self modifying code.
* This implies that asymmetric systems where APs have less capabilities than
* the boot processor are not handled. Tough. Make sure you disable such
* features by hand.
*
* Marked "noinline" to cause control flow change and thus insn cache
* to refetch changed I$ lines.
*/
void __init_or_module noinline apply_alternatives(struct alt_instr *start,
struct alt_instr *end)
{
struct alt_instr *a;
u8 *instr, *replacement;
u8 insn_buff[MAX_PATCH_LEN];
DPRINTK("alt table %px, -> %px", start, end);
/*
* The scan order should be from start to end. A later scanned
* alternative code can overwrite previously scanned alternative code.
* Some kernel functions (e.g. memcpy, memset, etc) use this order to
* patch code.
*
* So be careful if you want to change the scan order to any other
* order.
*/
for (a = start; a < end; a++) {
int insn_buff_sz = 0;
/* Mask away "NOT" flag bit for feature to test. */
u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
instr = (u8 *)&a->instr_offset + a->instr_offset;
replacement = (u8 *)&a->repl_offset + a->repl_offset;
BUG_ON(a->instrlen > sizeof(insn_buff));
BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
/*
* Patch if either:
* - feature is present
* - feature not present but ALTINSTR_FLAG_INV is set to mean,
* patch if feature is *NOT* present.
*/
if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
goto next;
DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
feature >> 5,
feature & 0x1f,
instr, instr, a->instrlen,
replacement, a->replacementlen);
DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
memcpy(insn_buff, replacement, a->replacementlen);
insn_buff_sz = a->replacementlen;
/*
* 0xe8 is a relative jump; fix the offset.
*
* Instruction length is checked before the opcode to avoid
* accessing uninitialized bytes for zero-length replacements.
*/
if (a->replacementlen == 5 && *insn_buff == 0xe8) {
*(s32 *)(insn_buff + 1) += replacement - instr;
DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
*(s32 *)(insn_buff + 1),
(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
}
if (a->replacementlen && is_jmp(replacement[0]))
recompute_jump(a, instr, replacement, insn_buff);
for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
insn_buff[insn_buff_sz] = 0x90;
DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
text_poke_early(instr, insn_buff, insn_buff_sz);
next:
optimize_nops(instr, a->instrlen);
}
}
#if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
/*
* CALL/JMP *%\reg
*/
static int emit_indirect(int op, int reg, u8 *bytes)
{
int i = 0;
u8 modrm;
switch (op) {
case CALL_INSN_OPCODE:
modrm = 0x10; /* Reg = 2; CALL r/m */
break;
case JMP32_INSN_OPCODE:
modrm = 0x20; /* Reg = 4; JMP r/m */
break;
default:
WARN_ON_ONCE(1);
return -1;
}
if (reg >= 8) {
bytes[i++] = 0x41; /* REX.B prefix */
reg -= 8;
}
modrm |= 0xc0; /* Mod = 3 */
modrm += reg;
bytes[i++] = 0xff; /* opcode */
bytes[i++] = modrm;
return i;
}
/*
* Rewrite the compiler generated retpoline thunk calls.
*
* For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
* indirect instructions, avoiding the extra indirection.
*
* For example, convert:
*
* CALL __x86_indirect_thunk_\reg
*
* into:
*
* CALL *%\reg
*
* It also tries to inline spectre_v2=retpoline,lfence when size permits.
*/
static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
{
retpoline_thunk_t *target;
int reg, ret, i = 0;
u8 op, cc;
target = addr + insn->length + insn->immediate.value;
reg = target - __x86_indirect_thunk_array;
if (WARN_ON_ONCE(reg & ~0xf))
return -1;
/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
BUG_ON(reg == 4);
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
!cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE))
return -1;
op = insn->opcode.bytes[0];
/*
* Convert:
*
* Jcc.d32 __x86_indirect_thunk_\reg
*
* into:
*
* Jncc.d8 1f
* [ LFENCE ]
* JMP *%\reg
* [ NOP ]
* 1:
*/
/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
if (op == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80) {
cc = insn->opcode.bytes[1] & 0xf;
cc ^= 1; /* invert condition */
bytes[i++] = 0x70 + cc; /* Jcc.d8 */
bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
op = JMP32_INSN_OPCODE;
}
/*
* For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
*/
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
bytes[i++] = 0x0f;
bytes[i++] = 0xae;
bytes[i++] = 0xe8; /* LFENCE */
}
ret = emit_indirect(op, reg, bytes + i);
if (ret < 0)
return ret;
i += ret;
for (; i < insn->length;)
bytes[i++] = BYTES_NOP1;
return i;
}
/*
* Generated by 'objtool --retpoline'.
*/
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
void *addr = (void *)s + *s;
struct insn insn;
int len, ret;
u8 bytes[16];
u8 op1, op2;
ret = insn_decode_kernel(&insn, addr);
if (WARN_ON_ONCE(ret < 0))
continue;
op1 = insn.opcode.bytes[0];
op2 = insn.opcode.bytes[1];
switch (op1) {
case CALL_INSN_OPCODE:
case JMP32_INSN_OPCODE:
break;
case 0x0f: /* escape */
if (op2 >= 0x80 && op2 <= 0x8f)
break;
fallthrough;
default:
WARN_ON_ONCE(1);
continue;
}
DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
addr, addr, insn.length,
addr + insn.length + insn.immediate.value);
len = patch_retpoline(addr, &insn, bytes);
if (len == insn.length) {
optimize_nops(bytes, len);
DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr);
DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
text_poke_early(addr, bytes, len);
}
}
}
#else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
#endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
#ifdef CONFIG_X86_KERNEL_IBT
/*
* Generated by: objtool --ibt
*/
void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end)
{
s32 *s;
for (s = start; s < end; s++) {
u32 endbr, poison = gen_endbr_poison();
void *addr = (void *)s + *s;
if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
continue;
if (WARN_ON_ONCE(!is_endbr(endbr)))
continue;
DPRINTK("ENDBR at: %pS (%px)", addr, addr);
/*
* When we have IBT, the lack of ENDBR will trigger #CP
*/
DUMP_BYTES(((u8*)addr), 4, "%px: orig: ", addr);
DUMP_BYTES(((u8*)&poison), 4, "%px: repl: ", addr);
text_poke_early(addr, &poison, 4);
}
}
#else
void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end) { }
#endif /* CONFIG_X86_KERNEL_IBT */
#ifdef CONFIG_SMP
static void alternatives_smp_lock(const s32 *start, const s32 *end,
u8 *text, u8 *text_end)
{
const s32 *poff;
for (poff = start; poff < end; poff++) {
u8 *ptr = (u8 *)poff + *poff;
if (!*poff || ptr < text || ptr >= text_end)
continue;
/* turn DS segment override prefix into lock prefix */
if (*ptr == 0x3e)
text_poke(ptr, ((unsigned char []){0xf0}), 1);
}
}
static void alternatives_smp_unlock(const s32 *start, const s32 *end,
u8 *text, u8 *text_end)
{
const s32 *poff;
for (poff = start; poff < end; poff++) {
u8 *ptr = (u8 *)poff + *poff;
if (!*poff || ptr < text || ptr >= text_end)
continue;
/* turn lock prefix into DS segment override prefix */
if (*ptr == 0xf0)
text_poke(ptr, ((unsigned char []){0x3E}), 1);
}
}
struct smp_alt_module {
/* what is this ??? */
struct module *mod;
char *name;
/* ptrs to lock prefixes */
const s32 *locks;
const s32 *locks_end;
/* .text segment, needed to avoid patching init code ;) */
u8 *text;
u8 *text_end;
struct list_head next;
};
static LIST_HEAD(smp_alt_modules);
static bool uniproc_patched = false; /* protected by text_mutex */
void __init_or_module alternatives_smp_module_add(struct module *mod,
char *name,
void *locks, void *locks_end,
void *text, void *text_end)
{
struct smp_alt_module *smp;
mutex_lock(&text_mutex);
if (!uniproc_patched)
goto unlock;
if (num_possible_cpus() == 1)
/* Don't bother remembering, we'll never have to undo it. */
goto smp_unlock;
smp = kzalloc(sizeof(*smp), GFP_KERNEL);
if (NULL == smp)
/* we'll run the (safe but slow) SMP code then ... */
goto unlock;
smp->mod = mod;
smp->name = name;
smp->locks = locks;
smp->locks_end = locks_end;
smp->text = text;
smp->text_end = text_end;
DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
smp->locks, smp->locks_end,
smp->text, smp->text_end, smp->name);
list_add_tail(&smp->next, &smp_alt_modules);
smp_unlock:
alternatives_smp_unlock(locks, locks_end, text, text_end);
unlock:
mutex_unlock(&text_mutex);
}
void __init_or_module alternatives_smp_module_del(struct module *mod)
{
struct smp_alt_module *item;
mutex_lock(&text_mutex);
list_for_each_entry(item, &smp_alt_modules, next) {
if (mod != item->mod)
continue;
list_del(&item->next);
kfree(item);
break;
}
mutex_unlock(&text_mutex);
}
void alternatives_enable_smp(void)
{
struct smp_alt_module *mod;
/* Why bother if there are no other CPUs? */
BUG_ON(num_possible_cpus() == 1);
mutex_lock(&text_mutex);
if (uniproc_patched) {
pr_info("switching to SMP code\n");
BUG_ON(num_online_cpus() != 1);
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
list_for_each_entry(mod, &smp_alt_modules, next)
alternatives_smp_lock(mod->locks, mod->locks_end,
mod->text, mod->text_end);
uniproc_patched = false;
}
mutex_unlock(&text_mutex);
}
/*
* Return 1 if the address range is reserved for SMP-alternatives.
* Must hold text_mutex.
*/
int alternatives_text_reserved(void *start, void *end)
{
struct smp_alt_module *mod;
const s32 *poff;
u8 *text_start = start;
u8 *text_end = end;
lockdep_assert_held(&text_mutex);
list_for_each_entry(mod, &smp_alt_modules, next) {
if (mod->text > text_end || mod->text_end < text_start)
continue;
for (poff = mod->locks; poff < mod->locks_end; poff++) {
const u8 *ptr = (const u8 *)poff + *poff;
if (text_start <= ptr && text_end > ptr)
return 1;
}
}
return 0;
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_PARAVIRT
void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
struct paravirt_patch_site *end)
{
struct paravirt_patch_site *p;
char insn_buff[MAX_PATCH_LEN];
for (p = start; p < end; p++) {
unsigned int used;
BUG_ON(p->len > MAX_PATCH_LEN);
/* prep the buffer with the original instructions */
memcpy(insn_buff, p->instr, p->len);
used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
BUG_ON(used > p->len);
/* Pad the rest with nops */
add_nops(insn_buff + used, p->len - used);
text_poke_early(p->instr, insn_buff, p->len);
}
}
extern struct paravirt_patch_site __start_parainstructions[],
__stop_parainstructions[];
#endif /* CONFIG_PARAVIRT */
/*
* Self-test for the INT3 based CALL emulation code.
*
* This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
* properly and that there is a stack gap between the INT3 frame and the
* previous context. Without this gap doing a virtual PUSH on the interrupted
* stack would corrupt the INT3 IRET frame.
*
* See entry_{32,64}.S for more details.
*/
/*
* We define the int3_magic() function in assembly to control the calling
* convention such that we can 'call' it from assembly.
*/
extern void int3_magic(unsigned int *ptr); /* defined in asm */
asm (
" .pushsection .init.text, \"ax\", @progbits\n"
" .type int3_magic, @function\n"
"int3_magic:\n"
ANNOTATE_NOENDBR
" movl $1, (%" _ASM_ARG1 ")\n"
ASM_RET
" .size int3_magic, .-int3_magic\n"
" .popsection\n"
);
extern void int3_selftest_ip(void); /* defined in asm below */
static int __init
int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
unsigned long selftest = (unsigned long)&int3_selftest_ip;
struct die_args *args = data;
struct pt_regs *regs = args->regs;
OPTIMIZER_HIDE_VAR(selftest);
if (!regs || user_mode(regs))
return NOTIFY_DONE;
if (val != DIE_INT3)
return NOTIFY_DONE;
if (regs->ip - INT3_INSN_SIZE != selftest)
return NOTIFY_DONE;
int3_emulate_call(regs, (unsigned long)&int3_magic);
return NOTIFY_STOP;
}
/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
static noinline void __init int3_selftest(void)
{
static __initdata struct notifier_block int3_exception_nb = {
.notifier_call = int3_exception_notify,
.priority = INT_MAX-1, /* last */
};
unsigned int val = 0;
BUG_ON(register_die_notifier(&int3_exception_nb));
/*
* Basically: int3_magic(&val); but really complicated :-)
*
* INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
* notifier above will emulate CALL for us.
*/
asm volatile ("int3_selftest_ip:\n\t"
ANNOTATE_NOENDBR
" int3; nop; nop; nop; nop\n\t"
: ASM_CALL_CONSTRAINT
: __ASM_SEL_RAW(a, D) (&val)
: "memory");
BUG_ON(val != 1);
unregister_die_notifier(&int3_exception_nb);
}
void __init alternative_instructions(void)
{
int3_selftest();
/*
* The patching is not fully atomic, so try to avoid local
* interruptions that might execute the to be patched code.
* Other CPUs are not running.
*/
stop_nmi();
/*
* Don't stop machine check exceptions while patching.
* MCEs only happen when something got corrupted and in this
* case we must do something about the corruption.
* Ignoring it is worse than an unlikely patching race.
* Also machine checks tend to be broadcast and if one CPU
* goes into machine check the others follow quickly, so we don't
* expect a machine check to cause undue problems during to code
* patching.
*/
/*
* Paravirt patching and alternative patching can be combined to
* replace a function call with a short direct code sequence (e.g.
* by setting a constant return value instead of doing that in an
* external function).
* In order to make this work the following sequence is required:
* 1. set (artificial) features depending on used paravirt
* functions which can later influence alternative patching
* 2. apply paravirt patching (generally replacing an indirect
* function call with a direct one)
* 3. apply alternative patching (e.g. replacing a direct function
* call with a custom code sequence)
* Doing paravirt patching after alternative patching would clobber
* the optimization of the custom code with a function call again.
*/
paravirt_set_cap();
/*
* First patch paravirt functions, such that we overwrite the indirect
* call with the direct call.
*/
apply_paravirt(__parainstructions, __parainstructions_end);
/*
* Rewrite the retpolines, must be done before alternatives since
* those can rewrite the retpoline thunks.
*/
apply_retpolines(__retpoline_sites, __retpoline_sites_end);
/*
* Then patch alternatives, such that those paravirt calls that are in
* alternatives can be overwritten by their immediate fragments.
*/
apply_alternatives(__alt_instructions, __alt_instructions_end);
apply_ibt_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
#ifdef CONFIG_SMP
/* Patch to UP if other cpus not imminent. */
if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
uniproc_patched = true;
alternatives_smp_module_add(NULL, "core kernel",
__smp_locks, __smp_locks_end,
_text, _etext);
}
if (!uniproc_patched || num_possible_cpus() == 1) {
free_init_pages("SMP alternatives",
(unsigned long)__smp_locks,
(unsigned long)__smp_locks_end);
}
#endif
restart_nmi();
alternatives_patched = 1;
}
/**
* text_poke_early - Update instructions on a live kernel at boot time
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy
*
* When you use this code to patch more than one byte of an instruction
* you need to make sure that other CPUs cannot execute this code in parallel.
* Also no thread must be currently preempted in the middle of these
* instructions. And on the local CPU you need to be protected against NMI or
* MCE handlers seeing an inconsistent instruction while you patch.
*/
void __init_or_module text_poke_early(void *addr, const void *opcode,
size_t len)
{
unsigned long flags;
if (boot_cpu_has(X86_FEATURE_NX) &&
is_module_text_address((unsigned long)addr)) {
/*
* Modules text is marked initially as non-executable, so the
* code cannot be running and speculative code-fetches are
* prevented. Just change the code.
*/
memcpy(addr, opcode, len);
} else {
local_irq_save(flags);
memcpy(addr, opcode, len);
local_irq_restore(flags);
sync_core();
/*
* Could also do a CLFLUSH here to speed up CPU recovery; but
* that causes hangs on some VIA CPUs.
*/
}
}
typedef struct {
struct mm_struct *mm;
} temp_mm_state_t;
/*
* Using a temporary mm allows to set temporary mappings that are not accessible
* by other CPUs. Such mappings are needed to perform sensitive memory writes
* that override the kernel memory protections (e.g., W^X), without exposing the
* temporary page-table mappings that are required for these write operations to
* other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
* mapping is torn down.
*
* Context: The temporary mm needs to be used exclusively by a single core. To
* harden security IRQs must be disabled while the temporary mm is
* loaded, thereby preventing interrupt handler bugs from overriding
* the kernel memory protection.
*/
static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
{
temp_mm_state_t temp_state;
lockdep_assert_irqs_disabled();
/*
* Make sure not to be in TLB lazy mode, as otherwise we'll end up
* with a stale address space WITHOUT being in lazy mode after
* restoring the previous mm.
*/
if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
leave_mm(smp_processor_id());
temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
switch_mm_irqs_off(NULL, mm, current);
/*
* If breakpoints are enabled, disable them while the temporary mm is
* used. Userspace might set up watchpoints on addresses that are used
* in the temporary mm, which would lead to wrong signals being sent or
* crashes.
*
* Note that breakpoints are not disabled selectively, which also causes
* kernel breakpoints (e.g., perf's) to be disabled. This might be
* undesirable, but still seems reasonable as the code that runs in the
* temporary mm should be short.
*/
if (hw_breakpoint_active())
hw_breakpoint_disable();
return temp_state;
}
static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
{
lockdep_assert_irqs_disabled();
switch_mm_irqs_off(NULL, prev_state.mm, current);
/*
* Restore the breakpoints if they were disabled before the temporary mm
* was loaded.
*/
if (hw_breakpoint_active())
hw_breakpoint_restore();
}
__ro_after_init struct mm_struct *poking_mm;
__ro_after_init unsigned long poking_addr;
static void text_poke_memcpy(void *dst, const void *src, size_t len)
{
memcpy(dst, src, len);
}
static void text_poke_memset(void *dst, const void *src, size_t len)
{
int c = *(const int *)src;
memset(dst, c, len);
}
typedef void text_poke_f(void *dst, const void *src, size_t len);
static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
{
bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
struct page *pages[2] = {NULL};
temp_mm_state_t prev;
unsigned long flags;
pte_t pte, *ptep;
spinlock_t *ptl;
pgprot_t pgprot;
/*
* While boot memory allocator is running we cannot use struct pages as
* they are not yet initialized. There is no way to recover.
*/
BUG_ON(!after_bootmem);
if (!core_kernel_text((unsigned long)addr)) {
pages[0] = vmalloc_to_page(addr);
if (cross_page_boundary)
pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
} else {
pages[0] = virt_to_page(addr);
WARN_ON(!PageReserved(pages[0]));
if (cross_page_boundary)
pages[1] = virt_to_page(addr + PAGE_SIZE);
}
/*
* If something went wrong, crash and burn since recovery paths are not
* implemented.
*/
BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
/*
* Map the page without the global bit, as TLB flushing is done with
* flush_tlb_mm_range(), which is intended for non-global PTEs.
*/
pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
/*
* The lock is not really needed, but this allows to avoid open-coding.
*/
ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
/*
* This must not fail; preallocated in poking_init().
*/
VM_BUG_ON(!ptep);
local_irq_save(flags);
pte = mk_pte(pages[0], pgprot);
set_pte_at(poking_mm, poking_addr, ptep, pte);
if (cross_page_boundary) {
pte = mk_pte(pages[1], pgprot);
set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
}
/*
* Loading the temporary mm behaves as a compiler barrier, which
* guarantees that the PTE will be set at the time memcpy() is done.
*/
prev = use_temporary_mm(poking_mm);
kasan_disable_current();
func((u8 *)poking_addr + offset_in_page(addr), src, len);
kasan_enable_current();
/*
* Ensure that the PTE is only cleared after the instructions of memcpy
* were issued by using a compiler barrier.
*/
barrier();
pte_clear(poking_mm, poking_addr, ptep);
if (cross_page_boundary)
pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
/*
* Loading the previous page-table hierarchy requires a serializing
* instruction that already allows the core to see the updated version.
* Xen-PV is assumed to serialize execution in a similar manner.
*/
unuse_temporary_mm(prev);
/*
* Flushing the TLB might involve IPIs, which would require enabled
* IRQs, but not if the mm is not used, as it is in this point.
*/
flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
(cross_page_boundary ? 2 : 1) * PAGE_SIZE,
PAGE_SHIFT, false);
if (func == text_poke_memcpy) {
/*
* If the text does not match what we just wrote then something is
* fundamentally screwy; there's nothing we can really do about that.
*/
BUG_ON(memcmp(addr, src, len));
}
local_irq_restore(flags);
pte_unmap_unlock(ptep, ptl);
return addr;
}
/**
* text_poke - Update instructions on a live kernel
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy
*
* Only atomic text poke/set should be allowed when not doing early patching.
* It means the size must be writable atomically and the address must be aligned
* in a way that permits an atomic write. It also makes sure we fit on a single
* page.
*
* Note that the caller must ensure that if the modified code is part of a
* module, the module would not be removed during poking. This can be achieved
* by registering a module notifier, and ordering module removal and patching
* trough a mutex.
*/
void *text_poke(void *addr, const void *opcode, size_t len)
{
lockdep_assert_held(&text_mutex);
return __text_poke(text_poke_memcpy, addr, opcode, len);
}
/**
* text_poke_kgdb - Update instructions on a live kernel by kgdb
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy
*
* Only atomic text poke/set should be allowed when not doing early patching.
* It means the size must be writable atomically and the address must be aligned
* in a way that permits an atomic write. It also makes sure we fit on a single
* page.
*
* Context: should only be used by kgdb, which ensures no other core is running,
* despite the fact it does not hold the text_mutex.
*/
void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
{
return __text_poke(text_poke_memcpy, addr, opcode, len);
}
/**
* text_poke_copy - Copy instructions into (an unused part of) RX memory
* @addr: address to modify
* @opcode: source of the copy
* @len: length to copy, could be more than 2x PAGE_SIZE
*
* Not safe against concurrent execution; useful for JITs to dump
* new code blocks into unused regions of RX memory. Can be used in
* conjunction with synchronize_rcu_tasks() to wait for existing
* execution to quiesce after having made sure no existing functions
* pointers are live.
*/
void *text_poke_copy(void *addr, const void *opcode, size_t len)
{
unsigned long start = (unsigned long)addr;
size_t patched = 0;
if (WARN_ON_ONCE(core_kernel_text(start)))
return NULL;
mutex_lock(&text_mutex);
while (patched < len) {
unsigned long ptr = start + patched;
size_t s;
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
patched += s;
}
mutex_unlock(&text_mutex);
return addr;
}
/**
* text_poke_set - memset into (an unused part of) RX memory
* @addr: address to modify
* @c: the byte to fill the area with
* @len: length to copy, could be more than 2x PAGE_SIZE
*
* This is useful to overwrite unused regions of RX memory with illegal
* instructions.
*/
void *text_poke_set(void *addr, int c, size_t len)
{
unsigned long start = (unsigned long)addr;
size_t patched = 0;
if (WARN_ON_ONCE(core_kernel_text(start)))
return NULL;
mutex_lock(&text_mutex);
while (patched < len) {
unsigned long ptr = start + patched;
size_t s;
s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
patched += s;
}
mutex_unlock(&text_mutex);
return addr;
}
static void do_sync_core(void *info)
{
sync_core();
}
void text_poke_sync(void)
{
on_each_cpu(do_sync_core, NULL, 1);
}
struct text_poke_loc {
/* addr := _stext + rel_addr */
s32 rel_addr;
s32 disp;
u8 len;
u8 opcode;
const u8 text[POKE_MAX_OPCODE_SIZE];
/* see text_poke_bp_batch() */
u8 old;
};
struct bp_patching_desc {
struct text_poke_loc *vec;
int nr_entries;
atomic_t refs;
};
static struct bp_patching_desc *bp_desc;
static __always_inline
struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
{
/* rcu_dereference */
struct bp_patching_desc *desc = __READ_ONCE(*descp);
if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
return NULL;
return desc;
}
static __always_inline void put_desc(struct bp_patching_desc *desc)
{
smp_mb__before_atomic();
arch_atomic_dec(&desc->refs);
}
static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
{
return _stext + tp->rel_addr;
}
static __always_inline int patch_cmp(const void *key, const void *elt)
{
struct text_poke_loc *tp = (struct text_poke_loc *) elt;
if (key < text_poke_addr(tp))
return -1;
if (key > text_poke_addr(tp))
return 1;
return 0;
}
noinstr int poke_int3_handler(struct pt_regs *regs)
{
struct bp_patching_desc *desc;
struct text_poke_loc *tp;
int ret = 0;
void *ip;
if (user_mode(regs))
return 0;
/*
* Having observed our INT3 instruction, we now must observe
* bp_desc:
*
* bp_desc = desc INT3
* WMB RMB
* write INT3 if (desc)
*/
smp_rmb();
desc = try_get_desc(&bp_desc);
if (!desc)
return 0;
/*
* Discount the INT3. See text_poke_bp_batch().
*/
ip = (void *) regs->ip - INT3_INSN_SIZE;
/*
* Skip the binary search if there is a single member in the vector.
*/
if (unlikely(desc->nr_entries > 1)) {
tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
sizeof(struct text_poke_loc),
patch_cmp);
if (!tp)
goto out_put;
} else {
tp = desc->vec;
if (text_poke_addr(tp) != ip)
goto out_put;
}
ip += tp->len;
switch (tp->opcode) {
case INT3_INSN_OPCODE:
/*
* Someone poked an explicit INT3, they'll want to handle it,
* do not consume.
*/
goto out_put;
case RET_INSN_OPCODE:
int3_emulate_ret(regs);
break;
case CALL_INSN_OPCODE:
int3_emulate_call(regs, (long)ip + tp->disp);
break;
case JMP32_INSN_OPCODE:
case JMP8_INSN_OPCODE:
int3_emulate_jmp(regs, (long)ip + tp->disp);
break;
default:
BUG();
}
ret = 1;
out_put:
put_desc(desc);
return ret;
}
#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
static struct text_poke_loc tp_vec[TP_VEC_MAX];
static int tp_vec_nr;
/**
* text_poke_bp_batch() -- update instructions on live kernel on SMP
* @tp: vector of instructions to patch
* @nr_entries: number of entries in the vector
*
* Modify multi-byte instruction by using int3 breakpoint on SMP.
* We completely avoid stop_machine() here, and achieve the
* synchronization using int3 breakpoint.
*
* The way it is done:
* - For each entry in the vector:
* - add a int3 trap to the address that will be patched
* - sync cores
* - For each entry in the vector:
* - update all but the first byte of the patched range
* - sync cores
* - For each entry in the vector:
* - replace the first byte (int3) by the first byte of
* replacing opcode
* - sync cores
*/
static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
{
struct bp_patching_desc desc = {
.vec = tp,
.nr_entries = nr_entries,
.refs = ATOMIC_INIT(1),
};
unsigned char int3 = INT3_INSN_OPCODE;
unsigned int i;
int do_sync;
lockdep_assert_held(&text_mutex);
smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
/*
* Corresponding read barrier in int3 notifier for making sure the
* nr_entries and handler are correctly ordered wrt. patching.
*/
smp_wmb();
/*
* First step: add a int3 trap to the address that will be patched.
*/
for (i = 0; i < nr_entries; i++) {
tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
}
text_poke_sync();
/*
* Second step: update all but the first byte of the patched range.
*/
for (do_sync = 0, i = 0; i < nr_entries; i++) {
u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
int len = tp[i].len;
if (len - INT3_INSN_SIZE > 0) {
memcpy(old + INT3_INSN_SIZE,
text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
len - INT3_INSN_SIZE);
text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
(const char *)tp[i].text + INT3_INSN_SIZE,
len - INT3_INSN_SIZE);
do_sync++;
}
/*
* Emit a perf event to record the text poke, primarily to
* support Intel PT decoding which must walk the executable code
* to reconstruct the trace. The flow up to here is:
* - write INT3 byte
* - IPI-SYNC
* - write instruction tail
* At this point the actual control flow will be through the
* INT3 and handler and not hit the old or new instruction.
* Intel PT outputs FUP/TIP packets for the INT3, so the flow
* can still be decoded. Subsequently:
* - emit RECORD_TEXT_POKE with the new instruction
* - IPI-SYNC
* - write first byte
* - IPI-SYNC
* So before the text poke event timestamp, the decoder will see
* either the old instruction flow or FUP/TIP of INT3. After the
* text poke event timestamp, the decoder will see either the
* new instruction flow or FUP/TIP of INT3. Thus decoders can
* use the timestamp as the point at which to modify the
* executable code.
* The old instruction is recorded so that the event can be
* processed forwards or backwards.
*/
perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
tp[i].text, len);
}
if (do_sync) {
/*
* According to Intel, this core syncing is very likely
* not necessary and we'd be safe even without it. But
* better safe than sorry (plus there's not only Intel).
*/
text_poke_sync();
}
/*
* Third step: replace the first byte (int3) by the first byte of
* replacing opcode.
*/
for (do_sync = 0, i = 0; i < nr_entries; i++) {
if (tp[i].text[0] == INT3_INSN_OPCODE)
continue;
text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
do_sync++;
}
if (do_sync)
text_poke_sync();
/*
* Remove and synchronize_rcu(), except we have a very primitive
* refcount based completion.
*/
WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
if (!atomic_dec_and_test(&desc.refs))
atomic_cond_read_acquire(&desc.refs, !VAL);
}
static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
const void *opcode, size_t len, const void *emulate)
{
struct insn insn;
int ret, i;
memcpy((void *)tp->text, opcode, len);
if (!emulate)
emulate = opcode;
ret = insn_decode_kernel(&insn, emulate);
BUG_ON(ret < 0);
tp->rel_addr = addr - (void *)_stext;
tp->len = len;
tp->opcode = insn.opcode.bytes[0];
switch (tp->opcode) {
case RET_INSN_OPCODE:
case JMP32_INSN_OPCODE:
case JMP8_INSN_OPCODE:
/*
* Control flow instructions without implied execution of the
* next instruction can be padded with INT3.
*/
for (i = insn.length; i < len; i++)
BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
break;
default:
BUG_ON(len != insn.length);
};
switch (tp->opcode) {
case INT3_INSN_OPCODE:
case RET_INSN_OPCODE:
break;
case CALL_INSN_OPCODE:
case JMP32_INSN_OPCODE:
case JMP8_INSN_OPCODE:
tp->disp = insn.immediate.value;
break;
default: /* assume NOP */
switch (len) {
case 2: /* NOP2 -- emulate as JMP8+0 */
BUG_ON(memcmp(emulate, x86_nops[len], len));
tp->opcode = JMP8_INSN_OPCODE;
tp->disp = 0;
break;
case 5: /* NOP5 -- emulate as JMP32+0 */
BUG_ON(memcmp(emulate, x86_nops[len], len));
tp->opcode = JMP32_INSN_OPCODE;
tp->disp = 0;
break;
default: /* unknown instruction */
BUG();
}
break;
}
}
/*
* We hard rely on the tp_vec being ordered; ensure this is so by flushing
* early if needed.
*/
static bool tp_order_fail(void *addr)
{
struct text_poke_loc *tp;
if (!tp_vec_nr)
return false;
if (!addr) /* force */
return true;
tp = &tp_vec[tp_vec_nr - 1];
if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
return true;
return false;
}
static void text_poke_flush(void *addr)
{
if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
text_poke_bp_batch(tp_vec, tp_vec_nr);
tp_vec_nr = 0;
}
}
void text_poke_finish(void)
{
text_poke_flush(NULL);
}
void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
{
struct text_poke_loc *tp;
if (unlikely(system_state == SYSTEM_BOOTING)) {
text_poke_early(addr, opcode, len);
return;
}
text_poke_flush(addr);
tp = &tp_vec[tp_vec_nr++];
text_poke_loc_init(tp, addr, opcode, len, emulate);
}
/**
* text_poke_bp() -- update instructions on live kernel on SMP
* @addr: address to patch
* @opcode: opcode of new instruction
* @len: length to copy
* @emulate: instruction to be emulated
*
* Update a single instruction with the vector in the stack, avoiding
* dynamically allocated memory. This function should be used when it is
* not possible to allocate memory.
*/
void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
{
struct text_poke_loc tp;
if (unlikely(system_state == SYSTEM_BOOTING)) {
text_poke_early(addr, opcode, len);
return;
}
text_poke_loc_init(&tp, addr, opcode, len, emulate);
text_poke_bp_batch(&tp, 1);
}