mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-22 13:54:57 +08:00
0d206b5d2e
We've got a bunch of special swap entries that stores PFN inside the swap offset fields. To fetch the PFN, normally the user just calls swp_offset() assuming that'll be the PFN. Add a helper swp_offset_pfn() to fetch the PFN instead, fetching only the max possible length of a PFN on the host, meanwhile doing proper check with MAX_PHYSMEM_BITS to make sure the swap offsets can actually store the PFNs properly always using the BUILD_BUG_ON() in is_pfn_swap_entry(). One reason to do so is we never tried to sanitize whether swap offset can really fit for storing PFN. At the meantime, this patch also prepares us with the future possibility to store more information inside the swp offset field, so assuming "swp_offset(entry)" to be the PFN will not stand any more very soon. Replace many of the swp_offset() callers to use swp_offset_pfn() where proper. Note that many of the existing users are not candidates for the replacement, e.g.: (1) When the swap entry is not a pfn swap entry at all, or, (2) when we wanna keep the whole swp_offset but only change the swp type. For the latter, it can happen when fork() triggered on a write-migration swap entry pte, we may want to only change the migration type from write->read but keep the rest, so it's not "fetching PFN" but "changing swap type only". They're left aside so that when there're more information within the swp offset they'll be carried over naturally in those cases. Since at it, dropping hwpoison_entry_to_pfn() because that's exactly what the new swp_offset_pfn() is about. Link: https://lkml.kernel.org/r/20220811161331.37055-4-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Minchan Kim <minchan@kernel.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
317 lines
8.6 KiB
C
317 lines
8.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/mm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static inline bool not_found(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
page_vma_mapped_walk_done(pvmw);
|
|
return false;
|
|
}
|
|
|
|
static bool map_pte(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
pvmw->pte = pte_offset_map(pvmw->pmd, pvmw->address);
|
|
if (!(pvmw->flags & PVMW_SYNC)) {
|
|
if (pvmw->flags & PVMW_MIGRATION) {
|
|
if (!is_swap_pte(*pvmw->pte))
|
|
return false;
|
|
} else {
|
|
/*
|
|
* We get here when we are trying to unmap a private
|
|
* device page from the process address space. Such
|
|
* page is not CPU accessible and thus is mapped as
|
|
* a special swap entry, nonetheless it still does
|
|
* count as a valid regular mapping for the page (and
|
|
* is accounted as such in page maps count).
|
|
*
|
|
* So handle this special case as if it was a normal
|
|
* page mapping ie lock CPU page table and returns
|
|
* true.
|
|
*
|
|
* For more details on device private memory see HMM
|
|
* (include/linux/hmm.h or mm/hmm.c).
|
|
*/
|
|
if (is_swap_pte(*pvmw->pte)) {
|
|
swp_entry_t entry;
|
|
|
|
/* Handle un-addressable ZONE_DEVICE memory */
|
|
entry = pte_to_swp_entry(*pvmw->pte);
|
|
if (!is_device_private_entry(entry) &&
|
|
!is_device_exclusive_entry(entry))
|
|
return false;
|
|
} else if (!pte_present(*pvmw->pte))
|
|
return false;
|
|
}
|
|
}
|
|
pvmw->ptl = pte_lockptr(pvmw->vma->vm_mm, pvmw->pmd);
|
|
spin_lock(pvmw->ptl);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* check_pte - check if @pvmw->page is mapped at the @pvmw->pte
|
|
* @pvmw: page_vma_mapped_walk struct, includes a pair pte and page for checking
|
|
*
|
|
* page_vma_mapped_walk() found a place where @pvmw->page is *potentially*
|
|
* mapped. check_pte() has to validate this.
|
|
*
|
|
* pvmw->pte may point to empty PTE, swap PTE or PTE pointing to
|
|
* arbitrary page.
|
|
*
|
|
* If PVMW_MIGRATION flag is set, returns true if @pvmw->pte contains migration
|
|
* entry that points to @pvmw->page or any subpage in case of THP.
|
|
*
|
|
* If PVMW_MIGRATION flag is not set, returns true if pvmw->pte points to
|
|
* pvmw->page or any subpage in case of THP.
|
|
*
|
|
* Otherwise, return false.
|
|
*
|
|
*/
|
|
static bool check_pte(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
if (pvmw->flags & PVMW_MIGRATION) {
|
|
swp_entry_t entry;
|
|
if (!is_swap_pte(*pvmw->pte))
|
|
return false;
|
|
entry = pte_to_swp_entry(*pvmw->pte);
|
|
|
|
if (!is_migration_entry(entry) &&
|
|
!is_device_exclusive_entry(entry))
|
|
return false;
|
|
|
|
pfn = swp_offset_pfn(entry);
|
|
} else if (is_swap_pte(*pvmw->pte)) {
|
|
swp_entry_t entry;
|
|
|
|
/* Handle un-addressable ZONE_DEVICE memory */
|
|
entry = pte_to_swp_entry(*pvmw->pte);
|
|
if (!is_device_private_entry(entry) &&
|
|
!is_device_exclusive_entry(entry))
|
|
return false;
|
|
|
|
pfn = swp_offset_pfn(entry);
|
|
} else {
|
|
if (!pte_present(*pvmw->pte))
|
|
return false;
|
|
|
|
pfn = pte_pfn(*pvmw->pte);
|
|
}
|
|
|
|
return (pfn - pvmw->pfn) < pvmw->nr_pages;
|
|
}
|
|
|
|
/* Returns true if the two ranges overlap. Careful to not overflow. */
|
|
static bool check_pmd(unsigned long pfn, struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
if ((pfn + HPAGE_PMD_NR - 1) < pvmw->pfn)
|
|
return false;
|
|
if (pfn > pvmw->pfn + pvmw->nr_pages - 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void step_forward(struct page_vma_mapped_walk *pvmw, unsigned long size)
|
|
{
|
|
pvmw->address = (pvmw->address + size) & ~(size - 1);
|
|
if (!pvmw->address)
|
|
pvmw->address = ULONG_MAX;
|
|
}
|
|
|
|
/**
|
|
* page_vma_mapped_walk - check if @pvmw->pfn is mapped in @pvmw->vma at
|
|
* @pvmw->address
|
|
* @pvmw: pointer to struct page_vma_mapped_walk. page, vma, address and flags
|
|
* must be set. pmd, pte and ptl must be NULL.
|
|
*
|
|
* Returns true if the page is mapped in the vma. @pvmw->pmd and @pvmw->pte point
|
|
* to relevant page table entries. @pvmw->ptl is locked. @pvmw->address is
|
|
* adjusted if needed (for PTE-mapped THPs).
|
|
*
|
|
* If @pvmw->pmd is set but @pvmw->pte is not, you have found PMD-mapped page
|
|
* (usually THP). For PTE-mapped THP, you should run page_vma_mapped_walk() in
|
|
* a loop to find all PTEs that map the THP.
|
|
*
|
|
* For HugeTLB pages, @pvmw->pte is set to the relevant page table entry
|
|
* regardless of which page table level the page is mapped at. @pvmw->pmd is
|
|
* NULL.
|
|
*
|
|
* Returns false if there are no more page table entries for the page in
|
|
* the vma. @pvmw->ptl is unlocked and @pvmw->pte is unmapped.
|
|
*
|
|
* If you need to stop the walk before page_vma_mapped_walk() returned false,
|
|
* use page_vma_mapped_walk_done(). It will do the housekeeping.
|
|
*/
|
|
bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long end;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t pmde;
|
|
|
|
/* The only possible pmd mapping has been handled on last iteration */
|
|
if (pvmw->pmd && !pvmw->pte)
|
|
return not_found(pvmw);
|
|
|
|
if (unlikely(is_vm_hugetlb_page(vma))) {
|
|
struct hstate *hstate = hstate_vma(vma);
|
|
unsigned long size = huge_page_size(hstate);
|
|
/* The only possible mapping was handled on last iteration */
|
|
if (pvmw->pte)
|
|
return not_found(pvmw);
|
|
|
|
/* when pud is not present, pte will be NULL */
|
|
pvmw->pte = huge_pte_offset(mm, pvmw->address, size);
|
|
if (!pvmw->pte)
|
|
return false;
|
|
|
|
pvmw->ptl = huge_pte_lock(hstate, mm, pvmw->pte);
|
|
if (!check_pte(pvmw))
|
|
return not_found(pvmw);
|
|
return true;
|
|
}
|
|
|
|
end = vma_address_end(pvmw);
|
|
if (pvmw->pte)
|
|
goto next_pte;
|
|
restart:
|
|
do {
|
|
pgd = pgd_offset(mm, pvmw->address);
|
|
if (!pgd_present(*pgd)) {
|
|
step_forward(pvmw, PGDIR_SIZE);
|
|
continue;
|
|
}
|
|
p4d = p4d_offset(pgd, pvmw->address);
|
|
if (!p4d_present(*p4d)) {
|
|
step_forward(pvmw, P4D_SIZE);
|
|
continue;
|
|
}
|
|
pud = pud_offset(p4d, pvmw->address);
|
|
if (!pud_present(*pud)) {
|
|
step_forward(pvmw, PUD_SIZE);
|
|
continue;
|
|
}
|
|
|
|
pvmw->pmd = pmd_offset(pud, pvmw->address);
|
|
/*
|
|
* Make sure the pmd value isn't cached in a register by the
|
|
* compiler and used as a stale value after we've observed a
|
|
* subsequent update.
|
|
*/
|
|
pmde = READ_ONCE(*pvmw->pmd);
|
|
|
|
if (pmd_trans_huge(pmde) || is_pmd_migration_entry(pmde) ||
|
|
(pmd_present(pmde) && pmd_devmap(pmde))) {
|
|
pvmw->ptl = pmd_lock(mm, pvmw->pmd);
|
|
pmde = *pvmw->pmd;
|
|
if (!pmd_present(pmde)) {
|
|
swp_entry_t entry;
|
|
|
|
if (!thp_migration_supported() ||
|
|
!(pvmw->flags & PVMW_MIGRATION))
|
|
return not_found(pvmw);
|
|
entry = pmd_to_swp_entry(pmde);
|
|
if (!is_migration_entry(entry) ||
|
|
!check_pmd(swp_offset_pfn(entry), pvmw))
|
|
return not_found(pvmw);
|
|
return true;
|
|
}
|
|
if (likely(pmd_trans_huge(pmde) || pmd_devmap(pmde))) {
|
|
if (pvmw->flags & PVMW_MIGRATION)
|
|
return not_found(pvmw);
|
|
if (!check_pmd(pmd_pfn(pmde), pvmw))
|
|
return not_found(pvmw);
|
|
return true;
|
|
}
|
|
/* THP pmd was split under us: handle on pte level */
|
|
spin_unlock(pvmw->ptl);
|
|
pvmw->ptl = NULL;
|
|
} else if (!pmd_present(pmde)) {
|
|
/*
|
|
* If PVMW_SYNC, take and drop THP pmd lock so that we
|
|
* cannot return prematurely, while zap_huge_pmd() has
|
|
* cleared *pmd but not decremented compound_mapcount().
|
|
*/
|
|
if ((pvmw->flags & PVMW_SYNC) &&
|
|
transhuge_vma_suitable(vma, pvmw->address) &&
|
|
(pvmw->nr_pages >= HPAGE_PMD_NR)) {
|
|
spinlock_t *ptl = pmd_lock(mm, pvmw->pmd);
|
|
|
|
spin_unlock(ptl);
|
|
}
|
|
step_forward(pvmw, PMD_SIZE);
|
|
continue;
|
|
}
|
|
if (!map_pte(pvmw))
|
|
goto next_pte;
|
|
this_pte:
|
|
if (check_pte(pvmw))
|
|
return true;
|
|
next_pte:
|
|
do {
|
|
pvmw->address += PAGE_SIZE;
|
|
if (pvmw->address >= end)
|
|
return not_found(pvmw);
|
|
/* Did we cross page table boundary? */
|
|
if ((pvmw->address & (PMD_SIZE - PAGE_SIZE)) == 0) {
|
|
if (pvmw->ptl) {
|
|
spin_unlock(pvmw->ptl);
|
|
pvmw->ptl = NULL;
|
|
}
|
|
pte_unmap(pvmw->pte);
|
|
pvmw->pte = NULL;
|
|
goto restart;
|
|
}
|
|
pvmw->pte++;
|
|
if ((pvmw->flags & PVMW_SYNC) && !pvmw->ptl) {
|
|
pvmw->ptl = pte_lockptr(mm, pvmw->pmd);
|
|
spin_lock(pvmw->ptl);
|
|
}
|
|
} while (pte_none(*pvmw->pte));
|
|
|
|
if (!pvmw->ptl) {
|
|
pvmw->ptl = pte_lockptr(mm, pvmw->pmd);
|
|
spin_lock(pvmw->ptl);
|
|
}
|
|
goto this_pte;
|
|
} while (pvmw->address < end);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* page_mapped_in_vma - check whether a page is really mapped in a VMA
|
|
* @page: the page to test
|
|
* @vma: the VMA to test
|
|
*
|
|
* Returns 1 if the page is mapped into the page tables of the VMA, 0
|
|
* if the page is not mapped into the page tables of this VMA. Only
|
|
* valid for normal file or anonymous VMAs.
|
|
*/
|
|
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
|
|
{
|
|
struct page_vma_mapped_walk pvmw = {
|
|
.pfn = page_to_pfn(page),
|
|
.nr_pages = 1,
|
|
.vma = vma,
|
|
.flags = PVMW_SYNC,
|
|
};
|
|
|
|
pvmw.address = vma_address(page, vma);
|
|
if (pvmw.address == -EFAULT)
|
|
return 0;
|
|
if (!page_vma_mapped_walk(&pvmw))
|
|
return 0;
|
|
page_vma_mapped_walk_done(&pvmw);
|
|
return 1;
|
|
}
|