mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 14:24:18 +08:00
86495af117
In commit9011e49d54
("modules: only allow symbol_get of EXPORT_SYMBOL_GPL modules") the use of symbol_get is properly restricted to GPL-only marked symbols. This interacts oddly with the DVB logic which only uses dvb_attach() to load the dvb driver which then uses symbol_get(). Fix this up by properly marking all of the dvb_attach attach symbols as EXPORT_SYMBOL_GPL(). Fixes:9011e49d54
("modules: only allow symbol_get of EXPORT_SYMBOL_GPL modules") Cc: stable <stable@kernel.org> Reported-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: linux-media@vger.kernel.org Cc: linux-modules@vger.kernel.org Acked-by: Luis Chamberlain <mcgrof@kernel.org> Acked-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Link: https://lore.kernel.org/r/20230908092035.3815268-2-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2113 lines
52 KiB
C
2113 lines
52 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
|
|
*
|
|
* Copyright (C) 2010-2013 Mauro Carvalho Chehab
|
|
* Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <asm/div64.h>
|
|
|
|
#include <media/dvb_frontend.h>
|
|
#include "mb86a20s.h"
|
|
|
|
#define NUM_LAYERS 3
|
|
|
|
enum mb86a20s_bandwidth {
|
|
MB86A20S_13SEG = 0,
|
|
MB86A20S_13SEG_PARTIAL = 1,
|
|
MB86A20S_1SEG = 2,
|
|
MB86A20S_3SEG = 3,
|
|
};
|
|
|
|
static u8 mb86a20s_subchannel[] = {
|
|
0xb0, 0xc0, 0xd0, 0xe0,
|
|
0xf0, 0x00, 0x10, 0x20,
|
|
};
|
|
|
|
struct mb86a20s_state {
|
|
struct i2c_adapter *i2c;
|
|
const struct mb86a20s_config *config;
|
|
u32 last_frequency;
|
|
|
|
struct dvb_frontend frontend;
|
|
|
|
u32 if_freq;
|
|
enum mb86a20s_bandwidth bw;
|
|
bool inversion;
|
|
u32 subchannel;
|
|
|
|
u32 estimated_rate[NUM_LAYERS];
|
|
unsigned long get_strength_time;
|
|
|
|
bool need_init;
|
|
};
|
|
|
|
struct regdata {
|
|
u8 reg;
|
|
u8 data;
|
|
};
|
|
|
|
#define BER_SAMPLING_RATE 1 /* Seconds */
|
|
|
|
/*
|
|
* Initialization sequence: Use whatevere default values that PV SBTVD
|
|
* does on its initialisation, obtained via USB snoop
|
|
*/
|
|
static struct regdata mb86a20s_init1[] = {
|
|
{ 0x70, 0x0f },
|
|
{ 0x70, 0xff },
|
|
{ 0x08, 0x01 },
|
|
{ 0x50, 0xd1 }, { 0x51, 0x20 },
|
|
};
|
|
|
|
static struct regdata mb86a20s_init2[] = {
|
|
{ 0x50, 0xd1 }, { 0x51, 0x22 },
|
|
{ 0x39, 0x01 },
|
|
{ 0x71, 0x00 },
|
|
{ 0x3b, 0x21 },
|
|
{ 0x3c, 0x3a },
|
|
{ 0x01, 0x0d },
|
|
{ 0x04, 0x08 }, { 0x05, 0x05 },
|
|
{ 0x04, 0x0e }, { 0x05, 0x00 },
|
|
{ 0x04, 0x0f }, { 0x05, 0x14 },
|
|
{ 0x04, 0x0b }, { 0x05, 0x8c },
|
|
{ 0x04, 0x00 }, { 0x05, 0x00 },
|
|
{ 0x04, 0x01 }, { 0x05, 0x07 },
|
|
{ 0x04, 0x02 }, { 0x05, 0x0f },
|
|
{ 0x04, 0x03 }, { 0x05, 0xa0 },
|
|
{ 0x04, 0x09 }, { 0x05, 0x00 },
|
|
{ 0x04, 0x0a }, { 0x05, 0xff },
|
|
{ 0x04, 0x27 }, { 0x05, 0x64 },
|
|
{ 0x04, 0x28 }, { 0x05, 0x00 },
|
|
{ 0x04, 0x1e }, { 0x05, 0xff },
|
|
{ 0x04, 0x29 }, { 0x05, 0x0a },
|
|
{ 0x04, 0x32 }, { 0x05, 0x0a },
|
|
{ 0x04, 0x14 }, { 0x05, 0x02 },
|
|
{ 0x04, 0x04 }, { 0x05, 0x00 },
|
|
{ 0x04, 0x05 }, { 0x05, 0x22 },
|
|
{ 0x04, 0x06 }, { 0x05, 0x0e },
|
|
{ 0x04, 0x07 }, { 0x05, 0xd8 },
|
|
{ 0x04, 0x12 }, { 0x05, 0x00 },
|
|
{ 0x04, 0x13 }, { 0x05, 0xff },
|
|
|
|
/*
|
|
* On this demod, when the bit count reaches the count below,
|
|
* it collects the bit error count. The bit counters are initialized
|
|
* to 65535 here. This warrants that all of them will be quickly
|
|
* calculated when device gets locked. As TMCC is parsed, the values
|
|
* will be adjusted later in the driver's code.
|
|
*/
|
|
{ 0x52, 0x01 }, /* Turn on BER before Viterbi */
|
|
{ 0x50, 0xa7 }, { 0x51, 0x00 },
|
|
{ 0x50, 0xa8 }, { 0x51, 0xff },
|
|
{ 0x50, 0xa9 }, { 0x51, 0xff },
|
|
{ 0x50, 0xaa }, { 0x51, 0x00 },
|
|
{ 0x50, 0xab }, { 0x51, 0xff },
|
|
{ 0x50, 0xac }, { 0x51, 0xff },
|
|
{ 0x50, 0xad }, { 0x51, 0x00 },
|
|
{ 0x50, 0xae }, { 0x51, 0xff },
|
|
{ 0x50, 0xaf }, { 0x51, 0xff },
|
|
|
|
/*
|
|
* On this demod, post BER counts blocks. When the count reaches the
|
|
* value below, it collects the block error count. The block counters
|
|
* are initialized to 127 here. This warrants that all of them will be
|
|
* quickly calculated when device gets locked. As TMCC is parsed, the
|
|
* values will be adjusted later in the driver's code.
|
|
*/
|
|
{ 0x5e, 0x07 }, /* Turn on BER after Viterbi */
|
|
{ 0x50, 0xdc }, { 0x51, 0x00 },
|
|
{ 0x50, 0xdd }, { 0x51, 0x7f },
|
|
{ 0x50, 0xde }, { 0x51, 0x00 },
|
|
{ 0x50, 0xdf }, { 0x51, 0x7f },
|
|
{ 0x50, 0xe0 }, { 0x51, 0x00 },
|
|
{ 0x50, 0xe1 }, { 0x51, 0x7f },
|
|
|
|
/*
|
|
* On this demod, when the block count reaches the count below,
|
|
* it collects the block error count. The block counters are initialized
|
|
* to 127 here. This warrants that all of them will be quickly
|
|
* calculated when device gets locked. As TMCC is parsed, the values
|
|
* will be adjusted later in the driver's code.
|
|
*/
|
|
{ 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
|
|
{ 0x50, 0xb2 }, { 0x51, 0x00 },
|
|
{ 0x50, 0xb3 }, { 0x51, 0x7f },
|
|
{ 0x50, 0xb4 }, { 0x51, 0x00 },
|
|
{ 0x50, 0xb5 }, { 0x51, 0x7f },
|
|
{ 0x50, 0xb6 }, { 0x51, 0x00 },
|
|
{ 0x50, 0xb7 }, { 0x51, 0x7f },
|
|
|
|
{ 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
|
|
{ 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
|
|
{ 0x45, 0x04 }, /* CN symbol 4 */
|
|
{ 0x48, 0x04 }, /* CN manual mode */
|
|
{ 0x50, 0xd5 }, { 0x51, 0x01 },
|
|
{ 0x50, 0xd6 }, { 0x51, 0x1f },
|
|
{ 0x50, 0xd2 }, { 0x51, 0x03 },
|
|
{ 0x50, 0xd7 }, { 0x51, 0x3f },
|
|
{ 0x1c, 0x01 },
|
|
{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
|
|
{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
|
|
{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
|
|
{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
|
|
{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
|
|
{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
|
|
{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
|
|
{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
|
|
{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
|
|
{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
|
|
{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
|
|
{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
|
|
{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
|
|
{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
|
|
{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
|
|
{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
|
|
{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
|
|
{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
|
|
{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
|
|
{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
|
|
{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
|
|
{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
|
|
{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
|
|
{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
|
|
{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
|
|
{ 0x50, 0x1e }, { 0x51, 0x5d },
|
|
{ 0x50, 0x22 }, { 0x51, 0x00 },
|
|
{ 0x50, 0x23 }, { 0x51, 0xc8 },
|
|
{ 0x50, 0x24 }, { 0x51, 0x00 },
|
|
{ 0x50, 0x25 }, { 0x51, 0xf0 },
|
|
{ 0x50, 0x26 }, { 0x51, 0x00 },
|
|
{ 0x50, 0x27 }, { 0x51, 0xc3 },
|
|
{ 0x50, 0x39 }, { 0x51, 0x02 },
|
|
{ 0x50, 0xd5 }, { 0x51, 0x01 },
|
|
{ 0xd0, 0x00 },
|
|
};
|
|
|
|
static struct regdata mb86a20s_reset_reception[] = {
|
|
{ 0x70, 0xf0 },
|
|
{ 0x70, 0xff },
|
|
{ 0x08, 0x01 },
|
|
{ 0x08, 0x00 },
|
|
};
|
|
|
|
static struct regdata mb86a20s_per_ber_reset[] = {
|
|
{ 0x53, 0x00 }, /* pre BER Counter reset */
|
|
{ 0x53, 0x07 },
|
|
|
|
{ 0x5f, 0x00 }, /* post BER Counter reset */
|
|
{ 0x5f, 0x07 },
|
|
|
|
{ 0x50, 0xb1 }, /* PER Counter reset */
|
|
{ 0x51, 0x07 },
|
|
{ 0x51, 0x00 },
|
|
};
|
|
|
|
/*
|
|
* I2C read/write functions and macros
|
|
*/
|
|
|
|
static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
|
|
u8 i2c_addr, u8 reg, u8 data)
|
|
{
|
|
u8 buf[] = { reg, data };
|
|
struct i2c_msg msg = {
|
|
.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
|
|
};
|
|
int rc;
|
|
|
|
rc = i2c_transfer(state->i2c, &msg, 1);
|
|
if (rc != 1) {
|
|
dev_err(&state->i2c->dev,
|
|
"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
|
|
__func__, rc, reg, data);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
|
|
u8 i2c_addr, struct regdata *rd, int size)
|
|
{
|
|
int i, rc;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
|
|
rd[i].data);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
|
|
u8 i2c_addr, u8 reg)
|
|
{
|
|
u8 val;
|
|
int rc;
|
|
struct i2c_msg msg[] = {
|
|
{ .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 },
|
|
{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
|
|
};
|
|
|
|
rc = i2c_transfer(state->i2c, msg, 2);
|
|
|
|
if (rc != 2) {
|
|
dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
|
|
__func__, reg, rc);
|
|
return (rc < 0) ? rc : -EIO;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
#define mb86a20s_readreg(state, reg) \
|
|
mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
|
|
#define mb86a20s_writereg(state, reg, val) \
|
|
mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
|
|
#define mb86a20s_writeregdata(state, regdata) \
|
|
mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
|
|
regdata, ARRAY_SIZE(regdata))
|
|
|
|
/*
|
|
* Ancillary internal routines (likely compiled inlined)
|
|
*
|
|
* The functions below assume that gateway lock has already obtained
|
|
*/
|
|
|
|
static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
int val;
|
|
|
|
*status = 0;
|
|
|
|
val = mb86a20s_readreg(state, 0x0a);
|
|
if (val < 0)
|
|
return val;
|
|
|
|
val &= 0xf;
|
|
if (val >= 2)
|
|
*status |= FE_HAS_SIGNAL;
|
|
|
|
if (val >= 4)
|
|
*status |= FE_HAS_CARRIER;
|
|
|
|
if (val >= 5)
|
|
*status |= FE_HAS_VITERBI;
|
|
|
|
if (val >= 7)
|
|
*status |= FE_HAS_SYNC;
|
|
|
|
/*
|
|
* Actually, on state S8, it starts receiving TS, but the TS
|
|
* output is only on normal state after the transition to S9.
|
|
*/
|
|
if (val >= 9)
|
|
*status |= FE_HAS_LOCK;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
|
|
__func__, *status, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
int rc;
|
|
unsigned rf_max, rf_min, rf;
|
|
|
|
if (state->get_strength_time &&
|
|
(!time_after(jiffies, state->get_strength_time)))
|
|
return c->strength.stat[0].uvalue;
|
|
|
|
/* Reset its value if an error happen */
|
|
c->strength.stat[0].uvalue = 0;
|
|
|
|
/* Does a binary search to get RF strength */
|
|
rf_max = 0xfff;
|
|
rf_min = 0;
|
|
do {
|
|
rf = (rf_max + rf_min) / 2;
|
|
rc = mb86a20s_writereg(state, 0x04, 0x1f);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x05, rf >> 8);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x04, 0x20);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x05, rf);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = mb86a20s_readreg(state, 0x02);
|
|
if (rc < 0)
|
|
return rc;
|
|
if (rc & 0x08)
|
|
rf_min = (rf_max + rf_min) / 2;
|
|
else
|
|
rf_max = (rf_max + rf_min) / 2;
|
|
if (rf_max - rf_min < 4) {
|
|
rf = (rf_max + rf_min) / 2;
|
|
|
|
/* Rescale it from 2^12 (4096) to 2^16 */
|
|
rf = rf << (16 - 12);
|
|
if (rf)
|
|
rf |= (1 << 12) - 1;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: signal strength = %d (%d < RF=%d < %d)\n",
|
|
__func__, rf, rf_min, rf >> 4, rf_max);
|
|
c->strength.stat[0].uvalue = rf;
|
|
state->get_strength_time = jiffies +
|
|
msecs_to_jiffies(1000);
|
|
return 0;
|
|
}
|
|
} while (1);
|
|
}
|
|
|
|
static int mb86a20s_get_modulation(struct mb86a20s_state *state,
|
|
unsigned layer)
|
|
{
|
|
int rc;
|
|
static unsigned char reg[] = {
|
|
[0] = 0x86, /* Layer A */
|
|
[1] = 0x8a, /* Layer B */
|
|
[2] = 0x8e, /* Layer C */
|
|
};
|
|
|
|
if (layer >= ARRAY_SIZE(reg))
|
|
return -EINVAL;
|
|
rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x6e);
|
|
if (rc < 0)
|
|
return rc;
|
|
switch ((rc >> 4) & 0x07) {
|
|
case 0:
|
|
return DQPSK;
|
|
case 1:
|
|
return QPSK;
|
|
case 2:
|
|
return QAM_16;
|
|
case 3:
|
|
return QAM_64;
|
|
default:
|
|
return QAM_AUTO;
|
|
}
|
|
}
|
|
|
|
static int mb86a20s_get_fec(struct mb86a20s_state *state,
|
|
unsigned layer)
|
|
{
|
|
int rc;
|
|
|
|
static unsigned char reg[] = {
|
|
[0] = 0x87, /* Layer A */
|
|
[1] = 0x8b, /* Layer B */
|
|
[2] = 0x8f, /* Layer C */
|
|
};
|
|
|
|
if (layer >= ARRAY_SIZE(reg))
|
|
return -EINVAL;
|
|
rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x6e);
|
|
if (rc < 0)
|
|
return rc;
|
|
switch ((rc >> 4) & 0x07) {
|
|
case 0:
|
|
return FEC_1_2;
|
|
case 1:
|
|
return FEC_2_3;
|
|
case 2:
|
|
return FEC_3_4;
|
|
case 3:
|
|
return FEC_5_6;
|
|
case 4:
|
|
return FEC_7_8;
|
|
default:
|
|
return FEC_AUTO;
|
|
}
|
|
}
|
|
|
|
static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
|
|
unsigned layer)
|
|
{
|
|
int rc;
|
|
static const int interleaving[] = {
|
|
0, 1, 2, 4, 8
|
|
};
|
|
|
|
static const unsigned char reg[] = {
|
|
[0] = 0x88, /* Layer A */
|
|
[1] = 0x8c, /* Layer B */
|
|
[2] = 0x90, /* Layer C */
|
|
};
|
|
|
|
if (layer >= ARRAY_SIZE(reg))
|
|
return -EINVAL;
|
|
rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x6e);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
return interleaving[(rc >> 4) & 0x07];
|
|
}
|
|
|
|
static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
|
|
unsigned layer)
|
|
{
|
|
int rc, count;
|
|
static unsigned char reg[] = {
|
|
[0] = 0x89, /* Layer A */
|
|
[1] = 0x8d, /* Layer B */
|
|
[2] = 0x91, /* Layer C */
|
|
};
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (layer >= ARRAY_SIZE(reg))
|
|
return -EINVAL;
|
|
|
|
rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x6e);
|
|
if (rc < 0)
|
|
return rc;
|
|
count = (rc >> 4) & 0x0f;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
/* Fixed parameters */
|
|
c->delivery_system = SYS_ISDBT;
|
|
c->bandwidth_hz = 6000000;
|
|
|
|
/* Initialize values that will be later autodetected */
|
|
c->isdbt_layer_enabled = 0;
|
|
c->transmission_mode = TRANSMISSION_MODE_AUTO;
|
|
c->guard_interval = GUARD_INTERVAL_AUTO;
|
|
c->isdbt_sb_mode = 0;
|
|
c->isdbt_sb_segment_count = 0;
|
|
}
|
|
|
|
/*
|
|
* Estimates the bit rate using the per-segment bit rate given by
|
|
* ABNT/NBR 15601 spec (table 4).
|
|
*/
|
|
static const u32 isdbt_rate[3][5][4] = {
|
|
{ /* DQPSK/QPSK */
|
|
{ 280850, 312060, 330420, 340430 }, /* 1/2 */
|
|
{ 374470, 416080, 440560, 453910 }, /* 2/3 */
|
|
{ 421280, 468090, 495630, 510650 }, /* 3/4 */
|
|
{ 468090, 520100, 550700, 567390 }, /* 5/6 */
|
|
{ 491500, 546110, 578230, 595760 }, /* 7/8 */
|
|
}, { /* QAM16 */
|
|
{ 561710, 624130, 660840, 680870 }, /* 1/2 */
|
|
{ 748950, 832170, 881120, 907820 }, /* 2/3 */
|
|
{ 842570, 936190, 991260, 1021300 }, /* 3/4 */
|
|
{ 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
|
|
{ 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
|
|
}, { /* QAM64 */
|
|
{ 842570, 936190, 991260, 1021300 }, /* 1/2 */
|
|
{ 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
|
|
{ 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
|
|
{ 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
|
|
{ 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
|
|
}
|
|
};
|
|
|
|
static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c,
|
|
u32 layer)
|
|
{
|
|
int mod, fec, guard;
|
|
|
|
/*
|
|
* If modulation/fec/guard is not detected, the default is
|
|
* to consider the lowest bit rate, to avoid taking too long time
|
|
* to get BER.
|
|
*/
|
|
switch (c->layer[layer].modulation) {
|
|
case DQPSK:
|
|
case QPSK:
|
|
default:
|
|
mod = 0;
|
|
break;
|
|
case QAM_16:
|
|
mod = 1;
|
|
break;
|
|
case QAM_64:
|
|
mod = 2;
|
|
break;
|
|
}
|
|
|
|
switch (c->layer[layer].fec) {
|
|
default:
|
|
case FEC_1_2:
|
|
case FEC_AUTO:
|
|
fec = 0;
|
|
break;
|
|
case FEC_2_3:
|
|
fec = 1;
|
|
break;
|
|
case FEC_3_4:
|
|
fec = 2;
|
|
break;
|
|
case FEC_5_6:
|
|
fec = 3;
|
|
break;
|
|
case FEC_7_8:
|
|
fec = 4;
|
|
break;
|
|
}
|
|
|
|
switch (c->guard_interval) {
|
|
default:
|
|
case GUARD_INTERVAL_1_4:
|
|
guard = 0;
|
|
break;
|
|
case GUARD_INTERVAL_1_8:
|
|
guard = 1;
|
|
break;
|
|
case GUARD_INTERVAL_1_16:
|
|
guard = 2;
|
|
break;
|
|
case GUARD_INTERVAL_1_32:
|
|
guard = 3;
|
|
break;
|
|
}
|
|
|
|
return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count;
|
|
}
|
|
|
|
static int mb86a20s_get_frontend(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
int layer, rc, rate, counter;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
/* Reset frontend cache to default values */
|
|
mb86a20s_reset_frontend_cache(fe);
|
|
|
|
/* Check for partial reception */
|
|
rc = mb86a20s_writereg(state, 0x6d, 0x85);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x6e);
|
|
if (rc < 0)
|
|
return rc;
|
|
c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
|
|
|
|
/* Get per-layer data */
|
|
|
|
for (layer = 0; layer < NUM_LAYERS; layer++) {
|
|
dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
|
|
__func__, 'A' + layer);
|
|
|
|
rc = mb86a20s_get_segment_count(state, layer);
|
|
if (rc < 0)
|
|
goto noperlayer_error;
|
|
if (rc >= 0 && rc < 14) {
|
|
c->layer[layer].segment_count = rc;
|
|
} else {
|
|
c->layer[layer].segment_count = 0;
|
|
state->estimated_rate[layer] = 0;
|
|
continue;
|
|
}
|
|
c->isdbt_layer_enabled |= 1 << layer;
|
|
rc = mb86a20s_get_modulation(state, layer);
|
|
if (rc < 0)
|
|
goto noperlayer_error;
|
|
dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
|
|
__func__, rc);
|
|
c->layer[layer].modulation = rc;
|
|
rc = mb86a20s_get_fec(state, layer);
|
|
if (rc < 0)
|
|
goto noperlayer_error;
|
|
dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
|
|
__func__, rc);
|
|
c->layer[layer].fec = rc;
|
|
rc = mb86a20s_get_interleaving(state, layer);
|
|
if (rc < 0)
|
|
goto noperlayer_error;
|
|
dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
|
|
__func__, rc);
|
|
c->layer[layer].interleaving = rc;
|
|
|
|
rate = isdbt_layer_min_bitrate(c, layer);
|
|
counter = rate * BER_SAMPLING_RATE;
|
|
|
|
/* Avoids sampling too quickly or to overflow the register */
|
|
if (counter < 256)
|
|
counter = 256;
|
|
else if (counter > (1 << 24) - 1)
|
|
counter = (1 << 24) - 1;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
|
|
__func__, 'A' + layer, rate / 1000, counter, counter);
|
|
|
|
state->estimated_rate[layer] = counter;
|
|
}
|
|
|
|
rc = mb86a20s_writereg(state, 0x6d, 0x84);
|
|
if (rc < 0)
|
|
return rc;
|
|
if ((rc & 0x60) == 0x20) {
|
|
c->isdbt_sb_mode = 1;
|
|
/* At least, one segment should exist */
|
|
if (!c->isdbt_sb_segment_count)
|
|
c->isdbt_sb_segment_count = 1;
|
|
}
|
|
|
|
/* Get transmission mode and guard interval */
|
|
rc = mb86a20s_readreg(state, 0x07);
|
|
if (rc < 0)
|
|
return rc;
|
|
c->transmission_mode = TRANSMISSION_MODE_AUTO;
|
|
if ((rc & 0x60) == 0x20) {
|
|
/* Only modes 2 and 3 are supported */
|
|
switch ((rc >> 2) & 0x03) {
|
|
case 1:
|
|
c->transmission_mode = TRANSMISSION_MODE_4K;
|
|
break;
|
|
case 2:
|
|
c->transmission_mode = TRANSMISSION_MODE_8K;
|
|
break;
|
|
}
|
|
}
|
|
c->guard_interval = GUARD_INTERVAL_AUTO;
|
|
if (!(rc & 0x10)) {
|
|
/* Guard interval 1/32 is not supported */
|
|
switch (rc & 0x3) {
|
|
case 0:
|
|
c->guard_interval = GUARD_INTERVAL_1_4;
|
|
break;
|
|
case 1:
|
|
c->guard_interval = GUARD_INTERVAL_1_8;
|
|
break;
|
|
case 2:
|
|
c->guard_interval = GUARD_INTERVAL_1_16;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
noperlayer_error:
|
|
|
|
/* per-layer info is incomplete; discard all per-layer */
|
|
c->isdbt_layer_enabled = 0;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_reset_counters(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
int rc, val;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
/* Reset the counters, if the channel changed */
|
|
if (state->last_frequency != c->frequency) {
|
|
memset(&c->cnr, 0, sizeof(c->cnr));
|
|
memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
|
|
memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
|
|
memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
|
|
memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
|
|
memset(&c->block_error, 0, sizeof(c->block_error));
|
|
memset(&c->block_count, 0, sizeof(c->block_count));
|
|
|
|
state->last_frequency = c->frequency;
|
|
}
|
|
|
|
/* Clear status for most stats */
|
|
|
|
/* BER/PER counter reset */
|
|
rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
|
|
if (rc < 0)
|
|
goto err;
|
|
|
|
/* CNR counter reset */
|
|
rc = mb86a20s_readreg(state, 0x45);
|
|
if (rc < 0)
|
|
goto err;
|
|
val = rc;
|
|
rc = mb86a20s_writereg(state, 0x45, val | 0x10);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
|
|
if (rc < 0)
|
|
goto err;
|
|
|
|
/* MER counter reset */
|
|
rc = mb86a20s_writereg(state, 0x50, 0x50);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
goto err;
|
|
val = rc;
|
|
rc = mb86a20s_writereg(state, 0x51, val | 0x01);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x51, val & 0x06);
|
|
if (rc < 0)
|
|
goto err;
|
|
|
|
goto ok;
|
|
err:
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't reset FE statistics (error %d).\n",
|
|
__func__, rc);
|
|
ok:
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
|
|
unsigned layer,
|
|
u32 *error, u32 *count)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
int rc, val;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (layer >= NUM_LAYERS)
|
|
return -EINVAL;
|
|
|
|
/* Check if the BER measures are already available */
|
|
rc = mb86a20s_readreg(state, 0x54);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Check if data is available for that layer */
|
|
if (!(rc & (1 << layer))) {
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: preBER for layer %c is not available yet.\n",
|
|
__func__, 'A' + layer);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Read Bit Error Count */
|
|
rc = mb86a20s_readreg(state, 0x55 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error = rc << 16;
|
|
rc = mb86a20s_readreg(state, 0x56 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error |= rc << 8;
|
|
rc = mb86a20s_readreg(state, 0x57 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error |= rc;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: bit error before Viterbi for layer %c: %d.\n",
|
|
__func__, 'A' + layer, *error);
|
|
|
|
/* Read Bit Count */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
*count = rc << 16;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
*count |= rc << 8;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
*count |= rc;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: bit count before Viterbi for layer %c: %d.\n",
|
|
__func__, 'A' + layer, *count);
|
|
|
|
|
|
/*
|
|
* As we get TMCC data from the frontend, we can better estimate the
|
|
* BER bit counters, in order to do the BER measure during a longer
|
|
* time. Use those data, if available, to update the bit count
|
|
* measure.
|
|
*/
|
|
|
|
if (state->estimated_rate[layer]
|
|
&& state->estimated_rate[layer] != *count) {
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: updating layer %c preBER counter to %d.\n",
|
|
__func__, 'A' + layer, state->estimated_rate[layer]);
|
|
|
|
/* Turn off BER before Viterbi */
|
|
rc = mb86a20s_writereg(state, 0x52, 0x00);
|
|
|
|
/* Update counter for this layer */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51,
|
|
state->estimated_rate[layer] >> 16);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51,
|
|
state->estimated_rate[layer] >> 8);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51,
|
|
state->estimated_rate[layer]);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Turn on BER before Viterbi */
|
|
rc = mb86a20s_writereg(state, 0x52, 0x01);
|
|
|
|
/* Reset all preBER counters */
|
|
rc = mb86a20s_writereg(state, 0x53, 0x00);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x53, 0x07);
|
|
} else {
|
|
/* Reset counter to collect new data */
|
|
rc = mb86a20s_readreg(state, 0x53);
|
|
if (rc < 0)
|
|
return rc;
|
|
val = rc;
|
|
rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
|
|
unsigned layer,
|
|
u32 *error, u32 *count)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
u32 counter, collect_rate;
|
|
int rc, val;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (layer >= NUM_LAYERS)
|
|
return -EINVAL;
|
|
|
|
/* Check if the BER measures are already available */
|
|
rc = mb86a20s_readreg(state, 0x60);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Check if data is available for that layer */
|
|
if (!(rc & (1 << layer))) {
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: post BER for layer %c is not available yet.\n",
|
|
__func__, 'A' + layer);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Read Bit Error Count */
|
|
rc = mb86a20s_readreg(state, 0x64 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error = rc << 16;
|
|
rc = mb86a20s_readreg(state, 0x65 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error |= rc << 8;
|
|
rc = mb86a20s_readreg(state, 0x66 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error |= rc;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: post bit error for layer %c: %d.\n",
|
|
__func__, 'A' + layer, *error);
|
|
|
|
/* Read Bit Count */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
counter = rc << 8;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
counter |= rc;
|
|
*count = counter * 204 * 8;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: post bit count for layer %c: %d.\n",
|
|
__func__, 'A' + layer, *count);
|
|
|
|
/*
|
|
* As we get TMCC data from the frontend, we can better estimate the
|
|
* BER bit counters, in order to do the BER measure during a longer
|
|
* time. Use those data, if available, to update the bit count
|
|
* measure.
|
|
*/
|
|
|
|
if (!state->estimated_rate[layer])
|
|
goto reset_measurement;
|
|
|
|
collect_rate = state->estimated_rate[layer] / 204 / 8;
|
|
if (collect_rate < 32)
|
|
collect_rate = 32;
|
|
if (collect_rate > 65535)
|
|
collect_rate = 65535;
|
|
if (collect_rate != counter) {
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: updating postBER counter on layer %c to %d.\n",
|
|
__func__, 'A' + layer, collect_rate);
|
|
|
|
/* Turn off BER after Viterbi */
|
|
rc = mb86a20s_writereg(state, 0x5e, 0x00);
|
|
|
|
/* Update counter for this layer */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Turn on BER after Viterbi */
|
|
rc = mb86a20s_writereg(state, 0x5e, 0x07);
|
|
|
|
/* Reset all preBER counters */
|
|
rc = mb86a20s_writereg(state, 0x5f, 0x00);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x5f, 0x07);
|
|
|
|
return rc;
|
|
}
|
|
|
|
reset_measurement:
|
|
/* Reset counter to collect new data */
|
|
rc = mb86a20s_readreg(state, 0x5f);
|
|
if (rc < 0)
|
|
return rc;
|
|
val = rc;
|
|
rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
|
|
unsigned layer,
|
|
u32 *error, u32 *count)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
int rc, val;
|
|
u32 collect_rate;
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (layer >= NUM_LAYERS)
|
|
return -EINVAL;
|
|
|
|
/* Check if the PER measures are already available */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb8);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Check if data is available for that layer */
|
|
|
|
if (!(rc & (1 << layer))) {
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: block counts for layer %c aren't available yet.\n",
|
|
__func__, 'A' + layer);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Read Packet error Count */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error = rc << 8;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
*error |= rc;
|
|
dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
|
|
__func__, 'A' + layer, *error);
|
|
|
|
/* Read Bit Count */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
*count = rc << 8;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
*count |= rc;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: block count for layer %c: %d.\n",
|
|
__func__, 'A' + layer, *count);
|
|
|
|
/*
|
|
* As we get TMCC data from the frontend, we can better estimate the
|
|
* BER bit counters, in order to do the BER measure during a longer
|
|
* time. Use those data, if available, to update the bit count
|
|
* measure.
|
|
*/
|
|
|
|
if (!state->estimated_rate[layer])
|
|
goto reset_measurement;
|
|
|
|
collect_rate = state->estimated_rate[layer] / 204 / 8;
|
|
if (collect_rate < 32)
|
|
collect_rate = 32;
|
|
if (collect_rate > 65535)
|
|
collect_rate = 65535;
|
|
|
|
if (collect_rate != *count) {
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: updating PER counter on layer %c to %d.\n",
|
|
__func__, 'A' + layer, collect_rate);
|
|
|
|
/* Stop PER measurement */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb0);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, 0x00);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Update this layer's counter */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* start PER measurement */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb0);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, 0x07);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Reset all counters to collect new data */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb1);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, 0x07);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, 0x00);
|
|
|
|
return rc;
|
|
}
|
|
|
|
reset_measurement:
|
|
/* Reset counter to collect new data */
|
|
rc = mb86a20s_writereg(state, 0x50, 0xb1);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
val = rc;
|
|
rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
|
|
|
|
return rc;
|
|
}
|
|
|
|
struct linear_segments {
|
|
unsigned x, y;
|
|
};
|
|
|
|
/*
|
|
* All tables below return a dB/1000 measurement
|
|
*/
|
|
|
|
static const struct linear_segments cnr_to_db_table[] = {
|
|
{ 19648, 0},
|
|
{ 18187, 1000},
|
|
{ 16534, 2000},
|
|
{ 14823, 3000},
|
|
{ 13161, 4000},
|
|
{ 11622, 5000},
|
|
{ 10279, 6000},
|
|
{ 9089, 7000},
|
|
{ 8042, 8000},
|
|
{ 7137, 9000},
|
|
{ 6342, 10000},
|
|
{ 5641, 11000},
|
|
{ 5030, 12000},
|
|
{ 4474, 13000},
|
|
{ 3988, 14000},
|
|
{ 3556, 15000},
|
|
{ 3180, 16000},
|
|
{ 2841, 17000},
|
|
{ 2541, 18000},
|
|
{ 2276, 19000},
|
|
{ 2038, 20000},
|
|
{ 1800, 21000},
|
|
{ 1625, 22000},
|
|
{ 1462, 23000},
|
|
{ 1324, 24000},
|
|
{ 1175, 25000},
|
|
{ 1063, 26000},
|
|
{ 980, 27000},
|
|
{ 907, 28000},
|
|
{ 840, 29000},
|
|
{ 788, 30000},
|
|
};
|
|
|
|
static const struct linear_segments cnr_64qam_table[] = {
|
|
{ 3922688, 0},
|
|
{ 3920384, 1000},
|
|
{ 3902720, 2000},
|
|
{ 3894784, 3000},
|
|
{ 3882496, 4000},
|
|
{ 3872768, 5000},
|
|
{ 3858944, 6000},
|
|
{ 3851520, 7000},
|
|
{ 3838976, 8000},
|
|
{ 3829248, 9000},
|
|
{ 3818240, 10000},
|
|
{ 3806976, 11000},
|
|
{ 3791872, 12000},
|
|
{ 3767040, 13000},
|
|
{ 3720960, 14000},
|
|
{ 3637504, 15000},
|
|
{ 3498496, 16000},
|
|
{ 3296000, 17000},
|
|
{ 3031040, 18000},
|
|
{ 2715392, 19000},
|
|
{ 2362624, 20000},
|
|
{ 1963264, 21000},
|
|
{ 1649664, 22000},
|
|
{ 1366784, 23000},
|
|
{ 1120768, 24000},
|
|
{ 890880, 25000},
|
|
{ 723456, 26000},
|
|
{ 612096, 27000},
|
|
{ 518912, 28000},
|
|
{ 448256, 29000},
|
|
{ 388864, 30000},
|
|
};
|
|
|
|
static const struct linear_segments cnr_16qam_table[] = {
|
|
{ 5314816, 0},
|
|
{ 5219072, 1000},
|
|
{ 5118720, 2000},
|
|
{ 4998912, 3000},
|
|
{ 4875520, 4000},
|
|
{ 4736000, 5000},
|
|
{ 4604160, 6000},
|
|
{ 4458752, 7000},
|
|
{ 4300288, 8000},
|
|
{ 4092928, 9000},
|
|
{ 3836160, 10000},
|
|
{ 3521024, 11000},
|
|
{ 3155968, 12000},
|
|
{ 2756864, 13000},
|
|
{ 2347008, 14000},
|
|
{ 1955072, 15000},
|
|
{ 1593600, 16000},
|
|
{ 1297920, 17000},
|
|
{ 1043968, 18000},
|
|
{ 839680, 19000},
|
|
{ 672256, 20000},
|
|
{ 523008, 21000},
|
|
{ 424704, 22000},
|
|
{ 345088, 23000},
|
|
{ 280064, 24000},
|
|
{ 221440, 25000},
|
|
{ 179712, 26000},
|
|
{ 151040, 27000},
|
|
{ 128512, 28000},
|
|
{ 110080, 29000},
|
|
{ 95744, 30000},
|
|
};
|
|
|
|
static const struct linear_segments cnr_qpsk_table[] = {
|
|
{ 2834176, 0},
|
|
{ 2683648, 1000},
|
|
{ 2536960, 2000},
|
|
{ 2391808, 3000},
|
|
{ 2133248, 4000},
|
|
{ 1906176, 5000},
|
|
{ 1666560, 6000},
|
|
{ 1422080, 7000},
|
|
{ 1189632, 8000},
|
|
{ 976384, 9000},
|
|
{ 790272, 10000},
|
|
{ 633344, 11000},
|
|
{ 505600, 12000},
|
|
{ 402944, 13000},
|
|
{ 320768, 14000},
|
|
{ 255488, 15000},
|
|
{ 204032, 16000},
|
|
{ 163072, 17000},
|
|
{ 130304, 18000},
|
|
{ 105216, 19000},
|
|
{ 83456, 20000},
|
|
{ 65024, 21000},
|
|
{ 52480, 22000},
|
|
{ 42752, 23000},
|
|
{ 34560, 24000},
|
|
{ 27136, 25000},
|
|
{ 22016, 26000},
|
|
{ 18432, 27000},
|
|
{ 15616, 28000},
|
|
{ 13312, 29000},
|
|
{ 11520, 30000},
|
|
};
|
|
|
|
static u32 interpolate_value(u32 value, const struct linear_segments *segments,
|
|
unsigned len)
|
|
{
|
|
u64 tmp64;
|
|
u32 dx, dy;
|
|
int i, ret;
|
|
|
|
if (value >= segments[0].x)
|
|
return segments[0].y;
|
|
if (value < segments[len-1].x)
|
|
return segments[len-1].y;
|
|
|
|
for (i = 1; i < len - 1; i++) {
|
|
/* If value is identical, no need to interpolate */
|
|
if (value == segments[i].x)
|
|
return segments[i].y;
|
|
if (value > segments[i].x)
|
|
break;
|
|
}
|
|
|
|
/* Linear interpolation between the two (x,y) points */
|
|
dy = segments[i].y - segments[i - 1].y;
|
|
dx = segments[i - 1].x - segments[i].x;
|
|
tmp64 = value - segments[i].x;
|
|
tmp64 *= dy;
|
|
do_div(tmp64, dx);
|
|
ret = segments[i].y - tmp64;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
u32 cnr_linear, cnr;
|
|
int rc, val;
|
|
|
|
/* Check if CNR is available */
|
|
rc = mb86a20s_readreg(state, 0x45);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (!(rc & 0x40)) {
|
|
dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
|
|
__func__);
|
|
return -EBUSY;
|
|
}
|
|
val = rc;
|
|
|
|
rc = mb86a20s_readreg(state, 0x46);
|
|
if (rc < 0)
|
|
return rc;
|
|
cnr_linear = rc << 8;
|
|
|
|
rc = mb86a20s_readreg(state, 0x46);
|
|
if (rc < 0)
|
|
return rc;
|
|
cnr_linear |= rc;
|
|
|
|
cnr = interpolate_value(cnr_linear,
|
|
cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
|
|
|
|
c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
|
|
c->cnr.stat[0].svalue = cnr;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
|
|
__func__, cnr / 1000, cnr % 1000, cnr_linear);
|
|
|
|
/* CNR counter reset */
|
|
rc = mb86a20s_writereg(state, 0x45, val | 0x10);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
u32 mer, cnr;
|
|
int rc, val, layer;
|
|
const struct linear_segments *segs;
|
|
unsigned segs_len;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
/* Check if the measures are already available */
|
|
rc = mb86a20s_writereg(state, 0x50, 0x5b);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Check if data is available */
|
|
if (!(rc & 0x01)) {
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: MER measures aren't available yet.\n", __func__);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Read all layers */
|
|
for (layer = 0; layer < NUM_LAYERS; layer++) {
|
|
if (!(c->isdbt_layer_enabled & (1 << layer))) {
|
|
c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
continue;
|
|
}
|
|
|
|
rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
mer = rc << 16;
|
|
rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
mer |= rc << 8;
|
|
rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
mer |= rc;
|
|
|
|
switch (c->layer[layer].modulation) {
|
|
case DQPSK:
|
|
case QPSK:
|
|
segs = cnr_qpsk_table;
|
|
segs_len = ARRAY_SIZE(cnr_qpsk_table);
|
|
break;
|
|
case QAM_16:
|
|
segs = cnr_16qam_table;
|
|
segs_len = ARRAY_SIZE(cnr_16qam_table);
|
|
break;
|
|
default:
|
|
case QAM_64:
|
|
segs = cnr_64qam_table;
|
|
segs_len = ARRAY_SIZE(cnr_64qam_table);
|
|
break;
|
|
}
|
|
cnr = interpolate_value(mer, segs, segs_len);
|
|
|
|
c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
|
|
c->cnr.stat[1 + layer].svalue = cnr;
|
|
|
|
dev_dbg(&state->i2c->dev,
|
|
"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
|
|
__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
|
|
|
|
}
|
|
|
|
/* Start a new MER measurement */
|
|
/* MER counter reset */
|
|
rc = mb86a20s_writereg(state, 0x50, 0x50);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_readreg(state, 0x51);
|
|
if (rc < 0)
|
|
return rc;
|
|
val = rc;
|
|
|
|
rc = mb86a20s_writereg(state, 0x51, val | 0x01);
|
|
if (rc < 0)
|
|
return rc;
|
|
rc = mb86a20s_writereg(state, 0x51, val & 0x06);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
int layer;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
/* Fill the length of each status counter */
|
|
|
|
/* Only global stats */
|
|
c->strength.len = 1;
|
|
|
|
/* Per-layer stats - 3 layers + global */
|
|
c->cnr.len = NUM_LAYERS + 1;
|
|
c->pre_bit_error.len = NUM_LAYERS + 1;
|
|
c->pre_bit_count.len = NUM_LAYERS + 1;
|
|
c->post_bit_error.len = NUM_LAYERS + 1;
|
|
c->post_bit_count.len = NUM_LAYERS + 1;
|
|
c->block_error.len = NUM_LAYERS + 1;
|
|
c->block_count.len = NUM_LAYERS + 1;
|
|
|
|
/* Signal is always available */
|
|
c->strength.stat[0].scale = FE_SCALE_RELATIVE;
|
|
c->strength.stat[0].uvalue = 0;
|
|
|
|
/* Put all of them at FE_SCALE_NOT_AVAILABLE */
|
|
for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
|
|
c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
int rc = 0, layer;
|
|
u32 bit_error = 0, bit_count = 0;
|
|
u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
|
|
u32 t_post_bit_error = 0, t_post_bit_count = 0;
|
|
u32 block_error = 0, block_count = 0;
|
|
u32 t_block_error = 0, t_block_count = 0;
|
|
int pre_ber_layers = 0, post_ber_layers = 0;
|
|
int per_layers = 0;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
mb86a20s_get_main_CNR(fe);
|
|
|
|
/* Get per-layer stats */
|
|
mb86a20s_get_blk_error_layer_CNR(fe);
|
|
|
|
/*
|
|
* At state 7, only CNR is available
|
|
* For BER measures, state=9 is required
|
|
* FIXME: we may get MER measures with state=8
|
|
*/
|
|
if (status_nr < 9)
|
|
return 0;
|
|
|
|
for (layer = 0; layer < NUM_LAYERS; layer++) {
|
|
if (c->isdbt_layer_enabled & (1 << layer)) {
|
|
/* Handle BER before vterbi */
|
|
rc = mb86a20s_get_pre_ber(fe, layer,
|
|
&bit_error, &bit_count);
|
|
if (rc >= 0) {
|
|
c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
|
|
c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
|
|
c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
|
|
c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
|
|
} else if (rc != -EBUSY) {
|
|
/*
|
|
* If an I/O error happened,
|
|
* measures are now unavailable
|
|
*/
|
|
c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't get BER for layer %c (error %d).\n",
|
|
__func__, 'A' + layer, rc);
|
|
}
|
|
if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
|
|
pre_ber_layers++;
|
|
|
|
/* Handle BER post vterbi */
|
|
rc = mb86a20s_get_post_ber(fe, layer,
|
|
&bit_error, &bit_count);
|
|
if (rc >= 0) {
|
|
c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
|
|
c->post_bit_error.stat[1 + layer].uvalue += bit_error;
|
|
c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
|
|
c->post_bit_count.stat[1 + layer].uvalue += bit_count;
|
|
} else if (rc != -EBUSY) {
|
|
/*
|
|
* If an I/O error happened,
|
|
* measures are now unavailable
|
|
*/
|
|
c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't get BER for layer %c (error %d).\n",
|
|
__func__, 'A' + layer, rc);
|
|
}
|
|
if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
|
|
post_ber_layers++;
|
|
|
|
/* Handle Block errors for PER/UCB reports */
|
|
rc = mb86a20s_get_blk_error(fe, layer,
|
|
&block_error,
|
|
&block_count);
|
|
if (rc >= 0) {
|
|
c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
|
|
c->block_error.stat[1 + layer].uvalue += block_error;
|
|
c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
|
|
c->block_count.stat[1 + layer].uvalue += block_count;
|
|
} else if (rc != -EBUSY) {
|
|
/*
|
|
* If an I/O error happened,
|
|
* measures are now unavailable
|
|
*/
|
|
c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't get PER for layer %c (error %d).\n",
|
|
__func__, 'A' + layer, rc);
|
|
|
|
}
|
|
if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
|
|
per_layers++;
|
|
|
|
/* Update total preBER */
|
|
t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
|
|
t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
|
|
|
|
/* Update total postBER */
|
|
t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
|
|
t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
|
|
|
|
/* Update total PER */
|
|
t_block_error += c->block_error.stat[1 + layer].uvalue;
|
|
t_block_count += c->block_count.stat[1 + layer].uvalue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start showing global count if at least one error count is
|
|
* available.
|
|
*/
|
|
if (pre_ber_layers) {
|
|
/*
|
|
* At least one per-layer BER measure was read. We can now
|
|
* calculate the total BER
|
|
*
|
|
* Total Bit Error/Count is calculated as the sum of the
|
|
* bit errors on all active layers.
|
|
*/
|
|
c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
|
|
c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
|
|
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
|
|
c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
|
|
} else {
|
|
c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
|
|
}
|
|
|
|
/*
|
|
* Start showing global count if at least one error count is
|
|
* available.
|
|
*/
|
|
if (post_ber_layers) {
|
|
/*
|
|
* At least one per-layer BER measure was read. We can now
|
|
* calculate the total BER
|
|
*
|
|
* Total Bit Error/Count is calculated as the sum of the
|
|
* bit errors on all active layers.
|
|
*/
|
|
c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
|
|
c->post_bit_error.stat[0].uvalue = t_post_bit_error;
|
|
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
|
|
c->post_bit_count.stat[0].uvalue = t_post_bit_count;
|
|
} else {
|
|
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
|
|
}
|
|
|
|
if (per_layers) {
|
|
/*
|
|
* At least one per-layer UCB measure was read. We can now
|
|
* calculate the total UCB
|
|
*
|
|
* Total block Error/Count is calculated as the sum of the
|
|
* block errors on all active layers.
|
|
*/
|
|
c->block_error.stat[0].scale = FE_SCALE_COUNTER;
|
|
c->block_error.stat[0].uvalue = t_block_error;
|
|
c->block_count.stat[0].scale = FE_SCALE_COUNTER;
|
|
c->block_count.stat[0].uvalue = t_block_count;
|
|
} else {
|
|
c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
|
|
c->block_count.stat[0].scale = FE_SCALE_COUNTER;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The functions below are called via DVB callbacks, so they need to
|
|
* properly use the I2C gate control
|
|
*/
|
|
|
|
static int mb86a20s_initfe(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
u64 pll;
|
|
u32 fclk;
|
|
int rc;
|
|
u8 regD5 = 1, reg71, reg09 = 0x3a;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
/* Initialize the frontend */
|
|
rc = mb86a20s_writeregdata(state, mb86a20s_init1);
|
|
if (rc < 0)
|
|
goto err;
|
|
|
|
if (!state->inversion)
|
|
reg09 |= 0x04;
|
|
rc = mb86a20s_writereg(state, 0x09, reg09);
|
|
if (rc < 0)
|
|
goto err;
|
|
if (!state->bw)
|
|
reg71 = 1;
|
|
else
|
|
reg71 = 0;
|
|
rc = mb86a20s_writereg(state, 0x39, reg71);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x71, state->bw);
|
|
if (rc < 0)
|
|
goto err;
|
|
if (state->subchannel) {
|
|
rc = mb86a20s_writereg(state, 0x44, state->subchannel);
|
|
if (rc < 0)
|
|
goto err;
|
|
}
|
|
|
|
fclk = state->config->fclk;
|
|
if (!fclk)
|
|
fclk = 32571428;
|
|
|
|
/* Adjust IF frequency to match tuner */
|
|
if (fe->ops.tuner_ops.get_if_frequency)
|
|
fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
|
|
|
|
if (!state->if_freq)
|
|
state->if_freq = 3300000;
|
|
|
|
pll = (((u64)1) << 34) * state->if_freq;
|
|
do_div(pll, 63 * fclk);
|
|
pll = (1 << 25) - pll;
|
|
rc = mb86a20s_writereg(state, 0x28, 0x2a);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
|
|
if (rc < 0)
|
|
goto err;
|
|
dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
|
|
__func__, fclk, state->if_freq, (long long)pll);
|
|
|
|
/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
|
|
pll = state->if_freq * 1677721600L;
|
|
do_div(pll, 1628571429L);
|
|
rc = mb86a20s_writereg(state, 0x28, 0x20);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
|
|
if (rc < 0)
|
|
goto err;
|
|
dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
|
|
__func__, state->if_freq, (long long)pll);
|
|
|
|
if (!state->config->is_serial)
|
|
regD5 &= ~1;
|
|
|
|
rc = mb86a20s_writereg(state, 0x50, 0xd5);
|
|
if (rc < 0)
|
|
goto err;
|
|
rc = mb86a20s_writereg(state, 0x51, regD5);
|
|
if (rc < 0)
|
|
goto err;
|
|
|
|
rc = mb86a20s_writeregdata(state, mb86a20s_init2);
|
|
if (rc < 0)
|
|
goto err;
|
|
|
|
|
|
err:
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
if (rc < 0) {
|
|
state->need_init = true;
|
|
dev_info(&state->i2c->dev,
|
|
"mb86a20s: Init failed. Will try again later\n");
|
|
} else {
|
|
state->need_init = false;
|
|
dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_set_frontend(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
int rc, if_freq;
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (!c->isdbt_layer_enabled)
|
|
c->isdbt_layer_enabled = 7;
|
|
|
|
if (c->isdbt_layer_enabled == 1)
|
|
state->bw = MB86A20S_1SEG;
|
|
else if (c->isdbt_partial_reception)
|
|
state->bw = MB86A20S_13SEG_PARTIAL;
|
|
else
|
|
state->bw = MB86A20S_13SEG;
|
|
|
|
if (c->inversion == INVERSION_ON)
|
|
state->inversion = true;
|
|
else
|
|
state->inversion = false;
|
|
|
|
if (!c->isdbt_sb_mode) {
|
|
state->subchannel = 0;
|
|
} else {
|
|
if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
|
|
c->isdbt_sb_subchannel = 0;
|
|
|
|
state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
|
|
}
|
|
|
|
/*
|
|
* Gate should already be opened, but it doesn't hurt to
|
|
* double-check
|
|
*/
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
fe->ops.tuner_ops.set_params(fe);
|
|
|
|
if (fe->ops.tuner_ops.get_if_frequency)
|
|
fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
|
|
|
|
/*
|
|
* Make it more reliable: if, for some reason, the initial
|
|
* device initialization doesn't happen, initialize it when
|
|
* a SBTVD parameters are adjusted.
|
|
*
|
|
* Unfortunately, due to a hard to track bug at tda829x/tda18271,
|
|
* the agc callback logic is not called during DVB attach time,
|
|
* causing mb86a20s to not be initialized with Kworld SBTVD.
|
|
* So, this hack is needed, in order to make Kworld SBTVD to work.
|
|
*
|
|
* It is also needed to change the IF after the initial init.
|
|
*
|
|
* HACK: Always init the frontend when set_frontend is called:
|
|
* it was noticed that, on some devices, it fails to lock on a
|
|
* different channel. So, it is better to reset everything, even
|
|
* wasting some time, than to loose channel lock.
|
|
*/
|
|
mb86a20s_initfe(fe);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
|
|
mb86a20s_reset_counters(fe);
|
|
mb86a20s_stats_not_ready(fe);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
|
|
enum fe_status *status)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
int rc, status_nr;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
/* Get lock */
|
|
status_nr = mb86a20s_read_status(fe, status);
|
|
if (status_nr < 7) {
|
|
mb86a20s_stats_not_ready(fe);
|
|
mb86a20s_reset_frontend_cache(fe);
|
|
}
|
|
if (status_nr < 0) {
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't read frontend lock status\n", __func__);
|
|
rc = status_nr;
|
|
goto error;
|
|
}
|
|
|
|
/* Get signal strength */
|
|
rc = mb86a20s_read_signal_strength(fe);
|
|
if (rc < 0) {
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't reset VBER registers.\n", __func__);
|
|
mb86a20s_stats_not_ready(fe);
|
|
mb86a20s_reset_frontend_cache(fe);
|
|
|
|
rc = 0; /* Status is OK */
|
|
goto error;
|
|
}
|
|
|
|
if (status_nr >= 7) {
|
|
/* Get TMCC info*/
|
|
rc = mb86a20s_get_frontend(fe);
|
|
if (rc < 0) {
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't get FE TMCC data.\n", __func__);
|
|
rc = 0; /* Status is OK */
|
|
goto error;
|
|
}
|
|
|
|
/* Get statistics */
|
|
rc = mb86a20s_get_stats(fe, status_nr);
|
|
if (rc < 0 && rc != -EBUSY) {
|
|
dev_err(&state->i2c->dev,
|
|
"%s: Can't get FE statistics.\n", __func__);
|
|
rc = 0;
|
|
goto error;
|
|
}
|
|
rc = 0; /* Don't return EBUSY to userspace */
|
|
}
|
|
goto ok;
|
|
|
|
error:
|
|
mb86a20s_stats_not_ready(fe);
|
|
|
|
ok:
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
|
|
u16 *strength)
|
|
{
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
|
|
|
|
*strength = c->strength.stat[0].uvalue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mb86a20s_tune(struct dvb_frontend *fe,
|
|
bool re_tune,
|
|
unsigned int mode_flags,
|
|
unsigned int *delay,
|
|
enum fe_status *status)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
int rc = 0;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
if (re_tune)
|
|
rc = mb86a20s_set_frontend(fe);
|
|
|
|
if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
|
|
mb86a20s_read_status_and_stats(fe, status);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void mb86a20s_release(struct dvb_frontend *fe)
|
|
{
|
|
struct mb86a20s_state *state = fe->demodulator_priv;
|
|
|
|
dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
|
|
|
|
kfree(state);
|
|
}
|
|
|
|
static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
|
|
{
|
|
return DVBFE_ALGO_HW;
|
|
}
|
|
|
|
static const struct dvb_frontend_ops mb86a20s_ops;
|
|
|
|
struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
|
|
struct i2c_adapter *i2c)
|
|
{
|
|
struct mb86a20s_state *state;
|
|
u8 rev;
|
|
|
|
dev_dbg(&i2c->dev, "%s called.\n", __func__);
|
|
|
|
/* allocate memory for the internal state */
|
|
state = kzalloc(sizeof(*state), GFP_KERNEL);
|
|
if (!state)
|
|
return NULL;
|
|
|
|
/* setup the state */
|
|
state->config = config;
|
|
state->i2c = i2c;
|
|
|
|
/* create dvb_frontend */
|
|
memcpy(&state->frontend.ops, &mb86a20s_ops,
|
|
sizeof(struct dvb_frontend_ops));
|
|
state->frontend.demodulator_priv = state;
|
|
|
|
/* Check if it is a mb86a20s frontend */
|
|
rev = mb86a20s_readreg(state, 0);
|
|
if (rev != 0x13) {
|
|
kfree(state);
|
|
dev_dbg(&i2c->dev,
|
|
"Frontend revision %d is unknown - aborting.\n",
|
|
rev);
|
|
return NULL;
|
|
}
|
|
|
|
dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
|
|
return &state->frontend;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mb86a20s_attach);
|
|
|
|
static const struct dvb_frontend_ops mb86a20s_ops = {
|
|
.delsys = { SYS_ISDBT },
|
|
/* Use dib8000 values per default */
|
|
.info = {
|
|
.name = "Fujitsu mb86A20s",
|
|
.caps = FE_CAN_RECOVER |
|
|
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
|
|
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
|
|
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
|
|
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
|
|
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
|
|
/* Actually, those values depend on the used tuner */
|
|
.frequency_min_hz = 45 * MHz,
|
|
.frequency_max_hz = 864 * MHz,
|
|
.frequency_stepsize_hz = 62500,
|
|
},
|
|
|
|
.release = mb86a20s_release,
|
|
|
|
.init = mb86a20s_initfe,
|
|
.set_frontend = mb86a20s_set_frontend,
|
|
.read_status = mb86a20s_read_status_and_stats,
|
|
.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
|
|
.tune = mb86a20s_tune,
|
|
.get_frontend_algo = mb86a20s_get_frontend_algo,
|
|
};
|
|
|
|
MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab");
|
|
MODULE_LICENSE("GPL");
|