mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-22 13:54:57 +08:00
38c26bfd90
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.
Large parts of this conversion were done with sed with commands like
this:
for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done
With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.
The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:
$ size -t fs/xfs/built-in.a
text data bss dec hex filenam
before 1130866 311352 484 1442702
16038e (TOTALS)
after 1127727 311352 484 1439563 15f74b (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
661 lines
18 KiB
C
661 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2017 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_rmap.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/common.h"
|
|
#include "scrub/btree.h"
|
|
#include "scrub/trace.h"
|
|
#include "xfs_ag.h"
|
|
|
|
/*
|
|
* Set us up to scrub inode btrees.
|
|
* If we detect a discrepancy between the inobt and the inode,
|
|
* try again after forcing logged inode cores out to disk.
|
|
*/
|
|
int
|
|
xchk_setup_ag_iallocbt(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
return xchk_setup_ag_btree(sc, sc->flags & XCHK_TRY_HARDER);
|
|
}
|
|
|
|
/* Inode btree scrubber. */
|
|
|
|
struct xchk_iallocbt {
|
|
/* Number of inodes we see while scanning inobt. */
|
|
unsigned long long inodes;
|
|
|
|
/* Expected next startino, for big block filesystems. */
|
|
xfs_agino_t next_startino;
|
|
|
|
/* Expected end of the current inode cluster. */
|
|
xfs_agino_t next_cluster_ino;
|
|
};
|
|
|
|
/*
|
|
* If we're checking the finobt, cross-reference with the inobt.
|
|
* Otherwise we're checking the inobt; if there is an finobt, make sure
|
|
* we have a record or not depending on freecount.
|
|
*/
|
|
static inline void
|
|
xchk_iallocbt_chunk_xref_other(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_inobt_rec_incore *irec,
|
|
xfs_agino_t agino)
|
|
{
|
|
struct xfs_btree_cur **pcur;
|
|
bool has_irec;
|
|
int error;
|
|
|
|
if (sc->sm->sm_type == XFS_SCRUB_TYPE_FINOBT)
|
|
pcur = &sc->sa.ino_cur;
|
|
else
|
|
pcur = &sc->sa.fino_cur;
|
|
if (!(*pcur))
|
|
return;
|
|
error = xfs_ialloc_has_inode_record(*pcur, agino, agino, &has_irec);
|
|
if (!xchk_should_check_xref(sc, &error, pcur))
|
|
return;
|
|
if (((irec->ir_freecount > 0 && !has_irec) ||
|
|
(irec->ir_freecount == 0 && has_irec)))
|
|
xchk_btree_xref_set_corrupt(sc, *pcur, 0);
|
|
}
|
|
|
|
/* Cross-reference with the other btrees. */
|
|
STATIC void
|
|
xchk_iallocbt_chunk_xref(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_inobt_rec_incore *irec,
|
|
xfs_agino_t agino,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len)
|
|
{
|
|
if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
|
|
return;
|
|
|
|
xchk_xref_is_used_space(sc, agbno, len);
|
|
xchk_iallocbt_chunk_xref_other(sc, irec, agino);
|
|
xchk_xref_is_owned_by(sc, agbno, len, &XFS_RMAP_OINFO_INODES);
|
|
xchk_xref_is_not_shared(sc, agbno, len);
|
|
}
|
|
|
|
/* Is this chunk worth checking? */
|
|
STATIC bool
|
|
xchk_iallocbt_chunk(
|
|
struct xchk_btree *bs,
|
|
struct xfs_inobt_rec_incore *irec,
|
|
xfs_agino_t agino,
|
|
xfs_extlen_t len)
|
|
{
|
|
struct xfs_mount *mp = bs->cur->bc_mp;
|
|
xfs_agnumber_t agno = bs->cur->bc_ag.pag->pag_agno;
|
|
xfs_agblock_t bno;
|
|
|
|
bno = XFS_AGINO_TO_AGBNO(mp, agino);
|
|
if (bno + len <= bno ||
|
|
!xfs_verify_agbno(mp, agno, bno) ||
|
|
!xfs_verify_agbno(mp, agno, bno + len - 1))
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
xchk_iallocbt_chunk_xref(bs->sc, irec, agino, bno, len);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Count the number of free inodes. */
|
|
static unsigned int
|
|
xchk_iallocbt_freecount(
|
|
xfs_inofree_t freemask)
|
|
{
|
|
BUILD_BUG_ON(sizeof(freemask) != sizeof(__u64));
|
|
return hweight64(freemask);
|
|
}
|
|
|
|
/*
|
|
* Check that an inode's allocation status matches ir_free in the inobt
|
|
* record. First we try querying the in-core inode state, and if the inode
|
|
* isn't loaded we examine the on-disk inode directly.
|
|
*
|
|
* Since there can be 1:M and M:1 mappings between inobt records and inode
|
|
* clusters, we pass in the inode location information as an inobt record;
|
|
* the index of an inode cluster within the inobt record (as well as the
|
|
* cluster buffer itself); and the index of the inode within the cluster.
|
|
*
|
|
* @irec is the inobt record.
|
|
* @irec_ino is the inode offset from the start of the record.
|
|
* @dip is the on-disk inode.
|
|
*/
|
|
STATIC int
|
|
xchk_iallocbt_check_cluster_ifree(
|
|
struct xchk_btree *bs,
|
|
struct xfs_inobt_rec_incore *irec,
|
|
unsigned int irec_ino,
|
|
struct xfs_dinode *dip)
|
|
{
|
|
struct xfs_mount *mp = bs->cur->bc_mp;
|
|
xfs_ino_t fsino;
|
|
xfs_agino_t agino;
|
|
bool irec_free;
|
|
bool ino_inuse;
|
|
bool freemask_ok;
|
|
int error = 0;
|
|
|
|
if (xchk_should_terminate(bs->sc, &error))
|
|
return error;
|
|
|
|
/*
|
|
* Given an inobt record and the offset of an inode from the start of
|
|
* the record, compute which fs inode we're talking about.
|
|
*/
|
|
agino = irec->ir_startino + irec_ino;
|
|
fsino = XFS_AGINO_TO_INO(mp, bs->cur->bc_ag.pag->pag_agno, agino);
|
|
irec_free = (irec->ir_free & XFS_INOBT_MASK(irec_ino));
|
|
|
|
if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC ||
|
|
(dip->di_version >= 3 && be64_to_cpu(dip->di_ino) != fsino)) {
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
goto out;
|
|
}
|
|
|
|
error = xfs_icache_inode_is_allocated(mp, bs->cur->bc_tp, fsino,
|
|
&ino_inuse);
|
|
if (error == -ENODATA) {
|
|
/* Not cached, just read the disk buffer */
|
|
freemask_ok = irec_free ^ !!(dip->di_mode);
|
|
if (!(bs->sc->flags & XCHK_TRY_HARDER) && !freemask_ok)
|
|
return -EDEADLOCK;
|
|
} else if (error < 0) {
|
|
/*
|
|
* Inode is only half assembled, or there was an IO error,
|
|
* or the verifier failed, so don't bother trying to check.
|
|
* The inode scrubber can deal with this.
|
|
*/
|
|
goto out;
|
|
} else {
|
|
/* Inode is all there. */
|
|
freemask_ok = irec_free ^ ino_inuse;
|
|
}
|
|
if (!freemask_ok)
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the holemask and freemask of a hypothetical inode cluster match
|
|
* what's actually on disk. If sparse inodes are enabled, the cluster does
|
|
* not actually have to map to inodes if the corresponding holemask bit is set.
|
|
*
|
|
* @cluster_base is the first inode in the cluster within the @irec.
|
|
*/
|
|
STATIC int
|
|
xchk_iallocbt_check_cluster(
|
|
struct xchk_btree *bs,
|
|
struct xfs_inobt_rec_incore *irec,
|
|
unsigned int cluster_base)
|
|
{
|
|
struct xfs_imap imap;
|
|
struct xfs_mount *mp = bs->cur->bc_mp;
|
|
struct xfs_buf *cluster_bp;
|
|
unsigned int nr_inodes;
|
|
xfs_agnumber_t agno = bs->cur->bc_ag.pag->pag_agno;
|
|
xfs_agblock_t agbno;
|
|
unsigned int cluster_index;
|
|
uint16_t cluster_mask = 0;
|
|
uint16_t ir_holemask;
|
|
int error = 0;
|
|
|
|
nr_inodes = min_t(unsigned int, XFS_INODES_PER_CHUNK,
|
|
M_IGEO(mp)->inodes_per_cluster);
|
|
|
|
/* Map this inode cluster */
|
|
agbno = XFS_AGINO_TO_AGBNO(mp, irec->ir_startino + cluster_base);
|
|
|
|
/* Compute a bitmask for this cluster that can be used for holemask. */
|
|
for (cluster_index = 0;
|
|
cluster_index < nr_inodes;
|
|
cluster_index += XFS_INODES_PER_HOLEMASK_BIT)
|
|
cluster_mask |= XFS_INOBT_MASK((cluster_base + cluster_index) /
|
|
XFS_INODES_PER_HOLEMASK_BIT);
|
|
|
|
/*
|
|
* Map the first inode of this cluster to a buffer and offset.
|
|
* Be careful about inobt records that don't align with the start of
|
|
* the inode buffer when block sizes are large enough to hold multiple
|
|
* inode chunks. When this happens, cluster_base will be zero but
|
|
* ir_startino can be large enough to make im_boffset nonzero.
|
|
*/
|
|
ir_holemask = (irec->ir_holemask & cluster_mask);
|
|
imap.im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
|
|
imap.im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
|
|
imap.im_boffset = XFS_INO_TO_OFFSET(mp, irec->ir_startino) <<
|
|
mp->m_sb.sb_inodelog;
|
|
|
|
if (imap.im_boffset != 0 && cluster_base != 0) {
|
|
ASSERT(imap.im_boffset == 0 || cluster_base == 0);
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
return 0;
|
|
}
|
|
|
|
trace_xchk_iallocbt_check_cluster(mp, agno, irec->ir_startino,
|
|
imap.im_blkno, imap.im_len, cluster_base, nr_inodes,
|
|
cluster_mask, ir_holemask,
|
|
XFS_INO_TO_OFFSET(mp, irec->ir_startino +
|
|
cluster_base));
|
|
|
|
/* The whole cluster must be a hole or not a hole. */
|
|
if (ir_holemask != cluster_mask && ir_holemask != 0) {
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
return 0;
|
|
}
|
|
|
|
/* If any part of this is a hole, skip it. */
|
|
if (ir_holemask) {
|
|
xchk_xref_is_not_owned_by(bs->sc, agbno,
|
|
M_IGEO(mp)->blocks_per_cluster,
|
|
&XFS_RMAP_OINFO_INODES);
|
|
return 0;
|
|
}
|
|
|
|
xchk_xref_is_owned_by(bs->sc, agbno, M_IGEO(mp)->blocks_per_cluster,
|
|
&XFS_RMAP_OINFO_INODES);
|
|
|
|
/* Grab the inode cluster buffer. */
|
|
error = xfs_imap_to_bp(mp, bs->cur->bc_tp, &imap, &cluster_bp);
|
|
if (!xchk_btree_xref_process_error(bs->sc, bs->cur, 0, &error))
|
|
return error;
|
|
|
|
/* Check free status of each inode within this cluster. */
|
|
for (cluster_index = 0; cluster_index < nr_inodes; cluster_index++) {
|
|
struct xfs_dinode *dip;
|
|
|
|
if (imap.im_boffset >= BBTOB(cluster_bp->b_length)) {
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
break;
|
|
}
|
|
|
|
dip = xfs_buf_offset(cluster_bp, imap.im_boffset);
|
|
error = xchk_iallocbt_check_cluster_ifree(bs, irec,
|
|
cluster_base + cluster_index, dip);
|
|
if (error)
|
|
break;
|
|
imap.im_boffset += mp->m_sb.sb_inodesize;
|
|
}
|
|
|
|
xfs_trans_brelse(bs->cur->bc_tp, cluster_bp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* For all the inode clusters that could map to this inobt record, make sure
|
|
* that the holemask makes sense and that the allocation status of each inode
|
|
* matches the freemask.
|
|
*/
|
|
STATIC int
|
|
xchk_iallocbt_check_clusters(
|
|
struct xchk_btree *bs,
|
|
struct xfs_inobt_rec_incore *irec)
|
|
{
|
|
unsigned int cluster_base;
|
|
int error = 0;
|
|
|
|
/*
|
|
* For the common case where this inobt record maps to multiple inode
|
|
* clusters this will call _check_cluster for each cluster.
|
|
*
|
|
* For the case that multiple inobt records map to a single cluster,
|
|
* this will call _check_cluster once.
|
|
*/
|
|
for (cluster_base = 0;
|
|
cluster_base < XFS_INODES_PER_CHUNK;
|
|
cluster_base += M_IGEO(bs->sc->mp)->inodes_per_cluster) {
|
|
error = xchk_iallocbt_check_cluster(bs, irec, cluster_base);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Make sure this inode btree record is aligned properly. Because a fs block
|
|
* contains multiple inodes, we check that the inobt record is aligned to the
|
|
* correct inode, not just the correct block on disk. This results in a finer
|
|
* grained corruption check.
|
|
*/
|
|
STATIC void
|
|
xchk_iallocbt_rec_alignment(
|
|
struct xchk_btree *bs,
|
|
struct xfs_inobt_rec_incore *irec)
|
|
{
|
|
struct xfs_mount *mp = bs->sc->mp;
|
|
struct xchk_iallocbt *iabt = bs->private;
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
|
|
/*
|
|
* finobt records have different positioning requirements than inobt
|
|
* records: each finobt record must have a corresponding inobt record.
|
|
* That is checked in the xref function, so for now we only catch the
|
|
* obvious case where the record isn't at all aligned properly.
|
|
*
|
|
* Note that if a fs block contains more than a single chunk of inodes,
|
|
* we will have finobt records only for those chunks containing free
|
|
* inodes, and therefore expect chunk alignment of finobt records.
|
|
* Otherwise, we expect that the finobt record is aligned to the
|
|
* cluster alignment as told by the superblock.
|
|
*/
|
|
if (bs->cur->bc_btnum == XFS_BTNUM_FINO) {
|
|
unsigned int imask;
|
|
|
|
imask = min_t(unsigned int, XFS_INODES_PER_CHUNK,
|
|
igeo->cluster_align_inodes) - 1;
|
|
if (irec->ir_startino & imask)
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
return;
|
|
}
|
|
|
|
if (iabt->next_startino != NULLAGINO) {
|
|
/*
|
|
* We're midway through a cluster of inodes that is mapped by
|
|
* multiple inobt records. Did we get the record for the next
|
|
* irec in the sequence?
|
|
*/
|
|
if (irec->ir_startino != iabt->next_startino) {
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
return;
|
|
}
|
|
|
|
iabt->next_startino += XFS_INODES_PER_CHUNK;
|
|
|
|
/* Are we done with the cluster? */
|
|
if (iabt->next_startino >= iabt->next_cluster_ino) {
|
|
iabt->next_startino = NULLAGINO;
|
|
iabt->next_cluster_ino = NULLAGINO;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* inobt records must be aligned to cluster and inoalignmnt size. */
|
|
if (irec->ir_startino & (igeo->cluster_align_inodes - 1)) {
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
return;
|
|
}
|
|
|
|
if (irec->ir_startino & (igeo->inodes_per_cluster - 1)) {
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
return;
|
|
}
|
|
|
|
if (igeo->inodes_per_cluster <= XFS_INODES_PER_CHUNK)
|
|
return;
|
|
|
|
/*
|
|
* If this is the start of an inode cluster that can be mapped by
|
|
* multiple inobt records, the next inobt record must follow exactly
|
|
* after this one.
|
|
*/
|
|
iabt->next_startino = irec->ir_startino + XFS_INODES_PER_CHUNK;
|
|
iabt->next_cluster_ino = irec->ir_startino + igeo->inodes_per_cluster;
|
|
}
|
|
|
|
/* Scrub an inobt/finobt record. */
|
|
STATIC int
|
|
xchk_iallocbt_rec(
|
|
struct xchk_btree *bs,
|
|
const union xfs_btree_rec *rec)
|
|
{
|
|
struct xfs_mount *mp = bs->cur->bc_mp;
|
|
struct xchk_iallocbt *iabt = bs->private;
|
|
struct xfs_inobt_rec_incore irec;
|
|
uint64_t holes;
|
|
xfs_agnumber_t agno = bs->cur->bc_ag.pag->pag_agno;
|
|
xfs_agino_t agino;
|
|
xfs_extlen_t len;
|
|
int holecount;
|
|
int i;
|
|
int error = 0;
|
|
unsigned int real_freecount;
|
|
uint16_t holemask;
|
|
|
|
xfs_inobt_btrec_to_irec(mp, rec, &irec);
|
|
|
|
if (irec.ir_count > XFS_INODES_PER_CHUNK ||
|
|
irec.ir_freecount > XFS_INODES_PER_CHUNK)
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
real_freecount = irec.ir_freecount +
|
|
(XFS_INODES_PER_CHUNK - irec.ir_count);
|
|
if (real_freecount != xchk_iallocbt_freecount(irec.ir_free))
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
agino = irec.ir_startino;
|
|
/* Record has to be properly aligned within the AG. */
|
|
if (!xfs_verify_agino(mp, agno, agino) ||
|
|
!xfs_verify_agino(mp, agno, agino + XFS_INODES_PER_CHUNK - 1)) {
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
goto out;
|
|
}
|
|
|
|
xchk_iallocbt_rec_alignment(bs, &irec);
|
|
if (bs->sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
|
|
goto out;
|
|
|
|
iabt->inodes += irec.ir_count;
|
|
|
|
/* Handle non-sparse inodes */
|
|
if (!xfs_inobt_issparse(irec.ir_holemask)) {
|
|
len = XFS_B_TO_FSB(mp,
|
|
XFS_INODES_PER_CHUNK * mp->m_sb.sb_inodesize);
|
|
if (irec.ir_count != XFS_INODES_PER_CHUNK)
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
if (!xchk_iallocbt_chunk(bs, &irec, agino, len))
|
|
goto out;
|
|
goto check_clusters;
|
|
}
|
|
|
|
/* Check each chunk of a sparse inode cluster. */
|
|
holemask = irec.ir_holemask;
|
|
holecount = 0;
|
|
len = XFS_B_TO_FSB(mp,
|
|
XFS_INODES_PER_HOLEMASK_BIT * mp->m_sb.sb_inodesize);
|
|
holes = ~xfs_inobt_irec_to_allocmask(&irec);
|
|
if ((holes & irec.ir_free) != holes ||
|
|
irec.ir_freecount > irec.ir_count)
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; i++) {
|
|
if (holemask & 1)
|
|
holecount += XFS_INODES_PER_HOLEMASK_BIT;
|
|
else if (!xchk_iallocbt_chunk(bs, &irec, agino, len))
|
|
break;
|
|
holemask >>= 1;
|
|
agino += XFS_INODES_PER_HOLEMASK_BIT;
|
|
}
|
|
|
|
if (holecount > XFS_INODES_PER_CHUNK ||
|
|
holecount + irec.ir_count != XFS_INODES_PER_CHUNK)
|
|
xchk_btree_set_corrupt(bs->sc, bs->cur, 0);
|
|
|
|
check_clusters:
|
|
error = xchk_iallocbt_check_clusters(bs, &irec);
|
|
if (error)
|
|
goto out;
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Make sure the inode btrees are as large as the rmap thinks they are.
|
|
* Don't bother if we're missing btree cursors, as we're already corrupt.
|
|
*/
|
|
STATIC void
|
|
xchk_iallocbt_xref_rmap_btreeblks(
|
|
struct xfs_scrub *sc,
|
|
int which)
|
|
{
|
|
xfs_filblks_t blocks;
|
|
xfs_extlen_t inobt_blocks = 0;
|
|
xfs_extlen_t finobt_blocks = 0;
|
|
int error;
|
|
|
|
if (!sc->sa.ino_cur || !sc->sa.rmap_cur ||
|
|
(xfs_has_finobt(sc->mp) && !sc->sa.fino_cur) ||
|
|
xchk_skip_xref(sc->sm))
|
|
return;
|
|
|
|
/* Check that we saw as many inobt blocks as the rmap says. */
|
|
error = xfs_btree_count_blocks(sc->sa.ino_cur, &inobt_blocks);
|
|
if (!xchk_process_error(sc, 0, 0, &error))
|
|
return;
|
|
|
|
if (sc->sa.fino_cur) {
|
|
error = xfs_btree_count_blocks(sc->sa.fino_cur, &finobt_blocks);
|
|
if (!xchk_process_error(sc, 0, 0, &error))
|
|
return;
|
|
}
|
|
|
|
error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur,
|
|
&XFS_RMAP_OINFO_INOBT, &blocks);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur))
|
|
return;
|
|
if (blocks != inobt_blocks + finobt_blocks)
|
|
xchk_btree_set_corrupt(sc, sc->sa.ino_cur, 0);
|
|
}
|
|
|
|
/*
|
|
* Make sure that the inobt records point to the same number of blocks as
|
|
* the rmap says are owned by inodes.
|
|
*/
|
|
STATIC void
|
|
xchk_iallocbt_xref_rmap_inodes(
|
|
struct xfs_scrub *sc,
|
|
int which,
|
|
unsigned long long inodes)
|
|
{
|
|
xfs_filblks_t blocks;
|
|
xfs_filblks_t inode_blocks;
|
|
int error;
|
|
|
|
if (!sc->sa.rmap_cur || xchk_skip_xref(sc->sm))
|
|
return;
|
|
|
|
/* Check that we saw as many inode blocks as the rmap knows about. */
|
|
error = xchk_count_rmap_ownedby_ag(sc, sc->sa.rmap_cur,
|
|
&XFS_RMAP_OINFO_INODES, &blocks);
|
|
if (!xchk_should_check_xref(sc, &error, &sc->sa.rmap_cur))
|
|
return;
|
|
inode_blocks = XFS_B_TO_FSB(sc->mp, inodes * sc->mp->m_sb.sb_inodesize);
|
|
if (blocks != inode_blocks)
|
|
xchk_btree_xref_set_corrupt(sc, sc->sa.rmap_cur, 0);
|
|
}
|
|
|
|
/* Scrub the inode btrees for some AG. */
|
|
STATIC int
|
|
xchk_iallocbt(
|
|
struct xfs_scrub *sc,
|
|
xfs_btnum_t which)
|
|
{
|
|
struct xfs_btree_cur *cur;
|
|
struct xchk_iallocbt iabt = {
|
|
.inodes = 0,
|
|
.next_startino = NULLAGINO,
|
|
.next_cluster_ino = NULLAGINO,
|
|
};
|
|
int error;
|
|
|
|
cur = which == XFS_BTNUM_INO ? sc->sa.ino_cur : sc->sa.fino_cur;
|
|
error = xchk_btree(sc, cur, xchk_iallocbt_rec, &XFS_RMAP_OINFO_INOBT,
|
|
&iabt);
|
|
if (error)
|
|
return error;
|
|
|
|
xchk_iallocbt_xref_rmap_btreeblks(sc, which);
|
|
|
|
/*
|
|
* If we're scrubbing the inode btree, inode_blocks is the number of
|
|
* blocks pointed to by all the inode chunk records. Therefore, we
|
|
* should compare to the number of inode chunk blocks that the rmap
|
|
* knows about. We can't do this for the finobt since it only points
|
|
* to inode chunks with free inodes.
|
|
*/
|
|
if (which == XFS_BTNUM_INO)
|
|
xchk_iallocbt_xref_rmap_inodes(sc, which, iabt.inodes);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xchk_inobt(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
return xchk_iallocbt(sc, XFS_BTNUM_INO);
|
|
}
|
|
|
|
int
|
|
xchk_finobt(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
return xchk_iallocbt(sc, XFS_BTNUM_FINO);
|
|
}
|
|
|
|
/* See if an inode btree has (or doesn't have) an inode chunk record. */
|
|
static inline void
|
|
xchk_xref_inode_check(
|
|
struct xfs_scrub *sc,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len,
|
|
struct xfs_btree_cur **icur,
|
|
bool should_have_inodes)
|
|
{
|
|
bool has_inodes;
|
|
int error;
|
|
|
|
if (!(*icur) || xchk_skip_xref(sc->sm))
|
|
return;
|
|
|
|
error = xfs_ialloc_has_inodes_at_extent(*icur, agbno, len, &has_inodes);
|
|
if (!xchk_should_check_xref(sc, &error, icur))
|
|
return;
|
|
if (has_inodes != should_have_inodes)
|
|
xchk_btree_xref_set_corrupt(sc, *icur, 0);
|
|
}
|
|
|
|
/* xref check that the extent is not covered by inodes */
|
|
void
|
|
xchk_xref_is_not_inode_chunk(
|
|
struct xfs_scrub *sc,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len)
|
|
{
|
|
xchk_xref_inode_check(sc, agbno, len, &sc->sa.ino_cur, false);
|
|
xchk_xref_inode_check(sc, agbno, len, &sc->sa.fino_cur, false);
|
|
}
|
|
|
|
/* xref check that the extent is covered by inodes */
|
|
void
|
|
xchk_xref_is_inode_chunk(
|
|
struct xfs_scrub *sc,
|
|
xfs_agblock_t agbno,
|
|
xfs_extlen_t len)
|
|
{
|
|
xchk_xref_inode_check(sc, agbno, len, &sc->sa.ino_cur, true);
|
|
}
|