linux/drivers/iio/light/ltr501.c
Cristina Opriceana 1ca510b0ea iio: light: ltr501: Powerdown device on error
Power down device when an error occurs  in order to avoid wasting
power. Move powerdown function up to be seen by the new call and
align parameters for the ltr501_write_contr() call.

Signed-off-by: Cristina Opriceana <cristina.opriceana@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-04-02 10:27:39 +02:00

448 lines
11 KiB
C

/*
* ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
*
* Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
*
* This file is subject to the terms and conditions of version 2 of
* the GNU General Public License. See the file COPYING in the main
* directory of this archive for more details.
*
* 7-bit I2C slave address 0x23
*
* TODO: interrupt, threshold, measurement rate, IR LED characteristics
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/buffer.h>
#include <linux/iio/triggered_buffer.h>
#define LTR501_DRV_NAME "ltr501"
#define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
#define LTR501_PS_CONTR 0x81 /* PS operation mode */
#define LTR501_PART_ID 0x86
#define LTR501_MANUFAC_ID 0x87
#define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
#define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
#define LTR501_ALS_PS_STATUS 0x8c
#define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
#define LTR501_ALS_CONTR_SW_RESET BIT(2)
#define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
#define LTR501_CONTR_PS_GAIN_SHIFT 2
#define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
#define LTR501_CONTR_ACTIVE BIT(1)
#define LTR501_STATUS_ALS_RDY BIT(2)
#define LTR501_STATUS_PS_RDY BIT(0)
#define LTR501_PS_DATA_MASK 0x7ff
struct ltr501_data {
struct i2c_client *client;
struct mutex lock_als, lock_ps;
u8 als_contr, ps_contr;
};
static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask)
{
int tries = 100;
int ret;
while (tries--) {
ret = i2c_smbus_read_byte_data(data->client,
LTR501_ALS_PS_STATUS);
if (ret < 0)
return ret;
if ((ret & drdy_mask) == drdy_mask)
return 0;
msleep(25);
}
dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
return -EIO;
}
static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2])
{
int ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
if (ret < 0)
return ret;
/* always read both ALS channels in given order */
return i2c_smbus_read_i2c_block_data(data->client,
LTR501_ALS_DATA1, 2 * sizeof(__le16), (u8 *) buf);
}
static int ltr501_read_ps(struct ltr501_data *data)
{
int ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
if (ret < 0)
return ret;
return i2c_smbus_read_word_data(data->client, LTR501_PS_DATA);
}
#define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared) { \
.type = IIO_INTENSITY, \
.modified = 1, \
.address = (_addr), \
.channel2 = (_mod), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = (_shared), \
.scan_index = (_idx), \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
} \
}
static const struct iio_chan_spec ltr501_channels[] = {
LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0),
LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
BIT(IIO_CHAN_INFO_SCALE)),
{
.type = IIO_PROXIMITY,
.address = LTR501_PS_DATA,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.scan_index = 2,
.scan_type = {
.sign = 'u',
.realbits = 11,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const int ltr501_ps_gain[4][2] = {
{1, 0}, {0, 250000}, {0, 125000}, {0, 62500}
};
static int ltr501_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct ltr501_data *data = iio_priv(indio_dev);
__le16 buf[2];
int ret, i;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
switch (chan->type) {
case IIO_INTENSITY:
mutex_lock(&data->lock_als);
ret = ltr501_read_als(data, buf);
mutex_unlock(&data->lock_als);
if (ret < 0)
return ret;
*val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
buf[0] : buf[1]);
return IIO_VAL_INT;
case IIO_PROXIMITY:
mutex_lock(&data->lock_ps);
ret = ltr501_read_ps(data);
mutex_unlock(&data->lock_ps);
if (ret < 0)
return ret;
*val = ret & LTR501_PS_DATA_MASK;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_INTENSITY:
if (data->als_contr & LTR501_CONTR_ALS_GAIN_MASK) {
*val = 0;
*val2 = 5000;
return IIO_VAL_INT_PLUS_MICRO;
} else {
*val = 1;
*val2 = 0;
return IIO_VAL_INT;
}
case IIO_PROXIMITY:
i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
LTR501_CONTR_PS_GAIN_SHIFT;
*val = ltr501_ps_gain[i][0];
*val2 = ltr501_ps_gain[i][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
return -EINVAL;
}
static int ltr501_get_ps_gain_index(int val, int val2)
{
int i;
for (i = 0; i < ARRAY_SIZE(ltr501_ps_gain); i++)
if (val == ltr501_ps_gain[i][0] && val2 == ltr501_ps_gain[i][1])
return i;
return -1;
}
static int ltr501_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct ltr501_data *data = iio_priv(indio_dev);
int i;
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_INTENSITY:
if (val == 0 && val2 == 5000)
data->als_contr |= LTR501_CONTR_ALS_GAIN_MASK;
else if (val == 1 && val2 == 0)
data->als_contr &= ~LTR501_CONTR_ALS_GAIN_MASK;
else
return -EINVAL;
return i2c_smbus_write_byte_data(data->client,
LTR501_ALS_CONTR, data->als_contr);
case IIO_PROXIMITY:
i = ltr501_get_ps_gain_index(val, val2);
if (i < 0)
return -EINVAL;
data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
return i2c_smbus_write_byte_data(data->client,
LTR501_PS_CONTR, data->ps_contr);
default:
return -EINVAL;
}
}
return -EINVAL;
}
static IIO_CONST_ATTR(in_proximity_scale_available, "1 0.25 0.125 0.0625");
static IIO_CONST_ATTR(in_intensity_scale_available, "1 0.005");
static struct attribute *ltr501_attributes[] = {
&iio_const_attr_in_proximity_scale_available.dev_attr.attr,
&iio_const_attr_in_intensity_scale_available.dev_attr.attr,
NULL
};
static const struct attribute_group ltr501_attribute_group = {
.attrs = ltr501_attributes,
};
static const struct iio_info ltr501_info = {
.read_raw = ltr501_read_raw,
.write_raw = ltr501_write_raw,
.attrs = &ltr501_attribute_group,
.driver_module = THIS_MODULE,
};
static int ltr501_write_contr(struct i2c_client *client, u8 als_val, u8 ps_val)
{
int ret = i2c_smbus_write_byte_data(client, LTR501_ALS_CONTR, als_val);
if (ret < 0)
return ret;
return i2c_smbus_write_byte_data(client, LTR501_PS_CONTR, ps_val);
}
static irqreturn_t ltr501_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ltr501_data *data = iio_priv(indio_dev);
u16 buf[8];
__le16 als_buf[2];
u8 mask = 0;
int j = 0;
int ret;
memset(buf, 0, sizeof(buf));
/* figure out which data needs to be ready */
if (test_bit(0, indio_dev->active_scan_mask) ||
test_bit(1, indio_dev->active_scan_mask))
mask |= LTR501_STATUS_ALS_RDY;
if (test_bit(2, indio_dev->active_scan_mask))
mask |= LTR501_STATUS_PS_RDY;
ret = ltr501_drdy(data, mask);
if (ret < 0)
goto done;
if (mask & LTR501_STATUS_ALS_RDY) {
ret = i2c_smbus_read_i2c_block_data(data->client,
LTR501_ALS_DATA1, sizeof(als_buf), (u8 *) als_buf);
if (ret < 0)
return ret;
if (test_bit(0, indio_dev->active_scan_mask))
buf[j++] = le16_to_cpu(als_buf[1]);
if (test_bit(1, indio_dev->active_scan_mask))
buf[j++] = le16_to_cpu(als_buf[0]);
}
if (mask & LTR501_STATUS_PS_RDY) {
ret = i2c_smbus_read_word_data(data->client, LTR501_PS_DATA);
if (ret < 0)
goto done;
buf[j++] = ret & LTR501_PS_DATA_MASK;
}
iio_push_to_buffers_with_timestamp(indio_dev, buf,
iio_get_time_ns());
done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int ltr501_init(struct ltr501_data *data)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, LTR501_ALS_CONTR);
if (ret < 0)
return ret;
data->als_contr = ret | LTR501_CONTR_ACTIVE;
ret = i2c_smbus_read_byte_data(data->client, LTR501_PS_CONTR);
if (ret < 0)
return ret;
data->ps_contr = ret | LTR501_CONTR_ACTIVE;
return ltr501_write_contr(data->client, data->als_contr,
data->ps_contr);
}
static int ltr501_powerdown(struct ltr501_data *data)
{
return ltr501_write_contr(data->client,
data->als_contr & ~LTR501_CONTR_ACTIVE,
data->ps_contr & ~LTR501_CONTR_ACTIVE);
}
static int ltr501_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ltr501_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
mutex_init(&data->lock_als);
mutex_init(&data->lock_ps);
ret = i2c_smbus_read_byte_data(data->client, LTR501_PART_ID);
if (ret < 0)
return ret;
if ((ret >> 4) != 0x8)
return -ENODEV;
indio_dev->dev.parent = &client->dev;
indio_dev->info = &ltr501_info;
indio_dev->channels = ltr501_channels;
indio_dev->num_channels = ARRAY_SIZE(ltr501_channels);
indio_dev->name = LTR501_DRV_NAME;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = ltr501_init(data);
if (ret < 0)
return ret;
ret = iio_triggered_buffer_setup(indio_dev, NULL,
ltr501_trigger_handler, NULL);
if (ret)
goto powerdown_on_error;
ret = iio_device_register(indio_dev);
if (ret)
goto error_unreg_buffer;
return 0;
error_unreg_buffer:
iio_triggered_buffer_cleanup(indio_dev);
powerdown_on_error:
ltr501_powerdown(data);
return ret;
}
static int ltr501_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
ltr501_powerdown(iio_priv(indio_dev));
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int ltr501_suspend(struct device *dev)
{
struct ltr501_data *data = iio_priv(i2c_get_clientdata(
to_i2c_client(dev)));
return ltr501_powerdown(data);
}
static int ltr501_resume(struct device *dev)
{
struct ltr501_data *data = iio_priv(i2c_get_clientdata(
to_i2c_client(dev)));
return ltr501_write_contr(data->client, data->als_contr,
data->ps_contr);
}
#endif
static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
static const struct i2c_device_id ltr501_id[] = {
{ "ltr501", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ltr501_id);
static struct i2c_driver ltr501_driver = {
.driver = {
.name = LTR501_DRV_NAME,
.pm = &ltr501_pm_ops,
.owner = THIS_MODULE,
},
.probe = ltr501_probe,
.remove = ltr501_remove,
.id_table = ltr501_id,
};
module_i2c_driver(ltr501_driver);
MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
MODULE_LICENSE("GPL");