linux/drivers/remoteproc/remoteproc_core.c
Mathieu Poirier 8b46dc5cfa remoteproc: Make rproc_get_by_phandle() work for clusters
Multi-cluster remoteproc designs typically have the following DT
declaration:

        remoteproc-cluster {
                compatible = "soc,remoteproc-cluster";

                core0: core0 {
                        compatible = "soc,remoteproc-core"
                        memory-region;
                        sram;
                };

                core1: core1 {
                        compatible = "soc,remoteproc-core"
                        memory-region;
                        sram;
                }
        };

A driver exists for the cluster rather than the individual cores
themselves so that operation mode and HW specific configurations
applicable to the cluster can be made.

Because the driver exists at the cluster level and not the individual
core level, function rproc_get_by_phandle() fails to return the
remoteproc associated with the phandled it is called for.

This patch enhances rproc_get_by_phandle() by looking for the cluster's
driver when the driver for the immediate remoteproc's parent is not
found.

Reported-by: Ben Levinsky <ben.levinsky@xilinx.com>
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Co-developed-by: Tarak Reddy <tarak.reddy@amd.com>
Signed-off-by: Tarak Reddy <tarak.reddy@amd.com>
Co-developed-by: Tanmay Shah <tanmay.shah@amd.com>
Signed-off-by: Tanmay Shah <tanmay.shah@amd.com>
Link: https://lore.kernel.org/r/20240130154849.1018666-1-tanmay.shah@amd.com
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
2024-02-06 13:48:09 -08:00

2795 lines
72 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Remote Processor Framework
*
* Copyright (C) 2011 Texas Instruments, Inc.
* Copyright (C) 2011 Google, Inc.
*
* Ohad Ben-Cohen <ohad@wizery.com>
* Brian Swetland <swetland@google.com>
* Mark Grosen <mgrosen@ti.com>
* Fernando Guzman Lugo <fernando.lugo@ti.com>
* Suman Anna <s-anna@ti.com>
* Robert Tivy <rtivy@ti.com>
* Armando Uribe De Leon <x0095078@ti.com>
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/panic_notifier.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/rculist.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
#include <linux/idr.h>
#include <linux/elf.h>
#include <linux/crc32.h>
#include <linux/of_platform.h>
#include <linux/of_reserved_mem.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
#include <asm/byteorder.h>
#include <linux/platform_device.h>
#include "remoteproc_internal.h"
#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
static DEFINE_MUTEX(rproc_list_mutex);
static LIST_HEAD(rproc_list);
static struct notifier_block rproc_panic_nb;
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
void *, int offset, int avail);
static int rproc_alloc_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem);
static int rproc_release_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem);
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);
static struct workqueue_struct *rproc_recovery_wq;
static const char * const rproc_crash_names[] = {
[RPROC_MMUFAULT] = "mmufault",
[RPROC_WATCHDOG] = "watchdog",
[RPROC_FATAL_ERROR] = "fatal error",
};
/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
if (type < ARRAY_SIZE(rproc_crash_names))
return rproc_crash_names[type];
return "unknown";
}
/*
* This is the IOMMU fault handler we register with the IOMMU API
* (when relevant; not all remote processors access memory through
* an IOMMU).
*
* IOMMU core will invoke this handler whenever the remote processor
* will try to access an unmapped device address.
*/
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
unsigned long iova, int flags, void *token)
{
struct rproc *rproc = token;
dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
rproc_report_crash(rproc, RPROC_MMUFAULT);
/*
* Let the iommu core know we're not really handling this fault;
* we just used it as a recovery trigger.
*/
return -ENOSYS;
}
static int rproc_enable_iommu(struct rproc *rproc)
{
struct iommu_domain *domain;
struct device *dev = rproc->dev.parent;
int ret;
if (!rproc->has_iommu) {
dev_dbg(dev, "iommu not present\n");
return 0;
}
domain = iommu_domain_alloc(dev->bus);
if (!domain) {
dev_err(dev, "can't alloc iommu domain\n");
return -ENOMEM;
}
iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
ret = iommu_attach_device(domain, dev);
if (ret) {
dev_err(dev, "can't attach iommu device: %d\n", ret);
goto free_domain;
}
rproc->domain = domain;
return 0;
free_domain:
iommu_domain_free(domain);
return ret;
}
static void rproc_disable_iommu(struct rproc *rproc)
{
struct iommu_domain *domain = rproc->domain;
struct device *dev = rproc->dev.parent;
if (!domain)
return;
iommu_detach_device(domain, dev);
iommu_domain_free(domain);
}
phys_addr_t rproc_va_to_pa(void *cpu_addr)
{
/*
* Return physical address according to virtual address location
* - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
* - in kernel: if region allocated in generic dma memory pool
*/
if (is_vmalloc_addr(cpu_addr)) {
return page_to_phys(vmalloc_to_page(cpu_addr)) +
offset_in_page(cpu_addr);
}
WARN_ON(!virt_addr_valid(cpu_addr));
return virt_to_phys(cpu_addr);
}
EXPORT_SYMBOL(rproc_va_to_pa);
/**
* rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
* @rproc: handle of a remote processor
* @da: remoteproc device address to translate
* @len: length of the memory region @da is pointing to
* @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
*
* Some remote processors will ask us to allocate them physically contiguous
* memory regions (which we call "carveouts"), and map them to specific
* device addresses (which are hardcoded in the firmware). They may also have
* dedicated memory regions internal to the processors, and use them either
* exclusively or alongside carveouts.
*
* They may then ask us to copy objects into specific device addresses (e.g.
* code/data sections) or expose us certain symbols in other device address
* (e.g. their trace buffer).
*
* This function is a helper function with which we can go over the allocated
* carveouts and translate specific device addresses to kernel virtual addresses
* so we can access the referenced memory. This function also allows to perform
* translations on the internal remoteproc memory regions through a platform
* implementation specific da_to_va ops, if present.
*
* Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
* but only on kernel direct mapped RAM memory. Instead, we're just using
* here the output of the DMA API for the carveouts, which should be more
* correct.
*
* Return: a valid kernel address on success or NULL on failure
*/
void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct rproc_mem_entry *carveout;
void *ptr = NULL;
if (rproc->ops->da_to_va) {
ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
if (ptr)
goto out;
}
list_for_each_entry(carveout, &rproc->carveouts, node) {
int offset = da - carveout->da;
/* Verify that carveout is allocated */
if (!carveout->va)
continue;
/* try next carveout if da is too small */
if (offset < 0)
continue;
/* try next carveout if da is too large */
if (offset + len > carveout->len)
continue;
ptr = carveout->va + offset;
if (is_iomem)
*is_iomem = carveout->is_iomem;
break;
}
out:
return ptr;
}
EXPORT_SYMBOL(rproc_da_to_va);
/**
* rproc_find_carveout_by_name() - lookup the carveout region by a name
* @rproc: handle of a remote processor
* @name: carveout name to find (format string)
* @...: optional parameters matching @name string
*
* Platform driver has the capability to register some pre-allacoted carveout
* (physically contiguous memory regions) before rproc firmware loading and
* associated resource table analysis. These regions may be dedicated memory
* regions internal to the coprocessor or specified DDR region with specific
* attributes
*
* This function is a helper function with which we can go over the
* allocated carveouts and return associated region characteristics like
* coprocessor address, length or processor virtual address.
*
* Return: a valid pointer on carveout entry on success or NULL on failure.
*/
__printf(2, 3)
struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
{
va_list args;
char _name[32];
struct rproc_mem_entry *carveout, *mem = NULL;
if (!name)
return NULL;
va_start(args, name);
vsnprintf(_name, sizeof(_name), name, args);
va_end(args);
list_for_each_entry(carveout, &rproc->carveouts, node) {
/* Compare carveout and requested names */
if (!strcmp(carveout->name, _name)) {
mem = carveout;
break;
}
}
return mem;
}
/**
* rproc_check_carveout_da() - Check specified carveout da configuration
* @rproc: handle of a remote processor
* @mem: pointer on carveout to check
* @da: area device address
* @len: associated area size
*
* This function is a helper function to verify requested device area (couple
* da, len) is part of specified carveout.
* If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
* checked.
*
* Return: 0 if carveout matches request else error
*/
static int rproc_check_carveout_da(struct rproc *rproc,
struct rproc_mem_entry *mem, u32 da, u32 len)
{
struct device *dev = &rproc->dev;
int delta;
/* Check requested resource length */
if (len > mem->len) {
dev_err(dev, "Registered carveout doesn't fit len request\n");
return -EINVAL;
}
if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
/* Address doesn't match registered carveout configuration */
return -EINVAL;
} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
delta = da - mem->da;
/* Check requested resource belongs to registered carveout */
if (delta < 0) {
dev_err(dev,
"Registered carveout doesn't fit da request\n");
return -EINVAL;
}
if (delta + len > mem->len) {
dev_err(dev,
"Registered carveout doesn't fit len request\n");
return -EINVAL;
}
}
return 0;
}
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
{
struct rproc *rproc = rvdev->rproc;
struct device *dev = &rproc->dev;
struct rproc_vring *rvring = &rvdev->vring[i];
struct fw_rsc_vdev *rsc;
int ret, notifyid;
struct rproc_mem_entry *mem;
size_t size;
/* actual size of vring (in bytes) */
size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
/* Search for pre-registered carveout */
mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
i);
if (mem) {
if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
return -ENOMEM;
} else {
/* Register carveout in list */
mem = rproc_mem_entry_init(dev, NULL, 0,
size, rsc->vring[i].da,
rproc_alloc_carveout,
rproc_release_carveout,
"vdev%dvring%d",
rvdev->index, i);
if (!mem) {
dev_err(dev, "Can't allocate memory entry structure\n");
return -ENOMEM;
}
rproc_add_carveout(rproc, mem);
}
/*
* Assign an rproc-wide unique index for this vring
* TODO: assign a notifyid for rvdev updates as well
* TODO: support predefined notifyids (via resource table)
*/
ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
if (ret < 0) {
dev_err(dev, "idr_alloc failed: %d\n", ret);
return ret;
}
notifyid = ret;
/* Potentially bump max_notifyid */
if (notifyid > rproc->max_notifyid)
rproc->max_notifyid = notifyid;
rvring->notifyid = notifyid;
/* Let the rproc know the notifyid of this vring.*/
rsc->vring[i].notifyid = notifyid;
return 0;
}
int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
{
struct rproc *rproc = rvdev->rproc;
struct device *dev = &rproc->dev;
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
struct rproc_vring *rvring = &rvdev->vring[i];
dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
i, vring->da, vring->num, vring->align);
/* verify queue size and vring alignment are sane */
if (!vring->num || !vring->align) {
dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
vring->num, vring->align);
return -EINVAL;
}
rvring->num = vring->num;
rvring->align = vring->align;
rvring->rvdev = rvdev;
return 0;
}
void rproc_free_vring(struct rproc_vring *rvring)
{
struct rproc *rproc = rvring->rvdev->rproc;
int idx = rvring - rvring->rvdev->vring;
struct fw_rsc_vdev *rsc;
idr_remove(&rproc->notifyids, rvring->notifyid);
/*
* At this point rproc_stop() has been called and the installed resource
* table in the remote processor memory may no longer be accessible. As
* such and as per rproc_stop(), rproc->table_ptr points to the cached
* resource table (rproc->cached_table). The cached resource table is
* only available when a remote processor has been booted by the
* remoteproc core, otherwise it is NULL.
*
* Based on the above, reset the virtio device section in the cached
* resource table only if there is one to work with.
*/
if (rproc->table_ptr) {
rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
rsc->vring[idx].da = 0;
rsc->vring[idx].notifyid = -1;
}
}
void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
{
if (rvdev && rproc)
list_add_tail(&rvdev->node, &rproc->rvdevs);
}
void rproc_remove_rvdev(struct rproc_vdev *rvdev)
{
if (rvdev)
list_del(&rvdev->node);
}
/**
* rproc_handle_vdev() - handle a vdev fw resource
* @rproc: the remote processor
* @ptr: the vring resource descriptor
* @offset: offset of the resource entry
* @avail: size of available data (for sanity checking the image)
*
* This resource entry requests the host to statically register a virtio
* device (vdev), and setup everything needed to support it. It contains
* everything needed to make it possible: the virtio device id, virtio
* device features, vrings information, virtio config space, etc...
*
* Before registering the vdev, the vrings are allocated from non-cacheable
* physically contiguous memory. Currently we only support two vrings per
* remote processor (temporary limitation). We might also want to consider
* doing the vring allocation only later when ->find_vqs() is invoked, and
* then release them upon ->del_vqs().
*
* Note: @da is currently not really handled correctly: we dynamically
* allocate it using the DMA API, ignoring requested hard coded addresses,
* and we don't take care of any required IOMMU programming. This is all
* going to be taken care of when the generic iommu-based DMA API will be
* merged. Meanwhile, statically-addressed iommu-based firmware images should
* use RSC_DEVMEM resource entries to map their required @da to the physical
* address of their base CMA region (ouch, hacky!).
*
* Return: 0 on success, or an appropriate error code otherwise
*/
static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
int offset, int avail)
{
struct fw_rsc_vdev *rsc = ptr;
struct device *dev = &rproc->dev;
struct rproc_vdev *rvdev;
size_t rsc_size;
struct rproc_vdev_data rvdev_data;
struct platform_device *pdev;
/* make sure resource isn't truncated */
rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
if (size_add(rsc_size, rsc->config_len) > avail) {
dev_err(dev, "vdev rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved[0] || rsc->reserved[1]) {
dev_err(dev, "vdev rsc has non zero reserved bytes\n");
return -EINVAL;
}
dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
/* we currently support only two vrings per rvdev */
if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
return -EINVAL;
}
rvdev_data.id = rsc->id;
rvdev_data.index = rproc->nb_vdev++;
rvdev_data.rsc_offset = offset;
rvdev_data.rsc = rsc;
/*
* When there is more than one remote processor, rproc->nb_vdev number is
* same for each separate instances of "rproc". If rvdev_data.index is used
* as device id, then we get duplication in sysfs, so need to use
* PLATFORM_DEVID_AUTO to auto select device id.
*/
pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
sizeof(rvdev_data));
if (IS_ERR(pdev)) {
dev_err(dev, "failed to create rproc-virtio device\n");
return PTR_ERR(pdev);
}
return 0;
}
/**
* rproc_handle_trace() - handle a shared trace buffer resource
* @rproc: the remote processor
* @ptr: the trace resource descriptor
* @offset: offset of the resource entry
* @avail: size of available data (for sanity checking the image)
*
* In case the remote processor dumps trace logs into memory,
* export it via debugfs.
*
* Currently, the 'da' member of @rsc should contain the device address
* where the remote processor is dumping the traces. Later we could also
* support dynamically allocating this address using the generic
* DMA API (but currently there isn't a use case for that).
*
* Return: 0 on success, or an appropriate error code otherwise
*/
static int rproc_handle_trace(struct rproc *rproc, void *ptr,
int offset, int avail)
{
struct fw_rsc_trace *rsc = ptr;
struct rproc_debug_trace *trace;
struct device *dev = &rproc->dev;
char name[15];
if (sizeof(*rsc) > avail) {
dev_err(dev, "trace rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved) {
dev_err(dev, "trace rsc has non zero reserved bytes\n");
return -EINVAL;
}
trace = kzalloc(sizeof(*trace), GFP_KERNEL);
if (!trace)
return -ENOMEM;
/* set the trace buffer dma properties */
trace->trace_mem.len = rsc->len;
trace->trace_mem.da = rsc->da;
/* set pointer on rproc device */
trace->rproc = rproc;
/* make sure snprintf always null terminates, even if truncating */
snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
/* create the debugfs entry */
trace->tfile = rproc_create_trace_file(name, rproc, trace);
list_add_tail(&trace->node, &rproc->traces);
rproc->num_traces++;
dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
name, rsc->da, rsc->len);
return 0;
}
/**
* rproc_handle_devmem() - handle devmem resource entry
* @rproc: remote processor handle
* @ptr: the devmem resource entry
* @offset: offset of the resource entry
* @avail: size of available data (for sanity checking the image)
*
* Remote processors commonly need to access certain on-chip peripherals.
*
* Some of these remote processors access memory via an iommu device,
* and might require us to configure their iommu before they can access
* the on-chip peripherals they need.
*
* This resource entry is a request to map such a peripheral device.
*
* These devmem entries will contain the physical address of the device in
* the 'pa' member. If a specific device address is expected, then 'da' will
* contain it (currently this is the only use case supported). 'len' will
* contain the size of the physical region we need to map.
*
* Currently we just "trust" those devmem entries to contain valid physical
* addresses, but this is going to change: we want the implementations to
* tell us ranges of physical addresses the firmware is allowed to request,
* and not allow firmwares to request access to physical addresses that
* are outside those ranges.
*
* Return: 0 on success, or an appropriate error code otherwise
*/
static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
int offset, int avail)
{
struct fw_rsc_devmem *rsc = ptr;
struct rproc_mem_entry *mapping;
struct device *dev = &rproc->dev;
int ret;
/* no point in handling this resource without a valid iommu domain */
if (!rproc->domain)
return -EINVAL;
if (sizeof(*rsc) > avail) {
dev_err(dev, "devmem rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved) {
dev_err(dev, "devmem rsc has non zero reserved bytes\n");
return -EINVAL;
}
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
GFP_KERNEL);
if (ret) {
dev_err(dev, "failed to map devmem: %d\n", ret);
goto out;
}
/*
* We'll need this info later when we'll want to unmap everything
* (e.g. on shutdown).
*
* We can't trust the remote processor not to change the resource
* table, so we must maintain this info independently.
*/
mapping->da = rsc->da;
mapping->len = rsc->len;
list_add_tail(&mapping->node, &rproc->mappings);
dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
rsc->pa, rsc->da, rsc->len);
return 0;
out:
kfree(mapping);
return ret;
}
/**
* rproc_alloc_carveout() - allocated specified carveout
* @rproc: rproc handle
* @mem: the memory entry to allocate
*
* This function allocate specified memory entry @mem using
* dma_alloc_coherent() as default allocator
*
* Return: 0 on success, or an appropriate error code otherwise
*/
static int rproc_alloc_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
struct rproc_mem_entry *mapping = NULL;
struct device *dev = &rproc->dev;
dma_addr_t dma;
void *va;
int ret;
va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
if (!va) {
dev_err(dev->parent,
"failed to allocate dma memory: len 0x%zx\n",
mem->len);
return -ENOMEM;
}
dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
va, &dma, mem->len);
if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
/*
* Check requested da is equal to dma address
* and print a warn message in case of missalignment.
* Don't stop rproc_start sequence as coprocessor may
* build pa to da translation on its side.
*/
if (mem->da != (u32)dma)
dev_warn(dev->parent,
"Allocated carveout doesn't fit device address request\n");
}
/*
* Ok, this is non-standard.
*
* Sometimes we can't rely on the generic iommu-based DMA API
* to dynamically allocate the device address and then set the IOMMU
* tables accordingly, because some remote processors might
* _require_ us to use hard coded device addresses that their
* firmware was compiled with.
*
* In this case, we must use the IOMMU API directly and map
* the memory to the device address as expected by the remote
* processor.
*
* Obviously such remote processor devices should not be configured
* to use the iommu-based DMA API: we expect 'dma' to contain the
* physical address in this case.
*/
if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping) {
ret = -ENOMEM;
goto dma_free;
}
ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
mem->flags, GFP_KERNEL);
if (ret) {
dev_err(dev, "iommu_map failed: %d\n", ret);
goto free_mapping;
}
/*
* We'll need this info later when we'll want to unmap
* everything (e.g. on shutdown).
*
* We can't trust the remote processor not to change the
* resource table, so we must maintain this info independently.
*/
mapping->da = mem->da;
mapping->len = mem->len;
list_add_tail(&mapping->node, &rproc->mappings);
dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
mem->da, &dma);
}
if (mem->da == FW_RSC_ADDR_ANY) {
/* Update device address as undefined by requester */
if ((u64)dma & HIGH_BITS_MASK)
dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
mem->da = (u32)dma;
}
mem->dma = dma;
mem->va = va;
return 0;
free_mapping:
kfree(mapping);
dma_free:
dma_free_coherent(dev->parent, mem->len, va, dma);
return ret;
}
/**
* rproc_release_carveout() - release acquired carveout
* @rproc: rproc handle
* @mem: the memory entry to release
*
* This function releases specified memory entry @mem allocated via
* rproc_alloc_carveout() function by @rproc.
*
* Return: 0 on success, or an appropriate error code otherwise
*/
static int rproc_release_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
struct device *dev = &rproc->dev;
/* clean up carveout allocations */
dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
return 0;
}
/**
* rproc_handle_carveout() - handle phys contig memory allocation requests
* @rproc: rproc handle
* @ptr: the resource entry
* @offset: offset of the resource entry
* @avail: size of available data (for image validation)
*
* This function will handle firmware requests for allocation of physically
* contiguous memory regions.
*
* These request entries should come first in the firmware's resource table,
* as other firmware entries might request placing other data objects inside
* these memory regions (e.g. data/code segments, trace resource entries, ...).
*
* Allocating memory this way helps utilizing the reserved physical memory
* (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
* needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
* pressure is important; it may have a substantial impact on performance.
*
* Return: 0 on success, or an appropriate error code otherwise
*/
static int rproc_handle_carveout(struct rproc *rproc,
void *ptr, int offset, int avail)
{
struct fw_rsc_carveout *rsc = ptr;
struct rproc_mem_entry *carveout;
struct device *dev = &rproc->dev;
if (sizeof(*rsc) > avail) {
dev_err(dev, "carveout rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved) {
dev_err(dev, "carveout rsc has non zero reserved bytes\n");
return -EINVAL;
}
dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
/*
* Check carveout rsc already part of a registered carveout,
* Search by name, then check the da and length
*/
carveout = rproc_find_carveout_by_name(rproc, rsc->name);
if (carveout) {
if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
dev_err(dev,
"Carveout already associated to resource table\n");
return -ENOMEM;
}
if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
return -ENOMEM;
/* Update memory carveout with resource table info */
carveout->rsc_offset = offset;
carveout->flags = rsc->flags;
return 0;
}
/* Register carveout in list */
carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
rproc_alloc_carveout,
rproc_release_carveout, rsc->name);
if (!carveout) {
dev_err(dev, "Can't allocate memory entry structure\n");
return -ENOMEM;
}
carveout->flags = rsc->flags;
carveout->rsc_offset = offset;
rproc_add_carveout(rproc, carveout);
return 0;
}
/**
* rproc_add_carveout() - register an allocated carveout region
* @rproc: rproc handle
* @mem: memory entry to register
*
* This function registers specified memory entry in @rproc carveouts list.
* Specified carveout should have been allocated before registering.
*/
void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
{
list_add_tail(&mem->node, &rproc->carveouts);
}
EXPORT_SYMBOL(rproc_add_carveout);
/**
* rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
* @dev: pointer on device struct
* @va: virtual address
* @dma: dma address
* @len: memory carveout length
* @da: device address
* @alloc: memory carveout allocation function
* @release: memory carveout release function
* @name: carveout name
*
* This function allocates a rproc_mem_entry struct and fill it with parameters
* provided by client.
*
* Return: a valid pointer on success, or NULL on failure
*/
__printf(8, 9)
struct rproc_mem_entry *
rproc_mem_entry_init(struct device *dev,
void *va, dma_addr_t dma, size_t len, u32 da,
int (*alloc)(struct rproc *, struct rproc_mem_entry *),
int (*release)(struct rproc *, struct rproc_mem_entry *),
const char *name, ...)
{
struct rproc_mem_entry *mem;
va_list args;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return mem;
mem->va = va;
mem->dma = dma;
mem->da = da;
mem->len = len;
mem->alloc = alloc;
mem->release = release;
mem->rsc_offset = FW_RSC_ADDR_ANY;
mem->of_resm_idx = -1;
va_start(args, name);
vsnprintf(mem->name, sizeof(mem->name), name, args);
va_end(args);
return mem;
}
EXPORT_SYMBOL(rproc_mem_entry_init);
/**
* rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
* from a reserved memory phandle
* @dev: pointer on device struct
* @of_resm_idx: reserved memory phandle index in "memory-region"
* @len: memory carveout length
* @da: device address
* @name: carveout name
*
* This function allocates a rproc_mem_entry struct and fill it with parameters
* provided by client.
*
* Return: a valid pointer on success, or NULL on failure
*/
__printf(5, 6)
struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
u32 da, const char *name, ...)
{
struct rproc_mem_entry *mem;
va_list args;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return mem;
mem->da = da;
mem->len = len;
mem->rsc_offset = FW_RSC_ADDR_ANY;
mem->of_resm_idx = of_resm_idx;
va_start(args, name);
vsnprintf(mem->name, sizeof(mem->name), name, args);
va_end(args);
return mem;
}
EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
/**
* rproc_of_parse_firmware() - parse and return the firmware-name
* @dev: pointer on device struct representing a rproc
* @index: index to use for the firmware-name retrieval
* @fw_name: pointer to a character string, in which the firmware
* name is returned on success and unmodified otherwise.
*
* This is an OF helper function that parses a device's DT node for
* the "firmware-name" property and returns the firmware name pointer
* in @fw_name on success.
*
* Return: 0 on success, or an appropriate failure.
*/
int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
{
int ret;
ret = of_property_read_string_index(dev->of_node, "firmware-name",
index, fw_name);
return ret ? ret : 0;
}
EXPORT_SYMBOL(rproc_of_parse_firmware);
/*
* A lookup table for resource handlers. The indices are defined in
* enum fw_resource_type.
*/
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
[RSC_CARVEOUT] = rproc_handle_carveout,
[RSC_DEVMEM] = rproc_handle_devmem,
[RSC_TRACE] = rproc_handle_trace,
[RSC_VDEV] = rproc_handle_vdev,
};
/* handle firmware resource entries before booting the remote processor */
static int rproc_handle_resources(struct rproc *rproc,
rproc_handle_resource_t handlers[RSC_LAST])
{
struct device *dev = &rproc->dev;
rproc_handle_resource_t handler;
int ret = 0, i;
if (!rproc->table_ptr)
return 0;
for (i = 0; i < rproc->table_ptr->num; i++) {
int offset = rproc->table_ptr->offset[i];
struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
int avail = rproc->table_sz - offset - sizeof(*hdr);
void *rsc = (void *)hdr + sizeof(*hdr);
/* make sure table isn't truncated */
if (avail < 0) {
dev_err(dev, "rsc table is truncated\n");
return -EINVAL;
}
dev_dbg(dev, "rsc: type %d\n", hdr->type);
if (hdr->type >= RSC_VENDOR_START &&
hdr->type <= RSC_VENDOR_END) {
ret = rproc_handle_rsc(rproc, hdr->type, rsc,
offset + sizeof(*hdr), avail);
if (ret == RSC_HANDLED)
continue;
else if (ret < 0)
break;
dev_warn(dev, "unsupported vendor resource %d\n",
hdr->type);
continue;
}
if (hdr->type >= RSC_LAST) {
dev_warn(dev, "unsupported resource %d\n", hdr->type);
continue;
}
handler = handlers[hdr->type];
if (!handler)
continue;
ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
if (ret)
break;
}
return ret;
}
static int rproc_prepare_subdevices(struct rproc *rproc)
{
struct rproc_subdev *subdev;
int ret;
list_for_each_entry(subdev, &rproc->subdevs, node) {
if (subdev->prepare) {
ret = subdev->prepare(subdev);
if (ret)
goto unroll_preparation;
}
}
return 0;
unroll_preparation:
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
if (subdev->unprepare)
subdev->unprepare(subdev);
}
return ret;
}
static int rproc_start_subdevices(struct rproc *rproc)
{
struct rproc_subdev *subdev;
int ret;
list_for_each_entry(subdev, &rproc->subdevs, node) {
if (subdev->start) {
ret = subdev->start(subdev);
if (ret)
goto unroll_registration;
}
}
return 0;
unroll_registration:
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
if (subdev->stop)
subdev->stop(subdev, true);
}
return ret;
}
static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
{
struct rproc_subdev *subdev;
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
if (subdev->stop)
subdev->stop(subdev, crashed);
}
}
static void rproc_unprepare_subdevices(struct rproc *rproc)
{
struct rproc_subdev *subdev;
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
if (subdev->unprepare)
subdev->unprepare(subdev);
}
}
/**
* rproc_alloc_registered_carveouts() - allocate all carveouts registered
* in the list
* @rproc: the remote processor handle
*
* This function parses registered carveout list, performs allocation
* if alloc() ops registered and updates resource table information
* if rsc_offset set.
*
* Return: 0 on success
*/
static int rproc_alloc_registered_carveouts(struct rproc *rproc)
{
struct rproc_mem_entry *entry, *tmp;
struct fw_rsc_carveout *rsc;
struct device *dev = &rproc->dev;
u64 pa;
int ret;
list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
if (entry->alloc) {
ret = entry->alloc(rproc, entry);
if (ret) {
dev_err(dev, "Unable to allocate carveout %s: %d\n",
entry->name, ret);
return -ENOMEM;
}
}
if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
/* update resource table */
rsc = (void *)rproc->table_ptr + entry->rsc_offset;
/*
* Some remote processors might need to know the pa
* even though they are behind an IOMMU. E.g., OMAP4's
* remote M3 processor needs this so it can control
* on-chip hardware accelerators that are not behind
* the IOMMU, and therefor must know the pa.
*
* Generally we don't want to expose physical addresses
* if we don't have to (remote processors are generally
* _not_ trusted), so we might want to do this only for
* remote processor that _must_ have this (e.g. OMAP4's
* dual M3 subsystem).
*
* Non-IOMMU processors might also want to have this info.
* In this case, the device address and the physical address
* are the same.
*/
/* Use va if defined else dma to generate pa */
if (entry->va)
pa = (u64)rproc_va_to_pa(entry->va);
else
pa = (u64)entry->dma;
if (((u64)pa) & HIGH_BITS_MASK)
dev_warn(dev,
"Physical address cast in 32bit to fit resource table format\n");
rsc->pa = (u32)pa;
rsc->da = entry->da;
rsc->len = entry->len;
}
}
return 0;
}
/**
* rproc_resource_cleanup() - clean up and free all acquired resources
* @rproc: rproc handle
*
* This function will free all resources acquired for @rproc, and it
* is called whenever @rproc either shuts down or fails to boot.
*/
void rproc_resource_cleanup(struct rproc *rproc)
{
struct rproc_mem_entry *entry, *tmp;
struct rproc_debug_trace *trace, *ttmp;
struct rproc_vdev *rvdev, *rvtmp;
struct device *dev = &rproc->dev;
/* clean up debugfs trace entries */
list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
rproc_remove_trace_file(trace->tfile);
rproc->num_traces--;
list_del(&trace->node);
kfree(trace);
}
/* clean up iommu mapping entries */
list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
size_t unmapped;
unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
if (unmapped != entry->len) {
/* nothing much to do besides complaining */
dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
unmapped);
}
list_del(&entry->node);
kfree(entry);
}
/* clean up carveout allocations */
list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
if (entry->release)
entry->release(rproc, entry);
list_del(&entry->node);
kfree(entry);
}
/* clean up remote vdev entries */
list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
platform_device_unregister(rvdev->pdev);
rproc_coredump_cleanup(rproc);
}
EXPORT_SYMBOL(rproc_resource_cleanup);
static int rproc_start(struct rproc *rproc, const struct firmware *fw)
{
struct resource_table *loaded_table;
struct device *dev = &rproc->dev;
int ret;
/* load the ELF segments to memory */
ret = rproc_load_segments(rproc, fw);
if (ret) {
dev_err(dev, "Failed to load program segments: %d\n", ret);
return ret;
}
/*
* The starting device has been given the rproc->cached_table as the
* resource table. The address of the vring along with the other
* allocated resources (carveouts etc) is stored in cached_table.
* In order to pass this information to the remote device we must copy
* this information to device memory. We also update the table_ptr so
* that any subsequent changes will be applied to the loaded version.
*/
loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
if (loaded_table) {
memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
rproc->table_ptr = loaded_table;
}
ret = rproc_prepare_subdevices(rproc);
if (ret) {
dev_err(dev, "failed to prepare subdevices for %s: %d\n",
rproc->name, ret);
goto reset_table_ptr;
}
/* power up the remote processor */
ret = rproc->ops->start(rproc);
if (ret) {
dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
goto unprepare_subdevices;
}
/* Start any subdevices for the remote processor */
ret = rproc_start_subdevices(rproc);
if (ret) {
dev_err(dev, "failed to probe subdevices for %s: %d\n",
rproc->name, ret);
goto stop_rproc;
}
rproc->state = RPROC_RUNNING;
dev_info(dev, "remote processor %s is now up\n", rproc->name);
return 0;
stop_rproc:
rproc->ops->stop(rproc);
unprepare_subdevices:
rproc_unprepare_subdevices(rproc);
reset_table_ptr:
rproc->table_ptr = rproc->cached_table;
return ret;
}
static int __rproc_attach(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
ret = rproc_prepare_subdevices(rproc);
if (ret) {
dev_err(dev, "failed to prepare subdevices for %s: %d\n",
rproc->name, ret);
goto out;
}
/* Attach to the remote processor */
ret = rproc_attach_device(rproc);
if (ret) {
dev_err(dev, "can't attach to rproc %s: %d\n",
rproc->name, ret);
goto unprepare_subdevices;
}
/* Start any subdevices for the remote processor */
ret = rproc_start_subdevices(rproc);
if (ret) {
dev_err(dev, "failed to probe subdevices for %s: %d\n",
rproc->name, ret);
goto stop_rproc;
}
rproc->state = RPROC_ATTACHED;
dev_info(dev, "remote processor %s is now attached\n", rproc->name);
return 0;
stop_rproc:
rproc->ops->stop(rproc);
unprepare_subdevices:
rproc_unprepare_subdevices(rproc);
out:
return ret;
}
/*
* take a firmware and boot a remote processor with it.
*/
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
struct device *dev = &rproc->dev;
const char *name = rproc->firmware;
int ret;
ret = rproc_fw_sanity_check(rproc, fw);
if (ret)
return ret;
dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
/*
* if enabling an IOMMU isn't relevant for this rproc, this is
* just a nop
*/
ret = rproc_enable_iommu(rproc);
if (ret) {
dev_err(dev, "can't enable iommu: %d\n", ret);
return ret;
}
/* Prepare rproc for firmware loading if needed */
ret = rproc_prepare_device(rproc);
if (ret) {
dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
goto disable_iommu;
}
rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
/* Load resource table, core dump segment list etc from the firmware */
ret = rproc_parse_fw(rproc, fw);
if (ret)
goto unprepare_rproc;
/* reset max_notifyid */
rproc->max_notifyid = -1;
/* reset handled vdev */
rproc->nb_vdev = 0;
/* handle fw resources which are required to boot rproc */
ret = rproc_handle_resources(rproc, rproc_loading_handlers);
if (ret) {
dev_err(dev, "Failed to process resources: %d\n", ret);
goto clean_up_resources;
}
/* Allocate carveout resources associated to rproc */
ret = rproc_alloc_registered_carveouts(rproc);
if (ret) {
dev_err(dev, "Failed to allocate associated carveouts: %d\n",
ret);
goto clean_up_resources;
}
ret = rproc_start(rproc, fw);
if (ret)
goto clean_up_resources;
return 0;
clean_up_resources:
rproc_resource_cleanup(rproc);
kfree(rproc->cached_table);
rproc->cached_table = NULL;
rproc->table_ptr = NULL;
unprepare_rproc:
/* release HW resources if needed */
rproc_unprepare_device(rproc);
disable_iommu:
rproc_disable_iommu(rproc);
return ret;
}
static int rproc_set_rsc_table(struct rproc *rproc)
{
struct resource_table *table_ptr;
struct device *dev = &rproc->dev;
size_t table_sz;
int ret;
table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
if (!table_ptr) {
/* Not having a resource table is acceptable */
return 0;
}
if (IS_ERR(table_ptr)) {
ret = PTR_ERR(table_ptr);
dev_err(dev, "can't load resource table: %d\n", ret);
return ret;
}
/*
* If it is possible to detach the remote processor, keep an untouched
* copy of the resource table. That way we can start fresh again when
* the remote processor is re-attached, that is:
*
* DETACHED -> ATTACHED -> DETACHED -> ATTACHED
*
* Free'd in rproc_reset_rsc_table_on_detach() and
* rproc_reset_rsc_table_on_stop().
*/
if (rproc->ops->detach) {
rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
if (!rproc->clean_table)
return -ENOMEM;
} else {
rproc->clean_table = NULL;
}
rproc->cached_table = NULL;
rproc->table_ptr = table_ptr;
rproc->table_sz = table_sz;
return 0;
}
static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
{
struct resource_table *table_ptr;
/* A resource table was never retrieved, nothing to do here */
if (!rproc->table_ptr)
return 0;
/*
* If we made it to this point a clean_table _must_ have been
* allocated in rproc_set_rsc_table(). If one isn't present
* something went really wrong and we must complain.
*/
if (WARN_ON(!rproc->clean_table))
return -EINVAL;
/* Remember where the external entity installed the resource table */
table_ptr = rproc->table_ptr;
/*
* If we made it here the remote processor was started by another
* entity and a cache table doesn't exist. As such make a copy of
* the resource table currently used by the remote processor and
* use that for the rest of the shutdown process. The memory
* allocated here is free'd in rproc_detach().
*/
rproc->cached_table = kmemdup(rproc->table_ptr,
rproc->table_sz, GFP_KERNEL);
if (!rproc->cached_table)
return -ENOMEM;
/*
* Use a copy of the resource table for the remainder of the
* shutdown process.
*/
rproc->table_ptr = rproc->cached_table;
/*
* Reset the memory area where the firmware loaded the resource table
* to its original value. That way when we re-attach the remote
* processor the resource table is clean and ready to be used again.
*/
memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
/*
* The clean resource table is no longer needed. Allocated in
* rproc_set_rsc_table().
*/
kfree(rproc->clean_table);
return 0;
}
static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
{
/* A resource table was never retrieved, nothing to do here */
if (!rproc->table_ptr)
return 0;
/*
* If a cache table exists the remote processor was started by
* the remoteproc core. That cache table should be used for
* the rest of the shutdown process.
*/
if (rproc->cached_table)
goto out;
/*
* If we made it here the remote processor was started by another
* entity and a cache table doesn't exist. As such make a copy of
* the resource table currently used by the remote processor and
* use that for the rest of the shutdown process. The memory
* allocated here is free'd in rproc_shutdown().
*/
rproc->cached_table = kmemdup(rproc->table_ptr,
rproc->table_sz, GFP_KERNEL);
if (!rproc->cached_table)
return -ENOMEM;
/*
* Since the remote processor is being switched off the clean table
* won't be needed. Allocated in rproc_set_rsc_table().
*/
kfree(rproc->clean_table);
out:
/*
* Use a copy of the resource table for the remainder of the
* shutdown process.
*/
rproc->table_ptr = rproc->cached_table;
return 0;
}
/*
* Attach to remote processor - similar to rproc_fw_boot() but without
* the steps that deal with the firmware image.
*/
static int rproc_attach(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
/*
* if enabling an IOMMU isn't relevant for this rproc, this is
* just a nop
*/
ret = rproc_enable_iommu(rproc);
if (ret) {
dev_err(dev, "can't enable iommu: %d\n", ret);
return ret;
}
/* Do anything that is needed to boot the remote processor */
ret = rproc_prepare_device(rproc);
if (ret) {
dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
goto disable_iommu;
}
ret = rproc_set_rsc_table(rproc);
if (ret) {
dev_err(dev, "can't load resource table: %d\n", ret);
goto unprepare_device;
}
/* reset max_notifyid */
rproc->max_notifyid = -1;
/* reset handled vdev */
rproc->nb_vdev = 0;
/*
* Handle firmware resources required to attach to a remote processor.
* Because we are attaching rather than booting the remote processor,
* we expect the platform driver to properly set rproc->table_ptr.
*/
ret = rproc_handle_resources(rproc, rproc_loading_handlers);
if (ret) {
dev_err(dev, "Failed to process resources: %d\n", ret);
goto unprepare_device;
}
/* Allocate carveout resources associated to rproc */
ret = rproc_alloc_registered_carveouts(rproc);
if (ret) {
dev_err(dev, "Failed to allocate associated carveouts: %d\n",
ret);
goto clean_up_resources;
}
ret = __rproc_attach(rproc);
if (ret)
goto clean_up_resources;
return 0;
clean_up_resources:
rproc_resource_cleanup(rproc);
unprepare_device:
/* release HW resources if needed */
rproc_unprepare_device(rproc);
disable_iommu:
rproc_disable_iommu(rproc);
return ret;
}
/*
* take a firmware and boot it up.
*
* Note: this function is called asynchronously upon registration of the
* remote processor (so we must wait until it completes before we try
* to unregister the device. one other option is just to use kref here,
* that might be cleaner).
*/
static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
{
struct rproc *rproc = context;
rproc_boot(rproc);
release_firmware(fw);
}
static int rproc_trigger_auto_boot(struct rproc *rproc)
{
int ret;
/*
* Since the remote processor is in a detached state, it has already
* been booted by another entity. As such there is no point in waiting
* for a firmware image to be loaded, we can simply initiate the process
* of attaching to it immediately.
*/
if (rproc->state == RPROC_DETACHED)
return rproc_boot(rproc);
/*
* We're initiating an asynchronous firmware loading, so we can
* be built-in kernel code, without hanging the boot process.
*/
ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
rproc->firmware, &rproc->dev, GFP_KERNEL,
rproc, rproc_auto_boot_callback);
if (ret < 0)
dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
return ret;
}
static int rproc_stop(struct rproc *rproc, bool crashed)
{
struct device *dev = &rproc->dev;
int ret;
/* No need to continue if a stop() operation has not been provided */
if (!rproc->ops->stop)
return -EINVAL;
/* Stop any subdevices for the remote processor */
rproc_stop_subdevices(rproc, crashed);
/* the installed resource table is no longer accessible */
ret = rproc_reset_rsc_table_on_stop(rproc);
if (ret) {
dev_err(dev, "can't reset resource table: %d\n", ret);
return ret;
}
/* power off the remote processor */
ret = rproc->ops->stop(rproc);
if (ret) {
dev_err(dev, "can't stop rproc: %d\n", ret);
return ret;
}
rproc_unprepare_subdevices(rproc);
rproc->state = RPROC_OFFLINE;
dev_info(dev, "stopped remote processor %s\n", rproc->name);
return 0;
}
/*
* __rproc_detach(): Does the opposite of __rproc_attach()
*/
static int __rproc_detach(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
/* No need to continue if a detach() operation has not been provided */
if (!rproc->ops->detach)
return -EINVAL;
/* Stop any subdevices for the remote processor */
rproc_stop_subdevices(rproc, false);
/* the installed resource table is no longer accessible */
ret = rproc_reset_rsc_table_on_detach(rproc);
if (ret) {
dev_err(dev, "can't reset resource table: %d\n", ret);
return ret;
}
/* Tell the remote processor the core isn't available anymore */
ret = rproc->ops->detach(rproc);
if (ret) {
dev_err(dev, "can't detach from rproc: %d\n", ret);
return ret;
}
rproc_unprepare_subdevices(rproc);
rproc->state = RPROC_DETACHED;
dev_info(dev, "detached remote processor %s\n", rproc->name);
return 0;
}
static int rproc_attach_recovery(struct rproc *rproc)
{
int ret;
ret = __rproc_detach(rproc);
if (ret)
return ret;
return __rproc_attach(rproc);
}
static int rproc_boot_recovery(struct rproc *rproc)
{
const struct firmware *firmware_p;
struct device *dev = &rproc->dev;
int ret;
ret = rproc_stop(rproc, true);
if (ret)
return ret;
/* generate coredump */
rproc->ops->coredump(rproc);
/* load firmware */
ret = request_firmware(&firmware_p, rproc->firmware, dev);
if (ret < 0) {
dev_err(dev, "request_firmware failed: %d\n", ret);
return ret;
}
/* boot the remote processor up again */
ret = rproc_start(rproc, firmware_p);
release_firmware(firmware_p);
return ret;
}
/**
* rproc_trigger_recovery() - recover a remoteproc
* @rproc: the remote processor
*
* The recovery is done by resetting all the virtio devices, that way all the
* rpmsg drivers will be reseted along with the remote processor making the
* remoteproc functional again.
*
* This function can sleep, so it cannot be called from atomic context.
*
* Return: 0 on success or a negative value upon failure
*/
int rproc_trigger_recovery(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret)
return ret;
/* State could have changed before we got the mutex */
if (rproc->state != RPROC_CRASHED)
goto unlock_mutex;
dev_err(dev, "recovering %s\n", rproc->name);
if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
ret = rproc_attach_recovery(rproc);
else
ret = rproc_boot_recovery(rproc);
unlock_mutex:
mutex_unlock(&rproc->lock);
return ret;
}
/**
* rproc_crash_handler_work() - handle a crash
* @work: work treating the crash
*
* This function needs to handle everything related to a crash, like cpu
* registers and stack dump, information to help to debug the fatal error, etc.
*/
static void rproc_crash_handler_work(struct work_struct *work)
{
struct rproc *rproc = container_of(work, struct rproc, crash_handler);
struct device *dev = &rproc->dev;
dev_dbg(dev, "enter %s\n", __func__);
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_CRASHED) {
/* handle only the first crash detected */
mutex_unlock(&rproc->lock);
return;
}
if (rproc->state == RPROC_OFFLINE) {
/* Don't recover if the remote processor was stopped */
mutex_unlock(&rproc->lock);
goto out;
}
rproc->state = RPROC_CRASHED;
dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
rproc->name);
mutex_unlock(&rproc->lock);
if (!rproc->recovery_disabled)
rproc_trigger_recovery(rproc);
out:
pm_relax(rproc->dev.parent);
}
/**
* rproc_boot() - boot a remote processor
* @rproc: handle of a remote processor
*
* Boot a remote processor (i.e. load its firmware, power it on, ...).
*
* If the remote processor is already powered on, this function immediately
* returns (successfully).
*
* Return: 0 on success, and an appropriate error value otherwise
*/
int rproc_boot(struct rproc *rproc)
{
const struct firmware *firmware_p;
struct device *dev;
int ret;
if (!rproc) {
pr_err("invalid rproc handle\n");
return -EINVAL;
}
dev = &rproc->dev;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
return ret;
}
if (rproc->state == RPROC_DELETED) {
ret = -ENODEV;
dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
goto unlock_mutex;
}
/* skip the boot or attach process if rproc is already powered up */
if (atomic_inc_return(&rproc->power) > 1) {
ret = 0;
goto unlock_mutex;
}
if (rproc->state == RPROC_DETACHED) {
dev_info(dev, "attaching to %s\n", rproc->name);
ret = rproc_attach(rproc);
} else {
dev_info(dev, "powering up %s\n", rproc->name);
/* load firmware */
ret = request_firmware(&firmware_p, rproc->firmware, dev);
if (ret < 0) {
dev_err(dev, "request_firmware failed: %d\n", ret);
goto downref_rproc;
}
ret = rproc_fw_boot(rproc, firmware_p);
release_firmware(firmware_p);
}
downref_rproc:
if (ret)
atomic_dec(&rproc->power);
unlock_mutex:
mutex_unlock(&rproc->lock);
return ret;
}
EXPORT_SYMBOL(rproc_boot);
/**
* rproc_shutdown() - power off the remote processor
* @rproc: the remote processor
*
* Power off a remote processor (previously booted with rproc_boot()).
*
* In case @rproc is still being used by an additional user(s), then
* this function will just decrement the power refcount and exit,
* without really powering off the device.
*
* Every call to rproc_boot() must (eventually) be accompanied by a call
* to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
*
* Notes:
* - we're not decrementing the rproc's refcount, only the power refcount.
* which means that the @rproc handle stays valid even after rproc_shutdown()
* returns, and users can still use it with a subsequent rproc_boot(), if
* needed.
*
* Return: 0 on success, and an appropriate error value otherwise
*/
int rproc_shutdown(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret = 0;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
return ret;
}
if (rproc->state != RPROC_RUNNING &&
rproc->state != RPROC_ATTACHED) {
ret = -EINVAL;
goto out;
}
/* if the remote proc is still needed, bail out */
if (!atomic_dec_and_test(&rproc->power))
goto out;
ret = rproc_stop(rproc, false);
if (ret) {
atomic_inc(&rproc->power);
goto out;
}
/* clean up all acquired resources */
rproc_resource_cleanup(rproc);
/* release HW resources if needed */
rproc_unprepare_device(rproc);
rproc_disable_iommu(rproc);
/* Free the copy of the resource table */
kfree(rproc->cached_table);
rproc->cached_table = NULL;
rproc->table_ptr = NULL;
out:
mutex_unlock(&rproc->lock);
return ret;
}
EXPORT_SYMBOL(rproc_shutdown);
/**
* rproc_detach() - Detach the remote processor from the
* remoteproc core
*
* @rproc: the remote processor
*
* Detach a remote processor (previously attached to with rproc_attach()).
*
* In case @rproc is still being used by an additional user(s), then
* this function will just decrement the power refcount and exit,
* without disconnecting the device.
*
* Function rproc_detach() calls __rproc_detach() in order to let a remote
* processor know that services provided by the application processor are
* no longer available. From there it should be possible to remove the
* platform driver and even power cycle the application processor (if the HW
* supports it) without needing to switch off the remote processor.
*
* Return: 0 on success, and an appropriate error value otherwise
*/
int rproc_detach(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
return ret;
}
if (rproc->state != RPROC_ATTACHED) {
ret = -EINVAL;
goto out;
}
/* if the remote proc is still needed, bail out */
if (!atomic_dec_and_test(&rproc->power)) {
ret = 0;
goto out;
}
ret = __rproc_detach(rproc);
if (ret) {
atomic_inc(&rproc->power);
goto out;
}
/* clean up all acquired resources */
rproc_resource_cleanup(rproc);
/* release HW resources if needed */
rproc_unprepare_device(rproc);
rproc_disable_iommu(rproc);
/* Free the copy of the resource table */
kfree(rproc->cached_table);
rproc->cached_table = NULL;
rproc->table_ptr = NULL;
out:
mutex_unlock(&rproc->lock);
return ret;
}
EXPORT_SYMBOL(rproc_detach);
/**
* rproc_get_by_phandle() - find a remote processor by phandle
* @phandle: phandle to the rproc
*
* Finds an rproc handle using the remote processor's phandle, and then
* return a handle to the rproc.
*
* This function increments the remote processor's refcount, so always
* use rproc_put() to decrement it back once rproc isn't needed anymore.
*
* Return: rproc handle on success, and NULL on failure
*/
#ifdef CONFIG_OF
struct rproc *rproc_get_by_phandle(phandle phandle)
{
struct rproc *rproc = NULL, *r;
struct device_driver *driver;
struct device_node *np;
np = of_find_node_by_phandle(phandle);
if (!np)
return NULL;
rcu_read_lock();
list_for_each_entry_rcu(r, &rproc_list, node) {
if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
/* prevent underlying implementation from being removed */
/*
* If the remoteproc's parent has a driver, the
* remoteproc is not part of a cluster and we can use
* that driver.
*/
driver = r->dev.parent->driver;
/*
* If the remoteproc's parent does not have a driver,
* look for the driver associated with the cluster.
*/
if (!driver) {
if (r->dev.parent->parent)
driver = r->dev.parent->parent->driver;
if (!driver)
break;
}
if (!try_module_get(driver->owner)) {
dev_err(&r->dev, "can't get owner\n");
break;
}
rproc = r;
get_device(&rproc->dev);
break;
}
}
rcu_read_unlock();
of_node_put(np);
return rproc;
}
#else
struct rproc *rproc_get_by_phandle(phandle phandle)
{
return NULL;
}
#endif
EXPORT_SYMBOL(rproc_get_by_phandle);
/**
* rproc_set_firmware() - assign a new firmware
* @rproc: rproc handle to which the new firmware is being assigned
* @fw_name: new firmware name to be assigned
*
* This function allows remoteproc drivers or clients to configure a custom
* firmware name that is different from the default name used during remoteproc
* registration. The function does not trigger a remote processor boot,
* only sets the firmware name used for a subsequent boot. This function
* should also be called only when the remote processor is offline.
*
* This allows either the userspace to configure a different name through
* sysfs or a kernel-level remoteproc or a remoteproc client driver to set
* a specific firmware when it is controlling the boot and shutdown of the
* remote processor.
*
* Return: 0 on success or a negative value upon failure
*/
int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
{
struct device *dev;
int ret, len;
char *p;
if (!rproc || !fw_name)
return -EINVAL;
dev = rproc->dev.parent;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
return -EINVAL;
}
if (rproc->state != RPROC_OFFLINE) {
dev_err(dev, "can't change firmware while running\n");
ret = -EBUSY;
goto out;
}
len = strcspn(fw_name, "\n");
if (!len) {
dev_err(dev, "can't provide empty string for firmware name\n");
ret = -EINVAL;
goto out;
}
p = kstrndup(fw_name, len, GFP_KERNEL);
if (!p) {
ret = -ENOMEM;
goto out;
}
kfree_const(rproc->firmware);
rproc->firmware = p;
out:
mutex_unlock(&rproc->lock);
return ret;
}
EXPORT_SYMBOL(rproc_set_firmware);
static int rproc_validate(struct rproc *rproc)
{
switch (rproc->state) {
case RPROC_OFFLINE:
/*
* An offline processor without a start()
* function makes no sense.
*/
if (!rproc->ops->start)
return -EINVAL;
break;
case RPROC_DETACHED:
/*
* A remote processor in a detached state without an
* attach() function makes not sense.
*/
if (!rproc->ops->attach)
return -EINVAL;
/*
* When attaching to a remote processor the device memory
* is already available and as such there is no need to have a
* cached table.
*/
if (rproc->cached_table)
return -EINVAL;
break;
default:
/*
* When adding a remote processor, the state of the device
* can be offline or detached, nothing else.
*/
return -EINVAL;
}
return 0;
}
/**
* rproc_add() - register a remote processor
* @rproc: the remote processor handle to register
*
* Registers @rproc with the remoteproc framework, after it has been
* allocated with rproc_alloc().
*
* This is called by the platform-specific rproc implementation, whenever
* a new remote processor device is probed.
*
* Note: this function initiates an asynchronous firmware loading
* context, which will look for virtio devices supported by the rproc's
* firmware.
*
* If found, those virtio devices will be created and added, so as a result
* of registering this remote processor, additional virtio drivers might be
* probed.
*
* Return: 0 on success and an appropriate error code otherwise
*/
int rproc_add(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
ret = rproc_validate(rproc);
if (ret < 0)
return ret;
/* add char device for this remoteproc */
ret = rproc_char_device_add(rproc);
if (ret < 0)
return ret;
ret = device_add(dev);
if (ret < 0) {
put_device(dev);
goto rproc_remove_cdev;
}
dev_info(dev, "%s is available\n", rproc->name);
/* create debugfs entries */
rproc_create_debug_dir(rproc);
/* if rproc is marked always-on, request it to boot */
if (rproc->auto_boot) {
ret = rproc_trigger_auto_boot(rproc);
if (ret < 0)
goto rproc_remove_dev;
}
/* expose to rproc_get_by_phandle users */
mutex_lock(&rproc_list_mutex);
list_add_rcu(&rproc->node, &rproc_list);
mutex_unlock(&rproc_list_mutex);
return 0;
rproc_remove_dev:
rproc_delete_debug_dir(rproc);
device_del(dev);
rproc_remove_cdev:
rproc_char_device_remove(rproc);
return ret;
}
EXPORT_SYMBOL(rproc_add);
static void devm_rproc_remove(void *rproc)
{
rproc_del(rproc);
}
/**
* devm_rproc_add() - resource managed rproc_add()
* @dev: the underlying device
* @rproc: the remote processor handle to register
*
* This function performs like rproc_add() but the registered rproc device will
* automatically be removed on driver detach.
*
* Return: 0 on success, negative errno on failure
*/
int devm_rproc_add(struct device *dev, struct rproc *rproc)
{
int err;
err = rproc_add(rproc);
if (err)
return err;
return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
}
EXPORT_SYMBOL(devm_rproc_add);
/**
* rproc_type_release() - release a remote processor instance
* @dev: the rproc's device
*
* This function should _never_ be called directly.
*
* It will be called by the driver core when no one holds a valid pointer
* to @dev anymore.
*/
static void rproc_type_release(struct device *dev)
{
struct rproc *rproc = container_of(dev, struct rproc, dev);
dev_info(&rproc->dev, "releasing %s\n", rproc->name);
idr_destroy(&rproc->notifyids);
if (rproc->index >= 0)
ida_free(&rproc_dev_index, rproc->index);
kfree_const(rproc->firmware);
kfree_const(rproc->name);
kfree(rproc->ops);
kfree(rproc);
}
static const struct device_type rproc_type = {
.name = "remoteproc",
.release = rproc_type_release,
};
static int rproc_alloc_firmware(struct rproc *rproc,
const char *name, const char *firmware)
{
const char *p;
/*
* Allocate a firmware name if the caller gave us one to work
* with. Otherwise construct a new one using a default pattern.
*/
if (firmware)
p = kstrdup_const(firmware, GFP_KERNEL);
else
p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
if (!p)
return -ENOMEM;
rproc->firmware = p;
return 0;
}
static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
{
rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
if (!rproc->ops)
return -ENOMEM;
/* Default to rproc_coredump if no coredump function is specified */
if (!rproc->ops->coredump)
rproc->ops->coredump = rproc_coredump;
if (rproc->ops->load)
return 0;
/* Default to ELF loader if no load function is specified */
rproc->ops->load = rproc_elf_load_segments;
rproc->ops->parse_fw = rproc_elf_load_rsc_table;
rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
rproc->ops->sanity_check = rproc_elf_sanity_check;
rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
return 0;
}
/**
* rproc_alloc() - allocate a remote processor handle
* @dev: the underlying device
* @name: name of this remote processor
* @ops: platform-specific handlers (mainly start/stop)
* @firmware: name of firmware file to load, can be NULL
* @len: length of private data needed by the rproc driver (in bytes)
*
* Allocates a new remote processor handle, but does not register
* it yet. if @firmware is NULL, a default name is used.
*
* This function should be used by rproc implementations during initialization
* of the remote processor.
*
* After creating an rproc handle using this function, and when ready,
* implementations should then call rproc_add() to complete
* the registration of the remote processor.
*
* Note: _never_ directly deallocate @rproc, even if it was not registered
* yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
*
* Return: new rproc pointer on success, and NULL on failure
*/
struct rproc *rproc_alloc(struct device *dev, const char *name,
const struct rproc_ops *ops,
const char *firmware, int len)
{
struct rproc *rproc;
if (!dev || !name || !ops)
return NULL;
rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
if (!rproc)
return NULL;
rproc->priv = &rproc[1];
rproc->auto_boot = true;
rproc->elf_class = ELFCLASSNONE;
rproc->elf_machine = EM_NONE;
device_initialize(&rproc->dev);
rproc->dev.parent = dev;
rproc->dev.type = &rproc_type;
rproc->dev.class = &rproc_class;
rproc->dev.driver_data = rproc;
idr_init(&rproc->notifyids);
rproc->name = kstrdup_const(name, GFP_KERNEL);
if (!rproc->name)
goto put_device;
if (rproc_alloc_firmware(rproc, name, firmware))
goto put_device;
if (rproc_alloc_ops(rproc, ops))
goto put_device;
/* Assign a unique device index and name */
rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
if (rproc->index < 0) {
dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
goto put_device;
}
dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
atomic_set(&rproc->power, 0);
mutex_init(&rproc->lock);
INIT_LIST_HEAD(&rproc->carveouts);
INIT_LIST_HEAD(&rproc->mappings);
INIT_LIST_HEAD(&rproc->traces);
INIT_LIST_HEAD(&rproc->rvdevs);
INIT_LIST_HEAD(&rproc->subdevs);
INIT_LIST_HEAD(&rproc->dump_segments);
INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
rproc->state = RPROC_OFFLINE;
return rproc;
put_device:
put_device(&rproc->dev);
return NULL;
}
EXPORT_SYMBOL(rproc_alloc);
/**
* rproc_free() - unroll rproc_alloc()
* @rproc: the remote processor handle
*
* This function decrements the rproc dev refcount.
*
* If no one holds any reference to rproc anymore, then its refcount would
* now drop to zero, and it would be freed.
*/
void rproc_free(struct rproc *rproc)
{
put_device(&rproc->dev);
}
EXPORT_SYMBOL(rproc_free);
/**
* rproc_put() - release rproc reference
* @rproc: the remote processor handle
*
* This function decrements the rproc dev refcount.
*
* If no one holds any reference to rproc anymore, then its refcount would
* now drop to zero, and it would be freed.
*/
void rproc_put(struct rproc *rproc)
{
if (rproc->dev.parent->driver)
module_put(rproc->dev.parent->driver->owner);
else
module_put(rproc->dev.parent->parent->driver->owner);
put_device(&rproc->dev);
}
EXPORT_SYMBOL(rproc_put);
/**
* rproc_del() - unregister a remote processor
* @rproc: rproc handle to unregister
*
* This function should be called when the platform specific rproc
* implementation decides to remove the rproc device. it should
* _only_ be called if a previous invocation of rproc_add()
* has completed successfully.
*
* After rproc_del() returns, @rproc isn't freed yet, because
* of the outstanding reference created by rproc_alloc. To decrement that
* one last refcount, one still needs to call rproc_free().
*
* Return: 0 on success and -EINVAL if @rproc isn't valid
*/
int rproc_del(struct rproc *rproc)
{
if (!rproc)
return -EINVAL;
/* TODO: make sure this works with rproc->power > 1 */
rproc_shutdown(rproc);
mutex_lock(&rproc->lock);
rproc->state = RPROC_DELETED;
mutex_unlock(&rproc->lock);
rproc_delete_debug_dir(rproc);
/* the rproc is downref'ed as soon as it's removed from the klist */
mutex_lock(&rproc_list_mutex);
list_del_rcu(&rproc->node);
mutex_unlock(&rproc_list_mutex);
/* Ensure that no readers of rproc_list are still active */
synchronize_rcu();
device_del(&rproc->dev);
rproc_char_device_remove(rproc);
return 0;
}
EXPORT_SYMBOL(rproc_del);
static void devm_rproc_free(struct device *dev, void *res)
{
rproc_free(*(struct rproc **)res);
}
/**
* devm_rproc_alloc() - resource managed rproc_alloc()
* @dev: the underlying device
* @name: name of this remote processor
* @ops: platform-specific handlers (mainly start/stop)
* @firmware: name of firmware file to load, can be NULL
* @len: length of private data needed by the rproc driver (in bytes)
*
* This function performs like rproc_alloc() but the acquired rproc device will
* automatically be released on driver detach.
*
* Return: new rproc instance, or NULL on failure
*/
struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
const struct rproc_ops *ops,
const char *firmware, int len)
{
struct rproc **ptr, *rproc;
ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return NULL;
rproc = rproc_alloc(dev, name, ops, firmware, len);
if (rproc) {
*ptr = rproc;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return rproc;
}
EXPORT_SYMBOL(devm_rproc_alloc);
/**
* rproc_add_subdev() - add a subdevice to a remoteproc
* @rproc: rproc handle to add the subdevice to
* @subdev: subdev handle to register
*
* Caller is responsible for populating optional subdevice function pointers.
*/
void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
{
list_add_tail(&subdev->node, &rproc->subdevs);
}
EXPORT_SYMBOL(rproc_add_subdev);
/**
* rproc_remove_subdev() - remove a subdevice from a remoteproc
* @rproc: rproc handle to remove the subdevice from
* @subdev: subdev handle, previously registered with rproc_add_subdev()
*/
void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
{
list_del(&subdev->node);
}
EXPORT_SYMBOL(rproc_remove_subdev);
/**
* rproc_get_by_child() - acquire rproc handle of @dev's ancestor
* @dev: child device to find ancestor of
*
* Return: the ancestor rproc instance, or NULL if not found
*/
struct rproc *rproc_get_by_child(struct device *dev)
{
for (dev = dev->parent; dev; dev = dev->parent) {
if (dev->type == &rproc_type)
return dev->driver_data;
}
return NULL;
}
EXPORT_SYMBOL(rproc_get_by_child);
/**
* rproc_report_crash() - rproc crash reporter function
* @rproc: remote processor
* @type: crash type
*
* This function must be called every time a crash is detected by the low-level
* drivers implementing a specific remoteproc. This should not be called from a
* non-remoteproc driver.
*
* This function can be called from atomic/interrupt context.
*/
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
if (!rproc) {
pr_err("NULL rproc pointer\n");
return;
}
/* Prevent suspend while the remoteproc is being recovered */
pm_stay_awake(rproc->dev.parent);
dev_err(&rproc->dev, "crash detected in %s: type %s\n",
rproc->name, rproc_crash_to_string(type));
queue_work(rproc_recovery_wq, &rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);
static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
void *ptr)
{
unsigned int longest = 0;
struct rproc *rproc;
unsigned int d;
rcu_read_lock();
list_for_each_entry_rcu(rproc, &rproc_list, node) {
if (!rproc->ops->panic)
continue;
if (rproc->state != RPROC_RUNNING &&
rproc->state != RPROC_ATTACHED)
continue;
d = rproc->ops->panic(rproc);
longest = max(longest, d);
}
rcu_read_unlock();
/*
* Delay for the longest requested duration before returning. This can
* be used by the remoteproc drivers to give the remote processor time
* to perform any requested operations (such as flush caches), when
* it's not possible to signal the Linux side due to the panic.
*/
mdelay(longest);
return NOTIFY_DONE;
}
static void __init rproc_init_panic(void)
{
rproc_panic_nb.notifier_call = rproc_panic_handler;
atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
}
static void __exit rproc_exit_panic(void)
{
atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
}
static int __init remoteproc_init(void)
{
rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
WQ_UNBOUND | WQ_FREEZABLE, 0);
if (!rproc_recovery_wq) {
pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
return -ENOMEM;
}
rproc_init_sysfs();
rproc_init_debugfs();
rproc_init_cdev();
rproc_init_panic();
return 0;
}
subsys_initcall(remoteproc_init);
static void __exit remoteproc_exit(void)
{
ida_destroy(&rproc_dev_index);
if (!rproc_recovery_wq)
return;
rproc_exit_panic();
rproc_exit_debugfs();
rproc_exit_sysfs();
destroy_workqueue(rproc_recovery_wq);
}
module_exit(remoteproc_exit);
MODULE_DESCRIPTION("Generic Remote Processor Framework");