mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-28 13:34:38 +08:00
4ddbb7d060
This moves byte count tables to tx domain removing completely ambivalent shared data. Changes handling of allocation byte count tables and keep warm consistent memory Moves general tx scheduler definitions from iwl-4956-hw.h to iwl-fh.h Signed-off-by: Tomas Winkler <tomas.winkler@intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
847 lines
31 KiB
C
847 lines
31 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called LICENSE.GPL.
|
|
*
|
|
* Contact Information:
|
|
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
|
|
* Use iwl-commands.h for uCode API definitions.
|
|
* Use iwl-dev.h for driver implementation definitions.
|
|
*/
|
|
|
|
#ifndef __iwl_4965_hw_h__
|
|
#define __iwl_4965_hw_h__
|
|
|
|
#include "iwl-fh.h"
|
|
|
|
/* EEPROM */
|
|
#define IWL4965_EEPROM_IMG_SIZE 1024
|
|
|
|
/*
|
|
* uCode queue management definitions ...
|
|
* Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
|
|
* The first queue used for block-ack aggregation is #7 (4965 only).
|
|
* All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
|
|
*/
|
|
#define IWL_CMD_QUEUE_NUM 4
|
|
#define IWL_CMD_FIFO_NUM 4
|
|
#define IWL49_FIRST_AMPDU_QUEUE 7
|
|
|
|
/* Tx rates */
|
|
#define IWL_CCK_RATES 4
|
|
#define IWL_OFDM_RATES 8
|
|
#define IWL_HT_RATES 16
|
|
#define IWL_MAX_RATES (IWL_CCK_RATES+IWL_OFDM_RATES+IWL_HT_RATES)
|
|
|
|
/* Time constants */
|
|
#define SHORT_SLOT_TIME 9
|
|
#define LONG_SLOT_TIME 20
|
|
|
|
/* RSSI to dBm */
|
|
#define IWL_RSSI_OFFSET 44
|
|
|
|
|
|
|
|
/* PCI registers */
|
|
#define PCI_CFG_RETRY_TIMEOUT 0x041
|
|
#define PCI_CFG_POWER_SOURCE 0x0C8
|
|
#define PCI_REG_WUM8 0x0E8
|
|
#define PCI_CFG_LINK_CTRL 0x0F0
|
|
|
|
/* PCI register values */
|
|
#define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
|
|
#define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
|
|
#define PCI_CFG_CMD_REG_INT_DIS_MSK 0x04
|
|
#define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
|
|
|
|
|
|
#define IWL_NUM_SCAN_RATES (2)
|
|
|
|
#define IWL_DEFAULT_TX_RETRY 15
|
|
|
|
#define RX_QUEUE_SIZE 256
|
|
#define RX_QUEUE_MASK 255
|
|
#define RX_QUEUE_SIZE_LOG 8
|
|
|
|
#define TFD_TX_CMD_SLOTS 256
|
|
#define TFD_CMD_SLOTS 32
|
|
|
|
/*
|
|
* RX related structures and functions
|
|
*/
|
|
#define RX_FREE_BUFFERS 64
|
|
#define RX_LOW_WATERMARK 8
|
|
|
|
/* Size of one Rx buffer in host DRAM */
|
|
#define IWL_RX_BUF_SIZE_4K (4 * 1024)
|
|
#define IWL_RX_BUF_SIZE_8K (8 * 1024)
|
|
|
|
/* Sizes and addresses for instruction and data memory (SRAM) in
|
|
* 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
|
|
#define RTC_INST_LOWER_BOUND (0x000000)
|
|
#define IWL49_RTC_INST_UPPER_BOUND (0x018000)
|
|
|
|
#define RTC_DATA_LOWER_BOUND (0x800000)
|
|
#define IWL49_RTC_DATA_UPPER_BOUND (0x80A000)
|
|
|
|
#define IWL49_RTC_INST_SIZE (IWL49_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
|
|
#define IWL49_RTC_DATA_SIZE (IWL49_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
|
|
|
|
#define IWL_MAX_INST_SIZE IWL49_RTC_INST_SIZE
|
|
#define IWL_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
|
|
|
|
/* Size of uCode instruction memory in bootstrap state machine */
|
|
#define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE
|
|
|
|
static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
|
|
{
|
|
return (addr >= RTC_DATA_LOWER_BOUND) &&
|
|
(addr < IWL49_RTC_DATA_UPPER_BOUND);
|
|
}
|
|
|
|
/********************* START TEMPERATURE *************************************/
|
|
|
|
/**
|
|
* 4965 temperature calculation.
|
|
*
|
|
* The driver must calculate the device temperature before calculating
|
|
* a txpower setting (amplifier gain is temperature dependent). The
|
|
* calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
|
|
* values used for the life of the driver, and one of which (R4) is the
|
|
* real-time temperature indicator.
|
|
*
|
|
* uCode provides all 4 values to the driver via the "initialize alive"
|
|
* notification (see struct iwl4965_init_alive_resp). After the runtime uCode
|
|
* image loads, uCode updates the R4 value via statistics notifications
|
|
* (see STATISTICS_NOTIFICATION), which occur after each received beacon
|
|
* when associated, or can be requested via REPLY_STATISTICS_CMD.
|
|
*
|
|
* NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
|
|
* must sign-extend to 32 bits before applying formula below.
|
|
*
|
|
* Formula:
|
|
*
|
|
* degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
|
|
*
|
|
* NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
|
|
* an additional correction, which should be centered around 0 degrees
|
|
* Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
|
|
* centering the 97/100 correction around 0 degrees K.
|
|
*
|
|
* Add 273 to Kelvin value to find degrees Celsius, for comparing current
|
|
* temperature with factory-measured temperatures when calculating txpower
|
|
* settings.
|
|
*/
|
|
#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
|
|
#define TEMPERATURE_CALIB_A_VAL 259
|
|
|
|
/* Limit range of calculated temperature to be between these Kelvin values */
|
|
#define IWL_TX_POWER_TEMPERATURE_MIN (263)
|
|
#define IWL_TX_POWER_TEMPERATURE_MAX (410)
|
|
|
|
#define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
|
|
(((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
|
|
((t) > IWL_TX_POWER_TEMPERATURE_MAX))
|
|
|
|
/********************* END TEMPERATURE ***************************************/
|
|
|
|
/********************* START TXPOWER *****************************************/
|
|
|
|
/**
|
|
* 4965 txpower calculations rely on information from three sources:
|
|
*
|
|
* 1) EEPROM
|
|
* 2) "initialize" alive notification
|
|
* 3) statistics notifications
|
|
*
|
|
* EEPROM data consists of:
|
|
*
|
|
* 1) Regulatory information (max txpower and channel usage flags) is provided
|
|
* separately for each channel that can possibly supported by 4965.
|
|
* 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
|
|
* (legacy) channels.
|
|
*
|
|
* See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
|
|
* for locations in EEPROM.
|
|
*
|
|
* 2) Factory txpower calibration information is provided separately for
|
|
* sub-bands of contiguous channels. 2.4GHz has just one sub-band,
|
|
* but 5 GHz has several sub-bands.
|
|
*
|
|
* In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
|
|
*
|
|
* See struct iwl4965_eeprom_calib_info (and the tree of structures
|
|
* contained within it) for format, and struct iwl4965_eeprom for
|
|
* locations in EEPROM.
|
|
*
|
|
* "Initialization alive" notification (see struct iwl4965_init_alive_resp)
|
|
* consists of:
|
|
*
|
|
* 1) Temperature calculation parameters.
|
|
*
|
|
* 2) Power supply voltage measurement.
|
|
*
|
|
* 3) Tx gain compensation to balance 2 transmitters for MIMO use.
|
|
*
|
|
* Statistics notifications deliver:
|
|
*
|
|
* 1) Current values for temperature param R4.
|
|
*/
|
|
|
|
/**
|
|
* To calculate a txpower setting for a given desired target txpower, channel,
|
|
* modulation bit rate, and transmitter chain (4965 has 2 transmitters to
|
|
* support MIMO and transmit diversity), driver must do the following:
|
|
*
|
|
* 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
|
|
* Do not exceed regulatory limit; reduce target txpower if necessary.
|
|
*
|
|
* If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
|
|
* 2 transmitters will be used simultaneously; driver must reduce the
|
|
* regulatory limit by 3 dB (half-power) for each transmitter, so the
|
|
* combined total output of the 2 transmitters is within regulatory limits.
|
|
*
|
|
*
|
|
* 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
|
|
* backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
|
|
* reduce target txpower if necessary.
|
|
*
|
|
* Backoff values below are in 1/2 dB units (equivalent to steps in
|
|
* txpower gain tables):
|
|
*
|
|
* OFDM 6 - 36 MBit: 10 steps (5 dB)
|
|
* OFDM 48 MBit: 15 steps (7.5 dB)
|
|
* OFDM 54 MBit: 17 steps (8.5 dB)
|
|
* OFDM 60 MBit: 20 steps (10 dB)
|
|
* CCK all rates: 10 steps (5 dB)
|
|
*
|
|
* Backoff values apply to saturation txpower on a per-transmitter basis;
|
|
* when using MIMO (2 transmitters), each transmitter uses the same
|
|
* saturation level provided in EEPROM, and the same backoff values;
|
|
* no reduction (such as with regulatory txpower limits) is required.
|
|
*
|
|
* Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
|
|
* widths and 40 Mhz (.11n fat) channel widths; there is no separate
|
|
* factory measurement for fat channels.
|
|
*
|
|
* The result of this step is the final target txpower. The rest of
|
|
* the steps figure out the proper settings for the device to achieve
|
|
* that target txpower.
|
|
*
|
|
*
|
|
* 3) Determine (EEPROM) calibration sub band for the target channel, by
|
|
* comparing against first and last channels in each sub band
|
|
* (see struct iwl4965_eeprom_calib_subband_info).
|
|
*
|
|
*
|
|
* 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
|
|
* referencing the 2 factory-measured (sample) channels within the sub band.
|
|
*
|
|
* Interpolation is based on difference between target channel's frequency
|
|
* and the sample channels' frequencies. Since channel numbers are based
|
|
* on frequency (5 MHz between each channel number), this is equivalent
|
|
* to interpolating based on channel number differences.
|
|
*
|
|
* Note that the sample channels may or may not be the channels at the
|
|
* edges of the sub band. The target channel may be "outside" of the
|
|
* span of the sampled channels.
|
|
*
|
|
* Driver may choose the pair (for 2 Tx chains) of measurements (see
|
|
* struct iwl4965_eeprom_calib_ch_info) for which the actual measured
|
|
* txpower comes closest to the desired txpower. Usually, though,
|
|
* the middle set of measurements is closest to the regulatory limits,
|
|
* and is therefore a good choice for all txpower calculations (this
|
|
* assumes that high accuracy is needed for maximizing legal txpower,
|
|
* while lower txpower configurations do not need as much accuracy).
|
|
*
|
|
* Driver should interpolate both members of the chosen measurement pair,
|
|
* i.e. for both Tx chains (radio transmitters), unless the driver knows
|
|
* that only one of the chains will be used (e.g. only one tx antenna
|
|
* connected, but this should be unusual). The rate scaling algorithm
|
|
* switches antennas to find best performance, so both Tx chains will
|
|
* be used (although only one at a time) even for non-MIMO transmissions.
|
|
*
|
|
* Driver should interpolate factory values for temperature, gain table
|
|
* index, and actual power. The power amplifier detector values are
|
|
* not used by the driver.
|
|
*
|
|
* Sanity check: If the target channel happens to be one of the sample
|
|
* channels, the results should agree with the sample channel's
|
|
* measurements!
|
|
*
|
|
*
|
|
* 5) Find difference between desired txpower and (interpolated)
|
|
* factory-measured txpower. Using (interpolated) factory gain table index
|
|
* (shown elsewhere) as a starting point, adjust this index lower to
|
|
* increase txpower, or higher to decrease txpower, until the target
|
|
* txpower is reached. Each step in the gain table is 1/2 dB.
|
|
*
|
|
* For example, if factory measured txpower is 16 dBm, and target txpower
|
|
* is 13 dBm, add 6 steps to the factory gain index to reduce txpower
|
|
* by 3 dB.
|
|
*
|
|
*
|
|
* 6) Find difference between current device temperature and (interpolated)
|
|
* factory-measured temperature for sub-band. Factory values are in
|
|
* degrees Celsius. To calculate current temperature, see comments for
|
|
* "4965 temperature calculation".
|
|
*
|
|
* If current temperature is higher than factory temperature, driver must
|
|
* increase gain (lower gain table index), and vice verse.
|
|
*
|
|
* Temperature affects gain differently for different channels:
|
|
*
|
|
* 2.4 GHz all channels: 3.5 degrees per half-dB step
|
|
* 5 GHz channels 34-43: 4.5 degrees per half-dB step
|
|
* 5 GHz channels >= 44: 4.0 degrees per half-dB step
|
|
*
|
|
* NOTE: Temperature can increase rapidly when transmitting, especially
|
|
* with heavy traffic at high txpowers. Driver should update
|
|
* temperature calculations often under these conditions to
|
|
* maintain strong txpower in the face of rising temperature.
|
|
*
|
|
*
|
|
* 7) Find difference between current power supply voltage indicator
|
|
* (from "initialize alive") and factory-measured power supply voltage
|
|
* indicator (EEPROM).
|
|
*
|
|
* If the current voltage is higher (indicator is lower) than factory
|
|
* voltage, gain should be reduced (gain table index increased) by:
|
|
*
|
|
* (eeprom - current) / 7
|
|
*
|
|
* If the current voltage is lower (indicator is higher) than factory
|
|
* voltage, gain should be increased (gain table index decreased) by:
|
|
*
|
|
* 2 * (current - eeprom) / 7
|
|
*
|
|
* If number of index steps in either direction turns out to be > 2,
|
|
* something is wrong ... just use 0.
|
|
*
|
|
* NOTE: Voltage compensation is independent of band/channel.
|
|
*
|
|
* NOTE: "Initialize" uCode measures current voltage, which is assumed
|
|
* to be constant after this initial measurement. Voltage
|
|
* compensation for txpower (number of steps in gain table)
|
|
* may be calculated once and used until the next uCode bootload.
|
|
*
|
|
*
|
|
* 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
|
|
* adjust txpower for each transmitter chain, so txpower is balanced
|
|
* between the two chains. There are 5 pairs of tx_atten[group][chain]
|
|
* values in "initialize alive", one pair for each of 5 channel ranges:
|
|
*
|
|
* Group 0: 5 GHz channel 34-43
|
|
* Group 1: 5 GHz channel 44-70
|
|
* Group 2: 5 GHz channel 71-124
|
|
* Group 3: 5 GHz channel 125-200
|
|
* Group 4: 2.4 GHz all channels
|
|
*
|
|
* Add the tx_atten[group][chain] value to the index for the target chain.
|
|
* The values are signed, but are in pairs of 0 and a non-negative number,
|
|
* so as to reduce gain (if necessary) of the "hotter" channel. This
|
|
* avoids any need to double-check for regulatory compliance after
|
|
* this step.
|
|
*
|
|
*
|
|
* 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
|
|
* value to the index:
|
|
*
|
|
* Hardware rev B: 9 steps (4.5 dB)
|
|
* Hardware rev C: 5 steps (2.5 dB)
|
|
*
|
|
* Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
|
|
* bits [3:2], 1 = B, 2 = C.
|
|
*
|
|
* NOTE: This compensation is in addition to any saturation backoff that
|
|
* might have been applied in an earlier step.
|
|
*
|
|
*
|
|
* 10) Select the gain table, based on band (2.4 vs 5 GHz).
|
|
*
|
|
* Limit the adjusted index to stay within the table!
|
|
*
|
|
*
|
|
* 11) Read gain table entries for DSP and radio gain, place into appropriate
|
|
* location(s) in command (struct iwl4965_txpowertable_cmd).
|
|
*/
|
|
|
|
/* Limit range of txpower output target to be between these values */
|
|
#define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
|
|
#define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
|
|
|
|
/**
|
|
* When MIMO is used (2 transmitters operating simultaneously), driver should
|
|
* limit each transmitter to deliver a max of 3 dB below the regulatory limit
|
|
* for the device. That is, use half power for each transmitter, so total
|
|
* txpower is within regulatory limits.
|
|
*
|
|
* The value "6" represents number of steps in gain table to reduce power 3 dB.
|
|
* Each step is 1/2 dB.
|
|
*/
|
|
#define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
|
|
|
|
/**
|
|
* CCK gain compensation.
|
|
*
|
|
* When calculating txpowers for CCK, after making sure that the target power
|
|
* is within regulatory and saturation limits, driver must additionally
|
|
* back off gain by adding these values to the gain table index.
|
|
*
|
|
* Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
|
|
* bits [3:2], 1 = B, 2 = C.
|
|
*/
|
|
#define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
|
|
#define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
|
|
|
|
/*
|
|
* 4965 power supply voltage compensation for txpower
|
|
*/
|
|
#define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
|
|
|
|
/**
|
|
* Gain tables.
|
|
*
|
|
* The following tables contain pair of values for setting txpower, i.e.
|
|
* gain settings for the output of the device's digital signal processor (DSP),
|
|
* and for the analog gain structure of the transmitter.
|
|
*
|
|
* Each entry in the gain tables represents a step of 1/2 dB. Note that these
|
|
* are *relative* steps, not indications of absolute output power. Output
|
|
* power varies with temperature, voltage, and channel frequency, and also
|
|
* requires consideration of average power (to satisfy regulatory constraints),
|
|
* and peak power (to avoid distortion of the output signal).
|
|
*
|
|
* Each entry contains two values:
|
|
* 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
|
|
* linear value that multiplies the output of the digital signal processor,
|
|
* before being sent to the analog radio.
|
|
* 2) Radio gain. This sets the analog gain of the radio Tx path.
|
|
* It is a coarser setting, and behaves in a logarithmic (dB) fashion.
|
|
*
|
|
* EEPROM contains factory calibration data for txpower. This maps actual
|
|
* measured txpower levels to gain settings in the "well known" tables
|
|
* below ("well-known" means here that both factory calibration *and* the
|
|
* driver work with the same table).
|
|
*
|
|
* There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
|
|
* has an extension (into negative indexes), in case the driver needs to
|
|
* boost power setting for high device temperatures (higher than would be
|
|
* present during factory calibration). A 5 Ghz EEPROM index of "40"
|
|
* corresponds to the 49th entry in the table used by the driver.
|
|
*/
|
|
#define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
|
|
#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
|
|
|
|
/**
|
|
* 2.4 GHz gain table
|
|
*
|
|
* Index Dsp gain Radio gain
|
|
* 0 110 0x3f (highest gain)
|
|
* 1 104 0x3f
|
|
* 2 98 0x3f
|
|
* 3 110 0x3e
|
|
* 4 104 0x3e
|
|
* 5 98 0x3e
|
|
* 6 110 0x3d
|
|
* 7 104 0x3d
|
|
* 8 98 0x3d
|
|
* 9 110 0x3c
|
|
* 10 104 0x3c
|
|
* 11 98 0x3c
|
|
* 12 110 0x3b
|
|
* 13 104 0x3b
|
|
* 14 98 0x3b
|
|
* 15 110 0x3a
|
|
* 16 104 0x3a
|
|
* 17 98 0x3a
|
|
* 18 110 0x39
|
|
* 19 104 0x39
|
|
* 20 98 0x39
|
|
* 21 110 0x38
|
|
* 22 104 0x38
|
|
* 23 98 0x38
|
|
* 24 110 0x37
|
|
* 25 104 0x37
|
|
* 26 98 0x37
|
|
* 27 110 0x36
|
|
* 28 104 0x36
|
|
* 29 98 0x36
|
|
* 30 110 0x35
|
|
* 31 104 0x35
|
|
* 32 98 0x35
|
|
* 33 110 0x34
|
|
* 34 104 0x34
|
|
* 35 98 0x34
|
|
* 36 110 0x33
|
|
* 37 104 0x33
|
|
* 38 98 0x33
|
|
* 39 110 0x32
|
|
* 40 104 0x32
|
|
* 41 98 0x32
|
|
* 42 110 0x31
|
|
* 43 104 0x31
|
|
* 44 98 0x31
|
|
* 45 110 0x30
|
|
* 46 104 0x30
|
|
* 47 98 0x30
|
|
* 48 110 0x6
|
|
* 49 104 0x6
|
|
* 50 98 0x6
|
|
* 51 110 0x5
|
|
* 52 104 0x5
|
|
* 53 98 0x5
|
|
* 54 110 0x4
|
|
* 55 104 0x4
|
|
* 56 98 0x4
|
|
* 57 110 0x3
|
|
* 58 104 0x3
|
|
* 59 98 0x3
|
|
* 60 110 0x2
|
|
* 61 104 0x2
|
|
* 62 98 0x2
|
|
* 63 110 0x1
|
|
* 64 104 0x1
|
|
* 65 98 0x1
|
|
* 66 110 0x0
|
|
* 67 104 0x0
|
|
* 68 98 0x0
|
|
* 69 97 0
|
|
* 70 96 0
|
|
* 71 95 0
|
|
* 72 94 0
|
|
* 73 93 0
|
|
* 74 92 0
|
|
* 75 91 0
|
|
* 76 90 0
|
|
* 77 89 0
|
|
* 78 88 0
|
|
* 79 87 0
|
|
* 80 86 0
|
|
* 81 85 0
|
|
* 82 84 0
|
|
* 83 83 0
|
|
* 84 82 0
|
|
* 85 81 0
|
|
* 86 80 0
|
|
* 87 79 0
|
|
* 88 78 0
|
|
* 89 77 0
|
|
* 90 76 0
|
|
* 91 75 0
|
|
* 92 74 0
|
|
* 93 73 0
|
|
* 94 72 0
|
|
* 95 71 0
|
|
* 96 70 0
|
|
* 97 69 0
|
|
* 98 68 0
|
|
*/
|
|
|
|
/**
|
|
* 5 GHz gain table
|
|
*
|
|
* Index Dsp gain Radio gain
|
|
* -9 123 0x3F (highest gain)
|
|
* -8 117 0x3F
|
|
* -7 110 0x3F
|
|
* -6 104 0x3F
|
|
* -5 98 0x3F
|
|
* -4 110 0x3E
|
|
* -3 104 0x3E
|
|
* -2 98 0x3E
|
|
* -1 110 0x3D
|
|
* 0 104 0x3D
|
|
* 1 98 0x3D
|
|
* 2 110 0x3C
|
|
* 3 104 0x3C
|
|
* 4 98 0x3C
|
|
* 5 110 0x3B
|
|
* 6 104 0x3B
|
|
* 7 98 0x3B
|
|
* 8 110 0x3A
|
|
* 9 104 0x3A
|
|
* 10 98 0x3A
|
|
* 11 110 0x39
|
|
* 12 104 0x39
|
|
* 13 98 0x39
|
|
* 14 110 0x38
|
|
* 15 104 0x38
|
|
* 16 98 0x38
|
|
* 17 110 0x37
|
|
* 18 104 0x37
|
|
* 19 98 0x37
|
|
* 20 110 0x36
|
|
* 21 104 0x36
|
|
* 22 98 0x36
|
|
* 23 110 0x35
|
|
* 24 104 0x35
|
|
* 25 98 0x35
|
|
* 26 110 0x34
|
|
* 27 104 0x34
|
|
* 28 98 0x34
|
|
* 29 110 0x33
|
|
* 30 104 0x33
|
|
* 31 98 0x33
|
|
* 32 110 0x32
|
|
* 33 104 0x32
|
|
* 34 98 0x32
|
|
* 35 110 0x31
|
|
* 36 104 0x31
|
|
* 37 98 0x31
|
|
* 38 110 0x30
|
|
* 39 104 0x30
|
|
* 40 98 0x30
|
|
* 41 110 0x25
|
|
* 42 104 0x25
|
|
* 43 98 0x25
|
|
* 44 110 0x24
|
|
* 45 104 0x24
|
|
* 46 98 0x24
|
|
* 47 110 0x23
|
|
* 48 104 0x23
|
|
* 49 98 0x23
|
|
* 50 110 0x22
|
|
* 51 104 0x18
|
|
* 52 98 0x18
|
|
* 53 110 0x17
|
|
* 54 104 0x17
|
|
* 55 98 0x17
|
|
* 56 110 0x16
|
|
* 57 104 0x16
|
|
* 58 98 0x16
|
|
* 59 110 0x15
|
|
* 60 104 0x15
|
|
* 61 98 0x15
|
|
* 62 110 0x14
|
|
* 63 104 0x14
|
|
* 64 98 0x14
|
|
* 65 110 0x13
|
|
* 66 104 0x13
|
|
* 67 98 0x13
|
|
* 68 110 0x12
|
|
* 69 104 0x08
|
|
* 70 98 0x08
|
|
* 71 110 0x07
|
|
* 72 104 0x07
|
|
* 73 98 0x07
|
|
* 74 110 0x06
|
|
* 75 104 0x06
|
|
* 76 98 0x06
|
|
* 77 110 0x05
|
|
* 78 104 0x05
|
|
* 79 98 0x05
|
|
* 80 110 0x04
|
|
* 81 104 0x04
|
|
* 82 98 0x04
|
|
* 83 110 0x03
|
|
* 84 104 0x03
|
|
* 85 98 0x03
|
|
* 86 110 0x02
|
|
* 87 104 0x02
|
|
* 88 98 0x02
|
|
* 89 110 0x01
|
|
* 90 104 0x01
|
|
* 91 98 0x01
|
|
* 92 110 0x00
|
|
* 93 104 0x00
|
|
* 94 98 0x00
|
|
* 95 93 0x00
|
|
* 96 88 0x00
|
|
* 97 83 0x00
|
|
* 98 78 0x00
|
|
*/
|
|
|
|
|
|
/**
|
|
* Sanity checks and default values for EEPROM regulatory levels.
|
|
* If EEPROM values fall outside MIN/MAX range, use default values.
|
|
*
|
|
* Regulatory limits refer to the maximum average txpower allowed by
|
|
* regulatory agencies in the geographies in which the device is meant
|
|
* to be operated. These limits are SKU-specific (i.e. geography-specific),
|
|
* and channel-specific; each channel has an individual regulatory limit
|
|
* listed in the EEPROM.
|
|
*
|
|
* Units are in half-dBm (i.e. "34" means 17 dBm).
|
|
*/
|
|
#define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
|
|
#define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
|
|
#define IWL_TX_POWER_REGULATORY_MIN (0)
|
|
#define IWL_TX_POWER_REGULATORY_MAX (34)
|
|
|
|
/**
|
|
* Sanity checks and default values for EEPROM saturation levels.
|
|
* If EEPROM values fall outside MIN/MAX range, use default values.
|
|
*
|
|
* Saturation is the highest level that the output power amplifier can produce
|
|
* without significant clipping distortion. This is a "peak" power level.
|
|
* Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
|
|
* require differing amounts of backoff, relative to their average power output,
|
|
* in order to avoid clipping distortion.
|
|
*
|
|
* Driver must make sure that it is violating neither the saturation limit,
|
|
* nor the regulatory limit, when calculating Tx power settings for various
|
|
* rates.
|
|
*
|
|
* Units are in half-dBm (i.e. "38" means 19 dBm).
|
|
*/
|
|
#define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
|
|
#define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
|
|
#define IWL_TX_POWER_SATURATION_MIN (20)
|
|
#define IWL_TX_POWER_SATURATION_MAX (50)
|
|
|
|
/**
|
|
* Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
|
|
* and thermal Txpower calibration.
|
|
*
|
|
* When calculating txpower, driver must compensate for current device
|
|
* temperature; higher temperature requires higher gain. Driver must calculate
|
|
* current temperature (see "4965 temperature calculation"), then compare vs.
|
|
* factory calibration temperature in EEPROM; if current temperature is higher
|
|
* than factory temperature, driver must *increase* gain by proportions shown
|
|
* in table below. If current temperature is lower than factory, driver must
|
|
* *decrease* gain.
|
|
*
|
|
* Different frequency ranges require different compensation, as shown below.
|
|
*/
|
|
/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
|
|
#define CALIB_IWL_TX_ATTEN_GR1_FCH 34
|
|
#define CALIB_IWL_TX_ATTEN_GR1_LCH 43
|
|
|
|
/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
|
|
#define CALIB_IWL_TX_ATTEN_GR2_FCH 44
|
|
#define CALIB_IWL_TX_ATTEN_GR2_LCH 70
|
|
|
|
/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
|
|
#define CALIB_IWL_TX_ATTEN_GR3_FCH 71
|
|
#define CALIB_IWL_TX_ATTEN_GR3_LCH 124
|
|
|
|
/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
|
|
#define CALIB_IWL_TX_ATTEN_GR4_FCH 125
|
|
#define CALIB_IWL_TX_ATTEN_GR4_LCH 200
|
|
|
|
/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
|
|
#define CALIB_IWL_TX_ATTEN_GR5_FCH 1
|
|
#define CALIB_IWL_TX_ATTEN_GR5_LCH 20
|
|
|
|
enum {
|
|
CALIB_CH_GROUP_1 = 0,
|
|
CALIB_CH_GROUP_2 = 1,
|
|
CALIB_CH_GROUP_3 = 2,
|
|
CALIB_CH_GROUP_4 = 3,
|
|
CALIB_CH_GROUP_5 = 4,
|
|
CALIB_CH_GROUP_MAX
|
|
};
|
|
|
|
/********************* END TXPOWER *****************************************/
|
|
|
|
|
|
/**
|
|
* Tx/Rx Queues
|
|
*
|
|
* Most communication between driver and 4965 is via queues of data buffers.
|
|
* For example, all commands that the driver issues to device's embedded
|
|
* controller (uCode) are via the command queue (one of the Tx queues). All
|
|
* uCode command responses/replies/notifications, including Rx frames, are
|
|
* conveyed from uCode to driver via the Rx queue.
|
|
*
|
|
* Most support for these queues, including handshake support, resides in
|
|
* structures in host DRAM, shared between the driver and the device. When
|
|
* allocating this memory, the driver must make sure that data written by
|
|
* the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
|
|
* cache memory), so DRAM and cache are consistent, and the device can
|
|
* immediately see changes made by the driver.
|
|
*
|
|
* 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
|
|
* up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
|
|
* in DRAM containing 256 Transmit Frame Descriptors (TFDs).
|
|
*/
|
|
#define IWL49_NUM_FIFOS 7
|
|
#define IWL49_CMD_FIFO_NUM 4
|
|
#define IWL49_NUM_QUEUES 16
|
|
#define IWL49_NUM_AMPDU_QUEUES 8
|
|
|
|
|
|
/**
|
|
* struct iwl4965_schedq_bc_tbl
|
|
*
|
|
* Byte Count table
|
|
*
|
|
* Each Tx queue uses a byte-count table containing 320 entries:
|
|
* one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
|
|
* duplicate the first 64 entries (to avoid wrap-around within a Tx window;
|
|
* max Tx window is 64 TFDs).
|
|
*
|
|
* When driver sets up a new TFD, it must also enter the total byte count
|
|
* of the frame to be transmitted into the corresponding entry in the byte
|
|
* count table for the chosen Tx queue. If the TFD index is 0-63, the driver
|
|
* must duplicate the byte count entry in corresponding index 256-319.
|
|
*
|
|
* padding puts each byte count table on a 1024-byte boundary;
|
|
* 4965 assumes tables are separated by 1024 bytes.
|
|
*/
|
|
struct iwl4965_scd_bc_tbl {
|
|
__le16 tfd_offset[TFD_QUEUE_BC_SIZE];
|
|
u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
|
|
} __attribute__ ((packed));
|
|
|
|
#endif /* !__iwl_4965_hw_h__ */
|