mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 18:14:07 +08:00
38cf0bb762
Despite the userspace ABI clearly defining the bits dealt with by KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO as a __u32, the kernel uses a u64. Use a u32 to match the userspace ABI, which will subsequently lead to some simplifications. Reviewed-by: Reiji Watanabe <reijiw@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
1169 lines
32 KiB
C
1169 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* VGICv3 MMIO handling functions
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <kvm/iodev.h>
|
|
#include <kvm/arm_vgic.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
#include "vgic.h"
|
|
#include "vgic-mmio.h"
|
|
|
|
/* extract @num bytes at @offset bytes offset in data */
|
|
unsigned long extract_bytes(u64 data, unsigned int offset,
|
|
unsigned int num)
|
|
{
|
|
return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
|
|
}
|
|
|
|
/* allows updates of any half of a 64-bit register (or the whole thing) */
|
|
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
int lower = (offset & 4) * 8;
|
|
int upper = lower + 8 * len - 1;
|
|
|
|
reg &= ~GENMASK_ULL(upper, lower);
|
|
val &= GENMASK_ULL(len * 8 - 1, 0);
|
|
|
|
return reg | ((u64)val << lower);
|
|
}
|
|
|
|
bool vgic_has_its(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
|
if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
|
|
return false;
|
|
|
|
return dist->has_its;
|
|
}
|
|
|
|
bool vgic_supports_direct_msis(struct kvm *kvm)
|
|
{
|
|
return (kvm_vgic_global_state.has_gicv4_1 ||
|
|
(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
|
|
}
|
|
|
|
/*
|
|
* The Revision field in the IIDR have the following meanings:
|
|
*
|
|
* Revision 2: Interrupt groups are guest-configurable and signaled using
|
|
* their configured groups.
|
|
*/
|
|
|
|
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
|
|
u32 value = 0;
|
|
|
|
switch (addr & 0x0c) {
|
|
case GICD_CTLR:
|
|
if (vgic->enabled)
|
|
value |= GICD_CTLR_ENABLE_SS_G1;
|
|
value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
|
|
if (vgic->nassgireq)
|
|
value |= GICD_CTLR_nASSGIreq;
|
|
break;
|
|
case GICD_TYPER:
|
|
value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
|
|
value = (value >> 5) - 1;
|
|
if (vgic_has_its(vcpu->kvm)) {
|
|
value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
|
|
value |= GICD_TYPER_LPIS;
|
|
} else {
|
|
value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
|
|
}
|
|
break;
|
|
case GICD_TYPER2:
|
|
if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
|
|
value = GICD_TYPER2_nASSGIcap;
|
|
break;
|
|
case GICD_IIDR:
|
|
value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
|
|
(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
|
|
(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
switch (addr & 0x0c) {
|
|
case GICD_CTLR: {
|
|
bool was_enabled, is_hwsgi;
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
|
|
was_enabled = dist->enabled;
|
|
is_hwsgi = dist->nassgireq;
|
|
|
|
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
|
|
|
|
/* Not a GICv4.1? No HW SGIs */
|
|
if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
|
|
val &= ~GICD_CTLR_nASSGIreq;
|
|
|
|
/* Dist stays enabled? nASSGIreq is RO */
|
|
if (was_enabled && dist->enabled) {
|
|
val &= ~GICD_CTLR_nASSGIreq;
|
|
val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
|
|
}
|
|
|
|
/* Switching HW SGIs? */
|
|
dist->nassgireq = val & GICD_CTLR_nASSGIreq;
|
|
if (is_hwsgi != dist->nassgireq)
|
|
vgic_v4_configure_vsgis(vcpu->kvm);
|
|
|
|
if (kvm_vgic_global_state.has_gicv4_1 &&
|
|
was_enabled != dist->enabled)
|
|
kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
|
|
else if (!was_enabled && dist->enabled)
|
|
vgic_kick_vcpus(vcpu->kvm);
|
|
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
break;
|
|
}
|
|
case GICD_TYPER:
|
|
case GICD_TYPER2:
|
|
case GICD_IIDR:
|
|
/* This is at best for documentation purposes... */
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
u32 reg;
|
|
|
|
switch (addr & 0x0c) {
|
|
case GICD_TYPER2:
|
|
if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
|
|
return -EINVAL;
|
|
return 0;
|
|
case GICD_IIDR:
|
|
reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
|
|
if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
|
|
return -EINVAL;
|
|
|
|
reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
|
|
switch (reg) {
|
|
case KVM_VGIC_IMP_REV_2:
|
|
case KVM_VGIC_IMP_REV_3:
|
|
dist->implementation_rev = reg;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
case GICD_CTLR:
|
|
/* Not a GICv4.1? No HW SGIs */
|
|
if (!kvm_vgic_global_state.has_gicv4_1)
|
|
val &= ~GICD_CTLR_nASSGIreq;
|
|
|
|
dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
|
|
dist->nassgireq = val & GICD_CTLR_nASSGIreq;
|
|
return 0;
|
|
}
|
|
|
|
vgic_mmio_write_v3_misc(vcpu, addr, len, val);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
int intid = VGIC_ADDR_TO_INTID(addr, 64);
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
|
|
unsigned long ret = 0;
|
|
|
|
if (!irq)
|
|
return 0;
|
|
|
|
/* The upper word is RAZ for us. */
|
|
if (!(addr & 4))
|
|
ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
return ret;
|
|
}
|
|
|
|
static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
int intid = VGIC_ADDR_TO_INTID(addr, 64);
|
|
struct vgic_irq *irq;
|
|
unsigned long flags;
|
|
|
|
/* The upper word is WI for us since we don't implement Aff3. */
|
|
if (addr & 4)
|
|
return;
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, NULL, intid);
|
|
|
|
if (!irq)
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
/* We only care about and preserve Aff0, Aff1 and Aff2. */
|
|
irq->mpidr = val & GENMASK(23, 0);
|
|
irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
|
|
|
|
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
unsigned long val;
|
|
|
|
val = atomic_read(&vgic_cpu->ctlr);
|
|
if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
|
|
val |= GICR_CTLR_IR | GICR_CTLR_CES;
|
|
|
|
return val;
|
|
}
|
|
|
|
static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
u32 ctlr;
|
|
|
|
if (!vgic_has_its(vcpu->kvm))
|
|
return;
|
|
|
|
if (!(val & GICR_CTLR_ENABLE_LPIS)) {
|
|
/*
|
|
* Don't disable if RWP is set, as there already an
|
|
* ongoing disable. Funky guest...
|
|
*/
|
|
ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
|
|
GICR_CTLR_ENABLE_LPIS,
|
|
GICR_CTLR_RWP);
|
|
if (ctlr != GICR_CTLR_ENABLE_LPIS)
|
|
return;
|
|
|
|
vgic_flush_pending_lpis(vcpu);
|
|
vgic_its_invalidate_cache(vcpu->kvm);
|
|
atomic_set_release(&vgic_cpu->ctlr, 0);
|
|
} else {
|
|
ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
|
|
GICR_CTLR_ENABLE_LPIS);
|
|
if (ctlr != 0)
|
|
return;
|
|
|
|
vgic_enable_lpis(vcpu);
|
|
}
|
|
}
|
|
|
|
static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
|
|
|
|
if (!rdreg)
|
|
return false;
|
|
|
|
if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
|
|
return false;
|
|
} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
|
|
struct list_head *rd_regions = &vgic->rd_regions;
|
|
gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
|
|
|
|
/*
|
|
* the rdist is the last one of the redist region,
|
|
* check whether there is no other contiguous rdist region
|
|
*/
|
|
list_for_each_entry(iter, rd_regions, list) {
|
|
if (iter->base == end && iter->free_index > 0)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
|
|
int target_vcpu_id = vcpu->vcpu_id;
|
|
u64 value;
|
|
|
|
value = (u64)(mpidr & GENMASK(23, 0)) << 32;
|
|
value |= ((target_vcpu_id & 0xffff) << 8);
|
|
|
|
if (vgic_has_its(vcpu->kvm))
|
|
value |= GICR_TYPER_PLPIS;
|
|
|
|
if (vgic_mmio_vcpu_rdist_is_last(vcpu))
|
|
value |= GICR_TYPER_LAST;
|
|
|
|
return extract_bytes(value, addr & 7, len);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
switch (addr & 0xffff) {
|
|
case GICD_PIDR2:
|
|
/* report a GICv3 compliant implementation */
|
|
return 0x3b;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < len * 8; i++) {
|
|
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
|
|
|
|
raw_spin_lock_irqsave(&irq->irq_lock, flags);
|
|
if (test_bit(i, &val)) {
|
|
/*
|
|
* pending_latch is set irrespective of irq type
|
|
* (level or edge) to avoid dependency that VM should
|
|
* restore irq config before pending info.
|
|
*/
|
|
irq->pending_latch = true;
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
} else {
|
|
irq->pending_latch = false;
|
|
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
}
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We want to avoid outer shareable. */
|
|
u64 vgic_sanitise_shareability(u64 field)
|
|
{
|
|
switch (field) {
|
|
case GIC_BASER_OuterShareable:
|
|
return GIC_BASER_InnerShareable;
|
|
default:
|
|
return field;
|
|
}
|
|
}
|
|
|
|
/* Avoid any inner non-cacheable mapping. */
|
|
u64 vgic_sanitise_inner_cacheability(u64 field)
|
|
{
|
|
switch (field) {
|
|
case GIC_BASER_CACHE_nCnB:
|
|
case GIC_BASER_CACHE_nC:
|
|
return GIC_BASER_CACHE_RaWb;
|
|
default:
|
|
return field;
|
|
}
|
|
}
|
|
|
|
/* Non-cacheable or same-as-inner are OK. */
|
|
u64 vgic_sanitise_outer_cacheability(u64 field)
|
|
{
|
|
switch (field) {
|
|
case GIC_BASER_CACHE_SameAsInner:
|
|
case GIC_BASER_CACHE_nC:
|
|
return field;
|
|
default:
|
|
return GIC_BASER_CACHE_SameAsInner;
|
|
}
|
|
}
|
|
|
|
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
|
|
u64 (*sanitise_fn)(u64))
|
|
{
|
|
u64 field = (reg & field_mask) >> field_shift;
|
|
|
|
field = sanitise_fn(field) << field_shift;
|
|
return (reg & ~field_mask) | field;
|
|
}
|
|
|
|
#define PROPBASER_RES0_MASK \
|
|
(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
|
|
#define PENDBASER_RES0_MASK \
|
|
(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
|
|
GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
|
|
|
|
static u64 vgic_sanitise_pendbaser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
|
|
GICR_PENDBASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
|
|
GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
|
|
GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
reg &= ~PENDBASER_RES0_MASK;
|
|
|
|
return reg;
|
|
}
|
|
|
|
static u64 vgic_sanitise_propbaser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
|
|
GICR_PROPBASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
|
|
GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
|
|
GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
reg &= ~PROPBASER_RES0_MASK;
|
|
return reg;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return extract_bytes(dist->propbaser, addr & 7, len);
|
|
}
|
|
|
|
static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
u64 old_propbaser, propbaser;
|
|
|
|
/* Storing a value with LPIs already enabled is undefined */
|
|
if (vgic_lpis_enabled(vcpu))
|
|
return;
|
|
|
|
do {
|
|
old_propbaser = READ_ONCE(dist->propbaser);
|
|
propbaser = old_propbaser;
|
|
propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
|
|
propbaser = vgic_sanitise_propbaser(propbaser);
|
|
} while (cmpxchg64(&dist->propbaser, old_propbaser,
|
|
propbaser) != old_propbaser);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
u64 value = vgic_cpu->pendbaser;
|
|
|
|
value &= ~GICR_PENDBASER_PTZ;
|
|
|
|
return extract_bytes(value, addr & 7, len);
|
|
}
|
|
|
|
static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
u64 old_pendbaser, pendbaser;
|
|
|
|
/* Storing a value with LPIs already enabled is undefined */
|
|
if (vgic_lpis_enabled(vcpu))
|
|
return;
|
|
|
|
do {
|
|
old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
|
|
pendbaser = old_pendbaser;
|
|
pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
|
|
pendbaser = vgic_sanitise_pendbaser(pendbaser);
|
|
} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
|
|
pendbaser) != old_pendbaser);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
|
|
}
|
|
|
|
static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
|
|
{
|
|
if (busy) {
|
|
atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
|
|
smp_mb__after_atomic();
|
|
} else {
|
|
smp_mb__before_atomic();
|
|
atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
|
|
}
|
|
}
|
|
|
|
static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
struct vgic_irq *irq;
|
|
|
|
/*
|
|
* If the guest wrote only to the upper 32bit part of the
|
|
* register, drop the write on the floor, as it is only for
|
|
* vPEs (which we don't support for obvious reasons).
|
|
*
|
|
* Also discard the access if LPIs are not enabled.
|
|
*/
|
|
if ((addr & 4) || !vgic_lpis_enabled(vcpu))
|
|
return;
|
|
|
|
vgic_set_rdist_busy(vcpu, true);
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
|
|
if (irq) {
|
|
vgic_its_inv_lpi(vcpu->kvm, irq);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
vgic_set_rdist_busy(vcpu, false);
|
|
}
|
|
|
|
static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
/* See vgic_mmio_write_invlpi() for the early return rationale */
|
|
if ((addr & 4) || !vgic_lpis_enabled(vcpu))
|
|
return;
|
|
|
|
vgic_set_rdist_busy(vcpu, true);
|
|
vgic_its_invall(vcpu);
|
|
vgic_set_rdist_busy(vcpu, false);
|
|
}
|
|
|
|
/*
|
|
* The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
|
|
* redistributors, while SPIs are covered by registers in the distributor
|
|
* block. Trying to set private IRQs in this block gets ignored.
|
|
* We take some special care here to fix the calculation of the register
|
|
* offset.
|
|
*/
|
|
#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
|
|
{ \
|
|
.reg_offset = off, \
|
|
.bits_per_irq = bpi, \
|
|
.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
|
|
.access_flags = acc, \
|
|
.read = vgic_mmio_read_raz, \
|
|
.write = vgic_mmio_write_wi, \
|
|
}, { \
|
|
.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
|
|
.bits_per_irq = bpi, \
|
|
.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
|
|
.access_flags = acc, \
|
|
.read = rd, \
|
|
.write = wr, \
|
|
.uaccess_read = ur, \
|
|
.uaccess_write = uw, \
|
|
}
|
|
|
|
static const struct vgic_register_region vgic_v3_dist_registers[] = {
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
|
|
vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
|
|
NULL, vgic_mmio_uaccess_write_v3_misc,
|
|
16, VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
|
|
vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
|
|
vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
|
|
vgic_mmio_read_enable, vgic_mmio_write_senable,
|
|
NULL, vgic_uaccess_write_senable, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
|
|
vgic_mmio_read_enable, vgic_mmio_write_cenable,
|
|
NULL, vgic_uaccess_write_cenable, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
|
|
vgic_mmio_read_pending, vgic_mmio_write_spending,
|
|
vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
|
|
vgic_mmio_read_pending, vgic_mmio_write_cpending,
|
|
vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
|
|
vgic_mmio_read_active, vgic_mmio_write_sactive,
|
|
vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
|
|
vgic_mmio_read_active, vgic_mmio_write_cactive,
|
|
vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
|
|
1, VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
|
|
vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
|
|
8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
|
|
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
|
|
vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
|
|
vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
|
|
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
|
|
VGIC_ACCESS_32bit),
|
|
};
|
|
|
|
static const struct vgic_register_region vgic_v3_rd_registers[] = {
|
|
/* RD_base registers */
|
|
REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
|
|
vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
|
|
vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
|
|
vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
|
|
NULL, vgic_mmio_uaccess_write_wi, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
|
|
vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
|
|
vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
|
|
vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
|
|
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
|
|
VGIC_ACCESS_32bit),
|
|
/* SGI_base registers */
|
|
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
|
|
vgic_mmio_read_group, vgic_mmio_write_group, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
|
|
vgic_mmio_read_enable, vgic_mmio_write_senable,
|
|
NULL, vgic_uaccess_write_senable, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
|
|
vgic_mmio_read_enable, vgic_mmio_write_cenable,
|
|
NULL, vgic_uaccess_write_cenable, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
|
|
vgic_mmio_read_pending, vgic_mmio_write_spending,
|
|
vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
|
|
vgic_mmio_read_pending, vgic_mmio_write_cpending,
|
|
vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
|
|
vgic_mmio_read_active, vgic_mmio_write_sactive,
|
|
vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
|
|
vgic_mmio_read_active, vgic_mmio_write_cactive,
|
|
vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
|
|
vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
|
|
VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
|
|
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
|
|
vgic_mmio_read_config, vgic_mmio_write_config, 8,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
|
|
vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
};
|
|
|
|
unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
|
|
{
|
|
dev->regions = vgic_v3_dist_registers;
|
|
dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
|
|
|
|
kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
|
|
|
|
return SZ_64K;
|
|
}
|
|
|
|
/**
|
|
* vgic_register_redist_iodev - register a single redist iodev
|
|
* @vcpu: The VCPU to which the redistributor belongs
|
|
*
|
|
* Register a KVM iodev for this VCPU's redistributor using the address
|
|
* provided.
|
|
*
|
|
* Return 0 on success, -ERRNO otherwise.
|
|
*/
|
|
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
|
|
struct vgic_redist_region *rdreg;
|
|
gpa_t rd_base;
|
|
int ret;
|
|
|
|
if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
|
|
return 0;
|
|
|
|
/*
|
|
* We may be creating VCPUs before having set the base address for the
|
|
* redistributor region, in which case we will come back to this
|
|
* function for all VCPUs when the base address is set. Just return
|
|
* without doing any work for now.
|
|
*/
|
|
rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
|
|
if (!rdreg)
|
|
return 0;
|
|
|
|
if (!vgic_v3_check_base(kvm))
|
|
return -EINVAL;
|
|
|
|
vgic_cpu->rdreg = rdreg;
|
|
vgic_cpu->rdreg_index = rdreg->free_index;
|
|
|
|
rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
|
|
|
|
kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
|
|
rd_dev->base_addr = rd_base;
|
|
rd_dev->iodev_type = IODEV_REDIST;
|
|
rd_dev->regions = vgic_v3_rd_registers;
|
|
rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
|
|
rd_dev->redist_vcpu = vcpu;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
|
|
2 * SZ_64K, &rd_dev->dev);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
rdreg->free_index++;
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
|
|
|
|
kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
|
|
}
|
|
|
|
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long c;
|
|
int ret = 0;
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
ret = vgic_register_redist_iodev(vcpu);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
/* The current c failed, so iterate over the previous ones. */
|
|
int i;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
for (i = 0; i < c; i++) {
|
|
vcpu = kvm_get_vcpu(kvm, i);
|
|
vgic_unregister_redist_iodev(vcpu);
|
|
}
|
|
mutex_unlock(&kvm->slots_lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vgic_v3_alloc_redist_region - Allocate a new redistributor region
|
|
*
|
|
* Performs various checks before inserting the rdist region in the list.
|
|
* Those tests depend on whether the size of the rdist region is known
|
|
* (ie. count != 0). The list is sorted by rdist region index.
|
|
*
|
|
* @kvm: kvm handle
|
|
* @index: redist region index
|
|
* @base: base of the new rdist region
|
|
* @count: number of redistributors the region is made of (0 in the old style
|
|
* single region, whose size is induced from the number of vcpus)
|
|
*
|
|
* Return 0 on success, < 0 otherwise
|
|
*/
|
|
static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
|
|
gpa_t base, uint32_t count)
|
|
{
|
|
struct vgic_dist *d = &kvm->arch.vgic;
|
|
struct vgic_redist_region *rdreg;
|
|
struct list_head *rd_regions = &d->rd_regions;
|
|
int nr_vcpus = atomic_read(&kvm->online_vcpus);
|
|
size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
|
|
: nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
|
|
int ret;
|
|
|
|
/* cross the end of memory ? */
|
|
if (base + size < base)
|
|
return -EINVAL;
|
|
|
|
if (list_empty(rd_regions)) {
|
|
if (index != 0)
|
|
return -EINVAL;
|
|
} else {
|
|
rdreg = list_last_entry(rd_regions,
|
|
struct vgic_redist_region, list);
|
|
|
|
/* Don't mix single region and discrete redist regions */
|
|
if (!count && rdreg->count)
|
|
return -EINVAL;
|
|
|
|
if (!count)
|
|
return -EEXIST;
|
|
|
|
if (index != rdreg->index + 1)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* For legacy single-region redistributor regions (!count),
|
|
* check that the redistributor region does not overlap with the
|
|
* distributor's address space.
|
|
*/
|
|
if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
|
|
vgic_dist_overlap(kvm, base, size))
|
|
return -EINVAL;
|
|
|
|
/* collision with any other rdist region? */
|
|
if (vgic_v3_rdist_overlap(kvm, base, size))
|
|
return -EINVAL;
|
|
|
|
rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
|
|
if (!rdreg)
|
|
return -ENOMEM;
|
|
|
|
rdreg->base = VGIC_ADDR_UNDEF;
|
|
|
|
ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
|
|
if (ret)
|
|
goto free;
|
|
|
|
rdreg->base = base;
|
|
rdreg->count = count;
|
|
rdreg->free_index = 0;
|
|
rdreg->index = index;
|
|
|
|
list_add_tail(&rdreg->list, rd_regions);
|
|
return 0;
|
|
free:
|
|
kfree(rdreg);
|
|
return ret;
|
|
}
|
|
|
|
void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
|
|
{
|
|
list_del(&rdreg->list);
|
|
kfree(rdreg);
|
|
}
|
|
|
|
int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
|
|
{
|
|
int ret;
|
|
|
|
ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Register iodevs for each existing VCPU. Adding more VCPUs
|
|
* afterwards will register the iodevs when needed.
|
|
*/
|
|
ret = vgic_register_all_redist_iodevs(kvm);
|
|
if (ret) {
|
|
struct vgic_redist_region *rdreg;
|
|
|
|
rdreg = vgic_v3_rdist_region_from_index(kvm, index);
|
|
vgic_v3_free_redist_region(rdreg);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
const struct vgic_register_region *region;
|
|
struct vgic_io_device iodev;
|
|
struct vgic_reg_attr reg_attr;
|
|
struct kvm_vcpu *vcpu;
|
|
gpa_t addr;
|
|
int ret;
|
|
|
|
ret = vgic_v3_parse_attr(dev, attr, ®_attr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vcpu = reg_attr.vcpu;
|
|
addr = reg_attr.addr;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
iodev.regions = vgic_v3_dist_registers;
|
|
iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
|
|
iodev.base_addr = 0;
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
|
|
iodev.regions = vgic_v3_rd_registers;
|
|
iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
|
|
iodev.base_addr = 0;
|
|
break;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
|
|
return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* We only support aligned 32-bit accesses. */
|
|
if (addr & 3)
|
|
return -ENXIO;
|
|
|
|
region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
|
|
if (!region)
|
|
return -ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
|
|
* generation register ICC_SGI1R_EL1) with a given VCPU.
|
|
* If the VCPU's MPIDR matches, return the level0 affinity, otherwise
|
|
* return -1.
|
|
*/
|
|
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long affinity;
|
|
int level0;
|
|
|
|
/*
|
|
* Split the current VCPU's MPIDR into affinity level 0 and the
|
|
* rest as this is what we have to compare against.
|
|
*/
|
|
affinity = kvm_vcpu_get_mpidr_aff(vcpu);
|
|
level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
|
|
affinity &= ~MPIDR_LEVEL_MASK;
|
|
|
|
/* bail out if the upper three levels don't match */
|
|
if (sgi_aff != affinity)
|
|
return -1;
|
|
|
|
/* Is this VCPU's bit set in the mask ? */
|
|
if (!(sgi_cpu_mask & BIT(level0)))
|
|
return -1;
|
|
|
|
return level0;
|
|
}
|
|
|
|
/*
|
|
* The ICC_SGI* registers encode the affinity differently from the MPIDR,
|
|
* so provide a wrapper to use the existing defines to isolate a certain
|
|
* affinity level.
|
|
*/
|
|
#define SGI_AFFINITY_LEVEL(reg, level) \
|
|
((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
|
|
>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
|
|
|
|
/**
|
|
* vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
|
|
* @vcpu: The VCPU requesting a SGI
|
|
* @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
|
|
* @allow_group1: Does the sysreg access allow generation of G1 SGIs
|
|
*
|
|
* With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
|
|
* This will trap in sys_regs.c and call this function.
|
|
* This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
|
|
* target processors as well as a bitmask of 16 Aff0 CPUs.
|
|
* If the interrupt routing mode bit is not set, we iterate over all VCPUs to
|
|
* check for matching ones. If this bit is set, we signal all, but not the
|
|
* calling VCPU.
|
|
*/
|
|
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_vcpu *c_vcpu;
|
|
u16 target_cpus;
|
|
u64 mpidr;
|
|
int sgi;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
bool broadcast;
|
|
unsigned long c, flags;
|
|
|
|
sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
|
|
broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
|
|
target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
|
|
mpidr = SGI_AFFINITY_LEVEL(reg, 3);
|
|
mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
|
|
mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
|
|
|
|
/*
|
|
* We iterate over all VCPUs to find the MPIDRs matching the request.
|
|
* If we have handled one CPU, we clear its bit to detect early
|
|
* if we are already finished. This avoids iterating through all
|
|
* VCPUs when most of the times we just signal a single VCPU.
|
|
*/
|
|
kvm_for_each_vcpu(c, c_vcpu, kvm) {
|
|
struct vgic_irq *irq;
|
|
|
|
/* Exit early if we have dealt with all requested CPUs */
|
|
if (!broadcast && target_cpus == 0)
|
|
break;
|
|
|
|
/* Don't signal the calling VCPU */
|
|
if (broadcast && c == vcpu_id)
|
|
continue;
|
|
|
|
if (!broadcast) {
|
|
int level0;
|
|
|
|
level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
|
|
if (level0 == -1)
|
|
continue;
|
|
|
|
/* remove this matching VCPU from the mask */
|
|
target_cpus &= ~BIT(level0);
|
|
}
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
|
|
|
|
raw_spin_lock_irqsave(&irq->irq_lock, flags);
|
|
|
|
/*
|
|
* An access targeting Group0 SGIs can only generate
|
|
* those, while an access targeting Group1 SGIs can
|
|
* generate interrupts of either group.
|
|
*/
|
|
if (!irq->group || allow_group1) {
|
|
if (!irq->hw) {
|
|
irq->pending_latch = true;
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
|
|
} else {
|
|
/* HW SGI? Ask the GIC to inject it */
|
|
int err;
|
|
err = irq_set_irqchip_state(irq->host_irq,
|
|
IRQCHIP_STATE_PENDING,
|
|
true);
|
|
WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
|
|
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
}
|
|
} else {
|
|
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
|
|
}
|
|
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
}
|
|
|
|
int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
|
|
int offset, u32 *val)
|
|
{
|
|
struct vgic_io_device dev = {
|
|
.regions = vgic_v3_dist_registers,
|
|
.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
|
|
};
|
|
|
|
return vgic_uaccess(vcpu, &dev, is_write, offset, val);
|
|
}
|
|
|
|
int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
|
|
int offset, u32 *val)
|
|
{
|
|
struct vgic_io_device rd_dev = {
|
|
.regions = vgic_v3_rd_registers,
|
|
.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
|
|
};
|
|
|
|
return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
|
|
}
|
|
|
|
int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
|
|
u32 intid, u32 *val)
|
|
{
|
|
if (intid % 32)
|
|
return -EINVAL;
|
|
|
|
if (is_write)
|
|
vgic_write_irq_line_level_info(vcpu, intid, *val);
|
|
else
|
|
*val = vgic_read_irq_line_level_info(vcpu, intid);
|
|
|
|
return 0;
|
|
}
|