mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-14 07:44:21 +08:00
839cf59b55
The .remove() callback for a platform driver returns an int which makes many driver authors wrongly assume it's possible to do error handling by returning an error code. However the value returned is ignored (apart from emitting a warning) and this typically results in resource leaks. To improve here there is a quest to make the remove callback return void. In the first step of this quest all drivers are converted to .remove_new(), which already returns void. Eventually after all drivers are converted, .remove_new() will be renamed to .remove(). Trivially convert this driver from always returning zero in the remove callback to the void returning variant. Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/eac991c7f2267237382f77bc15c016ff62e1fbb7.1704900449.git.u.kleine-koenig@pengutronix.de
718 lines
18 KiB
C
718 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Windfarm PowerMac thermal control.
|
|
* Control loops for machines with SMU and PPC970MP processors.
|
|
*
|
|
* Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
|
|
* Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/of.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/smu.h>
|
|
|
|
#include "windfarm.h"
|
|
#include "windfarm_pid.h"
|
|
|
|
#define VERSION "0.2"
|
|
|
|
#define DEBUG
|
|
#undef LOTSA_DEBUG
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(args...) printk(args)
|
|
#else
|
|
#define DBG(args...) do { } while(0)
|
|
#endif
|
|
|
|
#ifdef LOTSA_DEBUG
|
|
#define DBG_LOTS(args...) printk(args)
|
|
#else
|
|
#define DBG_LOTS(args...) do { } while(0)
|
|
#endif
|
|
|
|
/* define this to force CPU overtemp to 60 degree, useful for testing
|
|
* the overtemp code
|
|
*/
|
|
#undef HACKED_OVERTEMP
|
|
|
|
/* We currently only handle 2 chips, 4 cores... */
|
|
#define NR_CHIPS 2
|
|
#define NR_CORES 4
|
|
#define NR_CPU_FANS 3 * NR_CHIPS
|
|
|
|
/* Controls and sensors */
|
|
static struct wf_sensor *sens_cpu_temp[NR_CORES];
|
|
static struct wf_sensor *sens_cpu_power[NR_CORES];
|
|
static struct wf_sensor *hd_temp;
|
|
static struct wf_sensor *slots_power;
|
|
static struct wf_sensor *u4_temp;
|
|
|
|
static struct wf_control *cpu_fans[NR_CPU_FANS];
|
|
static char *cpu_fan_names[NR_CPU_FANS] = {
|
|
"cpu-rear-fan-0",
|
|
"cpu-rear-fan-1",
|
|
"cpu-front-fan-0",
|
|
"cpu-front-fan-1",
|
|
"cpu-pump-0",
|
|
"cpu-pump-1",
|
|
};
|
|
static struct wf_control *cpufreq_clamp;
|
|
|
|
/* Second pump isn't required (and isn't actually present) */
|
|
#define CPU_FANS_REQD (NR_CPU_FANS - 2)
|
|
#define FIRST_PUMP 4
|
|
#define LAST_PUMP 5
|
|
|
|
/* We keep a temperature history for average calculation of 180s */
|
|
#define CPU_TEMP_HIST_SIZE 180
|
|
|
|
/* Scale factor for fan speed, *100 */
|
|
static int cpu_fan_scale[NR_CPU_FANS] = {
|
|
100,
|
|
100,
|
|
97, /* inlet fans run at 97% of exhaust fan */
|
|
97,
|
|
100, /* updated later */
|
|
100, /* updated later */
|
|
};
|
|
|
|
static struct wf_control *backside_fan;
|
|
static struct wf_control *slots_fan;
|
|
static struct wf_control *drive_bay_fan;
|
|
|
|
/* PID loop state */
|
|
static struct wf_cpu_pid_state cpu_pid[NR_CORES];
|
|
static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
|
|
static int cpu_thist_pt;
|
|
static s64 cpu_thist_total;
|
|
static s32 cpu_all_tmax = 100 << 16;
|
|
static int cpu_last_target;
|
|
static struct wf_pid_state backside_pid;
|
|
static int backside_tick;
|
|
static struct wf_pid_state slots_pid;
|
|
static bool slots_started;
|
|
static struct wf_pid_state drive_bay_pid;
|
|
static int drive_bay_tick;
|
|
|
|
static int nr_cores;
|
|
static int have_all_controls;
|
|
static int have_all_sensors;
|
|
static bool started;
|
|
|
|
static int failure_state;
|
|
#define FAILURE_SENSOR 1
|
|
#define FAILURE_FAN 2
|
|
#define FAILURE_PERM 4
|
|
#define FAILURE_LOW_OVERTEMP 8
|
|
#define FAILURE_HIGH_OVERTEMP 16
|
|
|
|
/* Overtemp values */
|
|
#define LOW_OVER_AVERAGE 0
|
|
#define LOW_OVER_IMMEDIATE (10 << 16)
|
|
#define LOW_OVER_CLEAR ((-10) << 16)
|
|
#define HIGH_OVER_IMMEDIATE (14 << 16)
|
|
#define HIGH_OVER_AVERAGE (10 << 16)
|
|
#define HIGH_OVER_IMMEDIATE (14 << 16)
|
|
|
|
|
|
/* Implementation... */
|
|
static int create_cpu_loop(int cpu)
|
|
{
|
|
int chip = cpu / 2;
|
|
int core = cpu & 1;
|
|
struct smu_sdbp_header *hdr;
|
|
struct smu_sdbp_cpupiddata *piddata;
|
|
struct wf_cpu_pid_param pid;
|
|
struct wf_control *main_fan = cpu_fans[0];
|
|
s32 tmax;
|
|
int fmin;
|
|
|
|
/* Get FVT params to get Tmax; if not found, assume default */
|
|
hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
|
|
if (hdr) {
|
|
struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
|
|
tmax = fvt->maxtemp << 16;
|
|
} else
|
|
tmax = 95 << 16; /* default to 95 degrees C */
|
|
|
|
/* We keep a global tmax for overtemp calculations */
|
|
if (tmax < cpu_all_tmax)
|
|
cpu_all_tmax = tmax;
|
|
|
|
kfree(hdr);
|
|
|
|
/* Get PID params from the appropriate SAT */
|
|
hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
|
|
if (hdr == NULL) {
|
|
printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
|
|
return -EINVAL;
|
|
}
|
|
piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
|
|
|
|
/*
|
|
* Darwin has a minimum fan speed of 1000 rpm for the 4-way and
|
|
* 515 for the 2-way. That appears to be overkill, so for now,
|
|
* impose a minimum of 750 or 515.
|
|
*/
|
|
fmin = (nr_cores > 2) ? 750 : 515;
|
|
|
|
/* Initialize PID loop */
|
|
pid.interval = 1; /* seconds */
|
|
pid.history_len = piddata->history_len;
|
|
pid.gd = piddata->gd;
|
|
pid.gp = piddata->gp;
|
|
pid.gr = piddata->gr / piddata->history_len;
|
|
pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
|
|
pid.ttarget = tmax - (piddata->target_temp_delta << 16);
|
|
pid.tmax = tmax;
|
|
pid.min = main_fan->ops->get_min(main_fan);
|
|
pid.max = main_fan->ops->get_max(main_fan);
|
|
if (pid.min < fmin)
|
|
pid.min = fmin;
|
|
|
|
wf_cpu_pid_init(&cpu_pid[cpu], &pid);
|
|
|
|
kfree(hdr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_max_all_fans(void)
|
|
{
|
|
int i;
|
|
|
|
/* We max all CPU fans in case of a sensor error. We also do the
|
|
* cpufreq clamping now, even if it's supposedly done later by the
|
|
* generic code anyway, we do it earlier here to react faster
|
|
*/
|
|
if (cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
for (i = 0; i < NR_CPU_FANS; ++i)
|
|
if (cpu_fans[i])
|
|
wf_control_set_max(cpu_fans[i]);
|
|
}
|
|
|
|
static int cpu_check_overtemp(s32 temp)
|
|
{
|
|
int new_state = 0;
|
|
s32 t_avg, t_old;
|
|
|
|
/* First check for immediate overtemps */
|
|
if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
|
|
new_state |= FAILURE_LOW_OVERTEMP;
|
|
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
|
|
" temperature !\n");
|
|
}
|
|
if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
|
|
new_state |= FAILURE_HIGH_OVERTEMP;
|
|
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Critical overtemp due to"
|
|
" immediate CPU temperature !\n");
|
|
}
|
|
|
|
/* We calculate a history of max temperatures and use that for the
|
|
* overtemp management
|
|
*/
|
|
t_old = cpu_thist[cpu_thist_pt];
|
|
cpu_thist[cpu_thist_pt] = temp;
|
|
cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
|
|
cpu_thist_total -= t_old;
|
|
cpu_thist_total += temp;
|
|
t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
|
|
|
|
DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
|
|
FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
|
|
|
|
/* Now check for average overtemps */
|
|
if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
|
|
new_state |= FAILURE_LOW_OVERTEMP;
|
|
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Overtemp due to average CPU"
|
|
" temperature !\n");
|
|
}
|
|
if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
|
|
new_state |= FAILURE_HIGH_OVERTEMP;
|
|
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Critical overtemp due to"
|
|
" average CPU temperature !\n");
|
|
}
|
|
|
|
/* Now handle overtemp conditions. We don't currently use the windfarm
|
|
* overtemp handling core as it's not fully suited to the needs of those
|
|
* new machine. This will be fixed later.
|
|
*/
|
|
if (new_state) {
|
|
/* High overtemp -> immediate shutdown */
|
|
if (new_state & FAILURE_HIGH_OVERTEMP)
|
|
machine_power_off();
|
|
if ((failure_state & new_state) != new_state)
|
|
cpu_max_all_fans();
|
|
failure_state |= new_state;
|
|
} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
|
|
(temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
|
|
printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
|
|
failure_state &= ~FAILURE_LOW_OVERTEMP;
|
|
}
|
|
|
|
return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
|
|
}
|
|
|
|
static void cpu_fans_tick(void)
|
|
{
|
|
int err, cpu;
|
|
s32 greatest_delta = 0;
|
|
s32 temp, power, t_max = 0;
|
|
int i, t, target = 0;
|
|
struct wf_sensor *sr;
|
|
struct wf_control *ct;
|
|
struct wf_cpu_pid_state *sp;
|
|
|
|
DBG_LOTS(KERN_DEBUG);
|
|
for (cpu = 0; cpu < nr_cores; ++cpu) {
|
|
/* Get CPU core temperature */
|
|
sr = sens_cpu_temp[cpu];
|
|
err = sr->ops->get_value(sr, &temp);
|
|
if (err) {
|
|
DBG("\n");
|
|
printk(KERN_WARNING "windfarm: CPU %d temperature "
|
|
"sensor error %d\n", cpu, err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
cpu_max_all_fans();
|
|
return;
|
|
}
|
|
|
|
/* Keep track of highest temp */
|
|
t_max = max(t_max, temp);
|
|
|
|
/* Get CPU power */
|
|
sr = sens_cpu_power[cpu];
|
|
err = sr->ops->get_value(sr, &power);
|
|
if (err) {
|
|
DBG("\n");
|
|
printk(KERN_WARNING "windfarm: CPU %d power "
|
|
"sensor error %d\n", cpu, err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
cpu_max_all_fans();
|
|
return;
|
|
}
|
|
|
|
/* Run PID */
|
|
sp = &cpu_pid[cpu];
|
|
t = wf_cpu_pid_run(sp, power, temp);
|
|
|
|
if (cpu == 0 || sp->last_delta > greatest_delta) {
|
|
greatest_delta = sp->last_delta;
|
|
target = t;
|
|
}
|
|
DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
|
|
cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
|
|
}
|
|
DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
|
|
|
|
/* Darwin limits decrease to 20 per iteration */
|
|
if (target < (cpu_last_target - 20))
|
|
target = cpu_last_target - 20;
|
|
cpu_last_target = target;
|
|
for (cpu = 0; cpu < nr_cores; ++cpu)
|
|
cpu_pid[cpu].target = target;
|
|
|
|
/* Handle possible overtemps */
|
|
if (cpu_check_overtemp(t_max))
|
|
return;
|
|
|
|
/* Set fans */
|
|
for (i = 0; i < NR_CPU_FANS; ++i) {
|
|
ct = cpu_fans[i];
|
|
if (ct == NULL)
|
|
continue;
|
|
err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: fan %s reports "
|
|
"error %d\n", ct->name, err);
|
|
failure_state |= FAILURE_FAN;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Backside/U4 fan */
|
|
static struct wf_pid_param backside_param = {
|
|
.interval = 5,
|
|
.history_len = 2,
|
|
.gd = 48 << 20,
|
|
.gp = 5 << 20,
|
|
.gr = 0,
|
|
.itarget = 64 << 16,
|
|
.additive = 1,
|
|
};
|
|
|
|
static void backside_fan_tick(void)
|
|
{
|
|
s32 temp;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!backside_fan || !u4_temp)
|
|
return;
|
|
if (!backside_tick) {
|
|
/* first time; initialize things */
|
|
printk(KERN_INFO "windfarm: Backside control loop started.\n");
|
|
backside_param.min = backside_fan->ops->get_min(backside_fan);
|
|
backside_param.max = backside_fan->ops->get_max(backside_fan);
|
|
wf_pid_init(&backside_pid, &backside_param);
|
|
backside_tick = 1;
|
|
}
|
|
if (--backside_tick > 0)
|
|
return;
|
|
backside_tick = backside_pid.param.interval;
|
|
|
|
err = u4_temp->ops->get_value(u4_temp, &temp);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
|
|
err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(backside_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&backside_pid, temp);
|
|
DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(temp), speed);
|
|
|
|
err = backside_fan->ops->set_value(backside_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
/* Drive bay fan */
|
|
static struct wf_pid_param drive_bay_prm = {
|
|
.interval = 5,
|
|
.history_len = 2,
|
|
.gd = 30 << 20,
|
|
.gp = 5 << 20,
|
|
.gr = 0,
|
|
.itarget = 40 << 16,
|
|
.additive = 1,
|
|
};
|
|
|
|
static void drive_bay_fan_tick(void)
|
|
{
|
|
s32 temp;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!drive_bay_fan || !hd_temp)
|
|
return;
|
|
if (!drive_bay_tick) {
|
|
/* first time; initialize things */
|
|
printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
|
|
drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
|
|
drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
|
|
wf_pid_init(&drive_bay_pid, &drive_bay_prm);
|
|
drive_bay_tick = 1;
|
|
}
|
|
if (--drive_bay_tick > 0)
|
|
return;
|
|
drive_bay_tick = drive_bay_pid.param.interval;
|
|
|
|
err = hd_temp->ops->get_value(hd_temp, &temp);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: drive bay temp sensor "
|
|
"error %d\n", err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(drive_bay_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&drive_bay_pid, temp);
|
|
DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(temp), speed);
|
|
|
|
err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
/* PCI slots area fan */
|
|
/* This makes the fan speed proportional to the power consumed */
|
|
static struct wf_pid_param slots_param = {
|
|
.interval = 1,
|
|
.history_len = 2,
|
|
.gd = 0,
|
|
.gp = 0,
|
|
.gr = 0x1277952,
|
|
.itarget = 0,
|
|
.min = 1560,
|
|
.max = 3510,
|
|
};
|
|
|
|
static void slots_fan_tick(void)
|
|
{
|
|
s32 power;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!slots_fan || !slots_power)
|
|
return;
|
|
if (!slots_started) {
|
|
/* first time; initialize things */
|
|
printk(KERN_INFO "windfarm: Slots control loop started.\n");
|
|
wf_pid_init(&slots_pid, &slots_param);
|
|
slots_started = true;
|
|
}
|
|
|
|
err = slots_power->ops->get_value(slots_power, &power);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
|
|
err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(slots_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&slots_pid, power);
|
|
DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(power), speed);
|
|
|
|
err = slots_fan->ops->set_value(slots_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
static void set_fail_state(void)
|
|
{
|
|
int i;
|
|
|
|
if (cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
for (i = 0; i < NR_CPU_FANS; ++i)
|
|
if (cpu_fans[i])
|
|
wf_control_set_max(cpu_fans[i]);
|
|
if (backside_fan)
|
|
wf_control_set_max(backside_fan);
|
|
if (slots_fan)
|
|
wf_control_set_max(slots_fan);
|
|
if (drive_bay_fan)
|
|
wf_control_set_max(drive_bay_fan);
|
|
}
|
|
|
|
static void pm112_tick(void)
|
|
{
|
|
int i, last_failure;
|
|
|
|
if (!started) {
|
|
started = true;
|
|
printk(KERN_INFO "windfarm: CPUs control loops started.\n");
|
|
for (i = 0; i < nr_cores; ++i) {
|
|
if (create_cpu_loop(i) < 0) {
|
|
failure_state = FAILURE_PERM;
|
|
set_fail_state();
|
|
break;
|
|
}
|
|
}
|
|
DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
|
|
|
|
#ifdef HACKED_OVERTEMP
|
|
cpu_all_tmax = 60 << 16;
|
|
#endif
|
|
}
|
|
|
|
/* Permanent failure, bail out */
|
|
if (failure_state & FAILURE_PERM)
|
|
return;
|
|
/* Clear all failure bits except low overtemp which will be eventually
|
|
* cleared by the control loop itself
|
|
*/
|
|
last_failure = failure_state;
|
|
failure_state &= FAILURE_LOW_OVERTEMP;
|
|
cpu_fans_tick();
|
|
backside_fan_tick();
|
|
slots_fan_tick();
|
|
drive_bay_fan_tick();
|
|
|
|
DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
|
|
last_failure, failure_state);
|
|
|
|
/* Check for failures. Any failure causes cpufreq clamping */
|
|
if (failure_state && last_failure == 0 && cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
if (failure_state == 0 && last_failure && cpufreq_clamp)
|
|
wf_control_set_min(cpufreq_clamp);
|
|
|
|
/* That's it for now, we might want to deal with other failures
|
|
* differently in the future though
|
|
*/
|
|
}
|
|
|
|
static void pm112_new_control(struct wf_control *ct)
|
|
{
|
|
int i, max_exhaust;
|
|
|
|
if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
|
|
if (wf_get_control(ct) == 0)
|
|
cpufreq_clamp = ct;
|
|
}
|
|
|
|
for (i = 0; i < NR_CPU_FANS; ++i) {
|
|
if (!strcmp(ct->name, cpu_fan_names[i])) {
|
|
if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
|
|
cpu_fans[i] = ct;
|
|
break;
|
|
}
|
|
}
|
|
if (i >= NR_CPU_FANS) {
|
|
/* not a CPU fan, try the others */
|
|
if (!strcmp(ct->name, "backside-fan")) {
|
|
if (backside_fan == NULL && wf_get_control(ct) == 0)
|
|
backside_fan = ct;
|
|
} else if (!strcmp(ct->name, "slots-fan")) {
|
|
if (slots_fan == NULL && wf_get_control(ct) == 0)
|
|
slots_fan = ct;
|
|
} else if (!strcmp(ct->name, "drive-bay-fan")) {
|
|
if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
|
|
drive_bay_fan = ct;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < CPU_FANS_REQD; ++i)
|
|
if (cpu_fans[i] == NULL)
|
|
return;
|
|
|
|
/* work out pump scaling factors */
|
|
max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
|
|
for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
|
|
if ((ct = cpu_fans[i]) != NULL)
|
|
cpu_fan_scale[i] =
|
|
ct->ops->get_max(ct) * 100 / max_exhaust;
|
|
|
|
have_all_controls = 1;
|
|
}
|
|
|
|
static void pm112_new_sensor(struct wf_sensor *sr)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!strncmp(sr->name, "cpu-temp-", 9)) {
|
|
i = sr->name[9] - '0';
|
|
if (sr->name[10] == 0 && i < NR_CORES &&
|
|
sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
|
|
sens_cpu_temp[i] = sr;
|
|
|
|
} else if (!strncmp(sr->name, "cpu-power-", 10)) {
|
|
i = sr->name[10] - '0';
|
|
if (sr->name[11] == 0 && i < NR_CORES &&
|
|
sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
|
|
sens_cpu_power[i] = sr;
|
|
} else if (!strcmp(sr->name, "hd-temp")) {
|
|
if (hd_temp == NULL && wf_get_sensor(sr) == 0)
|
|
hd_temp = sr;
|
|
} else if (!strcmp(sr->name, "slots-power")) {
|
|
if (slots_power == NULL && wf_get_sensor(sr) == 0)
|
|
slots_power = sr;
|
|
} else if (!strcmp(sr->name, "backside-temp")) {
|
|
if (u4_temp == NULL && wf_get_sensor(sr) == 0)
|
|
u4_temp = sr;
|
|
} else
|
|
return;
|
|
|
|
/* check if we have all the sensors we need */
|
|
for (i = 0; i < nr_cores; ++i)
|
|
if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
|
|
return;
|
|
|
|
have_all_sensors = 1;
|
|
}
|
|
|
|
static int pm112_wf_notify(struct notifier_block *self,
|
|
unsigned long event, void *data)
|
|
{
|
|
switch (event) {
|
|
case WF_EVENT_NEW_SENSOR:
|
|
pm112_new_sensor(data);
|
|
break;
|
|
case WF_EVENT_NEW_CONTROL:
|
|
pm112_new_control(data);
|
|
break;
|
|
case WF_EVENT_TICK:
|
|
if (have_all_controls && have_all_sensors)
|
|
pm112_tick();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block pm112_events = {
|
|
.notifier_call = pm112_wf_notify,
|
|
};
|
|
|
|
static int wf_pm112_probe(struct platform_device *dev)
|
|
{
|
|
wf_register_client(&pm112_events);
|
|
return 0;
|
|
}
|
|
|
|
static void wf_pm112_remove(struct platform_device *dev)
|
|
{
|
|
wf_unregister_client(&pm112_events);
|
|
}
|
|
|
|
static struct platform_driver wf_pm112_driver = {
|
|
.probe = wf_pm112_probe,
|
|
.remove_new = wf_pm112_remove,
|
|
.driver = {
|
|
.name = "windfarm",
|
|
},
|
|
};
|
|
|
|
static int __init wf_pm112_init(void)
|
|
{
|
|
struct device_node *cpu;
|
|
|
|
if (!of_machine_is_compatible("PowerMac11,2"))
|
|
return -ENODEV;
|
|
|
|
/* Count the number of CPU cores */
|
|
nr_cores = 0;
|
|
for_each_node_by_type(cpu, "cpu")
|
|
++nr_cores;
|
|
|
|
printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
|
|
|
|
#ifdef MODULE
|
|
request_module("windfarm_smu_controls");
|
|
request_module("windfarm_smu_sensors");
|
|
request_module("windfarm_smu_sat");
|
|
request_module("windfarm_lm75_sensor");
|
|
request_module("windfarm_max6690_sensor");
|
|
request_module("windfarm_cpufreq_clamp");
|
|
|
|
#endif /* MODULE */
|
|
|
|
platform_driver_register(&wf_pm112_driver);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit wf_pm112_exit(void)
|
|
{
|
|
platform_driver_unregister(&wf_pm112_driver);
|
|
}
|
|
|
|
module_init(wf_pm112_init);
|
|
module_exit(wf_pm112_exit);
|
|
|
|
MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
|
|
MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:windfarm");
|