mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-18 08:35:08 +08:00
8d79898897
Add support for revision 2 of the DViCO FusionHDTV DVB-T Dual Digital 4 which has new tuners and demodulators (2 x DIB7070p). With this patch both DVB reception and IR works. The dib7000p driver currently hardwires the output mode to OUTMODE_MPEG2_SERIAL regardless of what we ask for. Modify it to allow OUTMODE_MPEG2_PAR_GATED_CLK to be set. Longer term we should remove the check completely and set the output mode correctly in all the callers. Add Kconfig bits to ensure the dib7000p and dib0070 modules are enabled. It would be nice to only do this for the !DVB_FE_CUSTOMISE case, but this is what the other DIB7070 module does (there are a number of module dependencies in the attach code). Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Michael Krufky <mkrufky@linuxtv.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
1395 lines
40 KiB
C
1395 lines
40 KiB
C
/*
|
|
* Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
|
|
*
|
|
* Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation, version 2.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/i2c.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
|
|
#include "dib7000p.h"
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
|
|
|
|
static int buggy_sfn_workaround;
|
|
module_param(buggy_sfn_workaround, int, 0644);
|
|
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
|
|
|
|
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
|
|
|
|
struct dib7000p_state {
|
|
struct dvb_frontend demod;
|
|
struct dib7000p_config cfg;
|
|
|
|
u8 i2c_addr;
|
|
struct i2c_adapter *i2c_adap;
|
|
|
|
struct dibx000_i2c_master i2c_master;
|
|
|
|
u16 wbd_ref;
|
|
|
|
u8 current_band;
|
|
u32 current_bandwidth;
|
|
struct dibx000_agc_config *current_agc;
|
|
u32 timf;
|
|
|
|
u8 div_force_off : 1;
|
|
u8 div_state : 1;
|
|
u16 div_sync_wait;
|
|
|
|
u8 agc_state;
|
|
|
|
u16 gpio_dir;
|
|
u16 gpio_val;
|
|
|
|
u8 sfn_workaround_active :1;
|
|
};
|
|
|
|
enum dib7000p_power_mode {
|
|
DIB7000P_POWER_ALL = 0,
|
|
DIB7000P_POWER_ANALOG_ADC,
|
|
DIB7000P_POWER_INTERFACE_ONLY,
|
|
};
|
|
|
|
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
|
|
{
|
|
u8 wb[2] = { reg >> 8, reg & 0xff };
|
|
u8 rb[2];
|
|
struct i2c_msg msg[2] = {
|
|
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
|
|
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
|
|
};
|
|
|
|
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
|
|
dprintk("i2c read error on %d",reg);
|
|
|
|
return (rb[0] << 8) | rb[1];
|
|
}
|
|
|
|
static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
|
|
{
|
|
u8 b[4] = {
|
|
(reg >> 8) & 0xff, reg & 0xff,
|
|
(val >> 8) & 0xff, val & 0xff,
|
|
};
|
|
struct i2c_msg msg = {
|
|
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
|
|
};
|
|
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
|
|
}
|
|
static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf)
|
|
{
|
|
u16 l = 0, r, *n;
|
|
n = buf;
|
|
l = *n++;
|
|
while (l) {
|
|
r = *n++;
|
|
|
|
do {
|
|
dib7000p_write_word(state, r, *n++);
|
|
r++;
|
|
} while (--l);
|
|
l = *n++;
|
|
}
|
|
}
|
|
|
|
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
|
|
{
|
|
int ret = 0;
|
|
u16 outreg, fifo_threshold, smo_mode;
|
|
|
|
outreg = 0;
|
|
fifo_threshold = 1792;
|
|
smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1);
|
|
|
|
dprintk( "setting output mode for demod %p to %d",
|
|
&state->demod, mode);
|
|
|
|
switch (mode) {
|
|
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
|
|
outreg = (1 << 10); /* 0x0400 */
|
|
break;
|
|
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
|
|
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
|
|
break;
|
|
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
|
|
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */
|
|
break;
|
|
case OUTMODE_DIVERSITY:
|
|
if (state->cfg.hostbus_diversity)
|
|
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
|
|
else
|
|
outreg = (1 << 11);
|
|
break;
|
|
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
|
|
smo_mode |= (3 << 1);
|
|
fifo_threshold = 512;
|
|
outreg = (1 << 10) | (5 << 6);
|
|
break;
|
|
case OUTMODE_ANALOG_ADC:
|
|
outreg = (1 << 10) | (3 << 6);
|
|
break;
|
|
case OUTMODE_HIGH_Z: // disable
|
|
outreg = 0;
|
|
break;
|
|
default:
|
|
dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod);
|
|
break;
|
|
}
|
|
|
|
if (state->cfg.output_mpeg2_in_188_bytes)
|
|
smo_mode |= (1 << 5) ;
|
|
|
|
ret |= dib7000p_write_word(state, 235, smo_mode);
|
|
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
|
|
ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
|
|
if (state->div_force_off) {
|
|
dprintk( "diversity combination deactivated - forced by COFDM parameters");
|
|
onoff = 0;
|
|
}
|
|
state->div_state = (u8)onoff;
|
|
|
|
if (onoff) {
|
|
dib7000p_write_word(state, 204, 6);
|
|
dib7000p_write_word(state, 205, 16);
|
|
/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
|
|
dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
|
|
} else {
|
|
dib7000p_write_word(state, 204, 1);
|
|
dib7000p_write_word(state, 205, 0);
|
|
dib7000p_write_word(state, 207, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
|
|
{
|
|
/* by default everything is powered off */
|
|
u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003,
|
|
reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
|
|
|
|
/* now, depending on the requested mode, we power on */
|
|
switch (mode) {
|
|
/* power up everything in the demod */
|
|
case DIB7000P_POWER_ALL:
|
|
reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff;
|
|
break;
|
|
|
|
case DIB7000P_POWER_ANALOG_ADC:
|
|
/* dem, cfg, iqc, sad, agc */
|
|
reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
|
|
/* nud */
|
|
reg_776 &= ~((1 << 0));
|
|
/* Dout */
|
|
reg_1280 &= ~((1 << 11));
|
|
/* fall through wanted to enable the interfaces */
|
|
|
|
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
|
|
case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */
|
|
reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
|
|
break;
|
|
|
|
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
|
|
}
|
|
|
|
dib7000p_write_word(state, 774, reg_774);
|
|
dib7000p_write_word(state, 775, reg_775);
|
|
dib7000p_write_word(state, 776, reg_776);
|
|
dib7000p_write_word(state, 899, reg_899);
|
|
dib7000p_write_word(state, 1280, reg_1280);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
|
|
{
|
|
u16 reg_908 = dib7000p_read_word(state, 908),
|
|
reg_909 = dib7000p_read_word(state, 909);
|
|
|
|
switch (no) {
|
|
case DIBX000_SLOW_ADC_ON:
|
|
reg_909 |= (1 << 1) | (1 << 0);
|
|
dib7000p_write_word(state, 909, reg_909);
|
|
reg_909 &= ~(1 << 1);
|
|
break;
|
|
|
|
case DIBX000_SLOW_ADC_OFF:
|
|
reg_909 |= (1 << 1) | (1 << 0);
|
|
break;
|
|
|
|
case DIBX000_ADC_ON:
|
|
reg_908 &= 0x0fff;
|
|
reg_909 &= 0x0003;
|
|
break;
|
|
|
|
case DIBX000_ADC_OFF: // leave the VBG voltage on
|
|
reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
|
|
reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
|
|
break;
|
|
|
|
case DIBX000_VBG_ENABLE:
|
|
reg_908 &= ~(1 << 15);
|
|
break;
|
|
|
|
case DIBX000_VBG_DISABLE:
|
|
reg_908 |= (1 << 15);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
|
|
|
|
dib7000p_write_word(state, 908, reg_908);
|
|
dib7000p_write_word(state, 909, reg_909);
|
|
}
|
|
|
|
static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
|
|
{
|
|
u32 timf;
|
|
|
|
// store the current bandwidth for later use
|
|
state->current_bandwidth = bw;
|
|
|
|
if (state->timf == 0) {
|
|
dprintk( "using default timf");
|
|
timf = state->cfg.bw->timf;
|
|
} else {
|
|
dprintk( "using updated timf");
|
|
timf = state->timf;
|
|
}
|
|
|
|
timf = timf * (bw / 50) / 160;
|
|
|
|
dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
|
|
dib7000p_write_word(state, 24, (u16) ((timf ) & 0xffff));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_sad_calib(struct dib7000p_state *state)
|
|
{
|
|
/* internal */
|
|
// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
|
|
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
|
|
dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096
|
|
|
|
/* do the calibration */
|
|
dib7000p_write_word(state, 73, (1 << 0));
|
|
dib7000p_write_word(state, 73, (0 << 0));
|
|
|
|
msleep(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
if (value > 4095)
|
|
value = 4095;
|
|
state->wbd_ref = value;
|
|
return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
|
|
}
|
|
|
|
EXPORT_SYMBOL(dib7000p_set_wbd_ref);
|
|
static void dib7000p_reset_pll(struct dib7000p_state *state)
|
|
{
|
|
struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
|
|
u16 clk_cfg0;
|
|
|
|
/* force PLL bypass */
|
|
clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
|
|
(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) |
|
|
(bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
|
|
|
|
dib7000p_write_word(state, 900, clk_cfg0);
|
|
|
|
/* P_pll_cfg */
|
|
dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
|
|
clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
|
|
dib7000p_write_word(state, 900, clk_cfg0);
|
|
|
|
dib7000p_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
|
|
dib7000p_write_word(state, 19, (u16) ( (bw->internal*1000 ) & 0xffff));
|
|
dib7000p_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff));
|
|
dib7000p_write_word(state, 22, (u16) ( (bw->ifreq ) & 0xffff));
|
|
|
|
dib7000p_write_word(state, 72, bw->sad_cfg);
|
|
}
|
|
|
|
static int dib7000p_reset_gpio(struct dib7000p_state *st)
|
|
{
|
|
/* reset the GPIOs */
|
|
dprintk( "gpio dir: %x: val: %x, pwm_pos: %x",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos);
|
|
|
|
dib7000p_write_word(st, 1029, st->gpio_dir);
|
|
dib7000p_write_word(st, 1030, st->gpio_val);
|
|
|
|
/* TODO 1031 is P_gpio_od */
|
|
|
|
dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);
|
|
|
|
dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
|
|
{
|
|
st->gpio_dir = dib7000p_read_word(st, 1029);
|
|
st->gpio_dir &= ~(1 << num); /* reset the direction bit */
|
|
st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */
|
|
dib7000p_write_word(st, 1029, st->gpio_dir);
|
|
|
|
st->gpio_val = dib7000p_read_word(st, 1030);
|
|
st->gpio_val &= ~(1 << num); /* reset the direction bit */
|
|
st->gpio_val |= (val & 0x01) << num; /* set the new value */
|
|
dib7000p_write_word(st, 1030, st->gpio_val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
return dib7000p_cfg_gpio(state, num, dir, val);
|
|
}
|
|
|
|
EXPORT_SYMBOL(dib7000p_set_gpio);
|
|
static u16 dib7000p_defaults[] =
|
|
|
|
{
|
|
// auto search configuration
|
|
3, 2,
|
|
0x0004,
|
|
0x1000,
|
|
0x0814, /* Equal Lock */
|
|
|
|
12, 6,
|
|
0x001b,
|
|
0x7740,
|
|
0x005b,
|
|
0x8d80,
|
|
0x01c9,
|
|
0xc380,
|
|
0x0000,
|
|
0x0080,
|
|
0x0000,
|
|
0x0090,
|
|
0x0001,
|
|
0xd4c0,
|
|
|
|
1, 26,
|
|
0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
|
|
|
|
/* set ADC level to -16 */
|
|
11, 79,
|
|
(1 << 13) - 825 - 117,
|
|
(1 << 13) - 837 - 117,
|
|
(1 << 13) - 811 - 117,
|
|
(1 << 13) - 766 - 117,
|
|
(1 << 13) - 737 - 117,
|
|
(1 << 13) - 693 - 117,
|
|
(1 << 13) - 648 - 117,
|
|
(1 << 13) - 619 - 117,
|
|
(1 << 13) - 575 - 117,
|
|
(1 << 13) - 531 - 117,
|
|
(1 << 13) - 501 - 117,
|
|
|
|
1, 142,
|
|
0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
|
|
|
|
/* disable power smoothing */
|
|
8, 145,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
|
|
1, 154,
|
|
1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0
|
|
|
|
1, 168,
|
|
0x0ccd, // P_pha3_thres, default 0x3000
|
|
|
|
// 1, 169,
|
|
// 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
|
|
|
|
1, 183,
|
|
0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
|
|
|
|
5, 187,
|
|
0x023d, // P_adp_regul_cnt=573, default: 410
|
|
0x00a4, // P_adp_noise_cnt=
|
|
0x00a4, // P_adp_regul_ext
|
|
0x7ff0, // P_adp_noise_ext
|
|
0x3ccc, // P_adp_fil
|
|
|
|
1, 198,
|
|
0x800, // P_equal_thres_wgn
|
|
|
|
1, 222,
|
|
0x0010, // P_fec_ber_rs_len=2
|
|
|
|
1, 235,
|
|
0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
|
|
|
|
2, 901,
|
|
0x0006, // P_clk_cfg1
|
|
(3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1
|
|
|
|
1, 905,
|
|
0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive
|
|
|
|
0,
|
|
};
|
|
|
|
static int dib7000p_demod_reset(struct dib7000p_state *state)
|
|
{
|
|
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
|
|
|
|
dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
|
|
|
|
/* restart all parts */
|
|
dib7000p_write_word(state, 770, 0xffff);
|
|
dib7000p_write_word(state, 771, 0xffff);
|
|
dib7000p_write_word(state, 772, 0x001f);
|
|
dib7000p_write_word(state, 898, 0x0003);
|
|
/* except i2c, sdio, gpio - control interfaces */
|
|
dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) );
|
|
|
|
dib7000p_write_word(state, 770, 0);
|
|
dib7000p_write_word(state, 771, 0);
|
|
dib7000p_write_word(state, 772, 0);
|
|
dib7000p_write_word(state, 898, 0);
|
|
dib7000p_write_word(state, 1280, 0);
|
|
|
|
/* default */
|
|
dib7000p_reset_pll(state);
|
|
|
|
if (dib7000p_reset_gpio(state) != 0)
|
|
dprintk( "GPIO reset was not successful.");
|
|
|
|
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
|
|
dprintk( "OUTPUT_MODE could not be reset.");
|
|
|
|
/* unforce divstr regardless whether i2c enumeration was done or not */
|
|
dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) );
|
|
|
|
dib7000p_set_bandwidth(state, 8000);
|
|
|
|
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
|
|
dib7000p_sad_calib(state);
|
|
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
|
|
|
|
// P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
|
|
if(state->cfg.tuner_is_baseband)
|
|
dib7000p_write_word(state, 36,0x0755);
|
|
else
|
|
dib7000p_write_word(state, 36,0x1f55);
|
|
|
|
dib7000p_write_tab(state, dib7000p_defaults);
|
|
|
|
dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
|
|
{
|
|
u16 tmp = 0;
|
|
tmp = dib7000p_read_word(state, 903);
|
|
dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll
|
|
tmp = dib7000p_read_word(state, 900);
|
|
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
|
|
}
|
|
|
|
static void dib7000p_restart_agc(struct dib7000p_state *state)
|
|
{
|
|
// P_restart_iqc & P_restart_agc
|
|
dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
|
|
dib7000p_write_word(state, 770, 0x0000);
|
|
}
|
|
|
|
static int dib7000p_update_lna(struct dib7000p_state *state)
|
|
{
|
|
u16 dyn_gain;
|
|
|
|
// when there is no LNA to program return immediatly
|
|
if (state->cfg.update_lna) {
|
|
// read dyn_gain here (because it is demod-dependent and not fe)
|
|
dyn_gain = dib7000p_read_word(state, 394);
|
|
if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
|
|
dib7000p_restart_agc(state);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
|
|
{
|
|
struct dibx000_agc_config *agc = NULL;
|
|
int i;
|
|
if (state->current_band == band && state->current_agc != NULL)
|
|
return 0;
|
|
state->current_band = band;
|
|
|
|
for (i = 0; i < state->cfg.agc_config_count; i++)
|
|
if (state->cfg.agc[i].band_caps & band) {
|
|
agc = &state->cfg.agc[i];
|
|
break;
|
|
}
|
|
|
|
if (agc == NULL) {
|
|
dprintk( "no valid AGC configuration found for band 0x%02x",band);
|
|
return -EINVAL;
|
|
}
|
|
|
|
state->current_agc = agc;
|
|
|
|
/* AGC */
|
|
dib7000p_write_word(state, 75 , agc->setup );
|
|
dib7000p_write_word(state, 76 , agc->inv_gain );
|
|
dib7000p_write_word(state, 77 , agc->time_stabiliz );
|
|
dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
|
|
|
|
// Demod AGC loop configuration
|
|
dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
|
|
dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
|
|
|
|
/* AGC continued */
|
|
dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d",
|
|
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
|
|
|
|
if (state->wbd_ref != 0)
|
|
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
|
|
else
|
|
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
|
|
|
|
dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
|
|
|
|
dib7000p_write_word(state, 107, agc->agc1_max);
|
|
dib7000p_write_word(state, 108, agc->agc1_min);
|
|
dib7000p_write_word(state, 109, agc->agc2_max);
|
|
dib7000p_write_word(state, 110, agc->agc2_min);
|
|
dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
|
|
dib7000p_write_word(state, 112, agc->agc1_pt3);
|
|
dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
|
|
dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
|
|
dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
int ret = -1;
|
|
u8 *agc_state = &state->agc_state;
|
|
u8 agc_split;
|
|
|
|
switch (state->agc_state) {
|
|
case 0:
|
|
// set power-up level: interf+analog+AGC
|
|
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
|
|
dib7000p_set_adc_state(state, DIBX000_ADC_ON);
|
|
dib7000p_pll_clk_cfg(state);
|
|
|
|
if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
|
|
return -1;
|
|
|
|
ret = 7;
|
|
(*agc_state)++;
|
|
break;
|
|
|
|
case 1:
|
|
// AGC initialization
|
|
if (state->cfg.agc_control)
|
|
state->cfg.agc_control(&state->demod, 1);
|
|
|
|
dib7000p_write_word(state, 78, 32768);
|
|
if (!state->current_agc->perform_agc_softsplit) {
|
|
/* we are using the wbd - so slow AGC startup */
|
|
/* force 0 split on WBD and restart AGC */
|
|
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
|
|
(*agc_state)++;
|
|
ret = 5;
|
|
} else {
|
|
/* default AGC startup */
|
|
(*agc_state) = 4;
|
|
/* wait AGC rough lock time */
|
|
ret = 7;
|
|
}
|
|
|
|
dib7000p_restart_agc(state);
|
|
break;
|
|
|
|
case 2: /* fast split search path after 5sec */
|
|
dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */
|
|
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */
|
|
(*agc_state)++;
|
|
ret = 14;
|
|
break;
|
|
|
|
case 3: /* split search ended */
|
|
agc_split = (u8)dib7000p_read_word(state, 396); /* store the split value for the next time */
|
|
dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */
|
|
|
|
dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */
|
|
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
|
|
|
|
dib7000p_restart_agc(state);
|
|
|
|
dprintk( "SPLIT %p: %hd", demod, agc_split);
|
|
|
|
(*agc_state)++;
|
|
ret = 5;
|
|
break;
|
|
|
|
case 4: /* LNA startup */
|
|
// wait AGC accurate lock time
|
|
ret = 7;
|
|
|
|
if (dib7000p_update_lna(state))
|
|
// wait only AGC rough lock time
|
|
ret = 5;
|
|
else // nothing was done, go to the next state
|
|
(*agc_state)++;
|
|
break;
|
|
|
|
case 5:
|
|
if (state->cfg.agc_control)
|
|
state->cfg.agc_control(&state->demod, 0);
|
|
(*agc_state)++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void dib7000p_update_timf(struct dib7000p_state *state)
|
|
{
|
|
u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
|
|
state->timf = timf * 160 / (state->current_bandwidth / 50);
|
|
dib7000p_write_word(state, 23, (u16) (timf >> 16));
|
|
dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
|
|
dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->cfg.bw->timf);
|
|
|
|
}
|
|
|
|
static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq)
|
|
{
|
|
u16 value, est[4];
|
|
|
|
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
|
|
|
|
/* nfft, guard, qam, alpha */
|
|
value = 0;
|
|
switch (ch->u.ofdm.transmission_mode) {
|
|
case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
|
|
case /* 4K MODE */ 255: value |= (2 << 7); break;
|
|
default:
|
|
case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
|
|
}
|
|
switch (ch->u.ofdm.guard_interval) {
|
|
case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
|
|
case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
|
|
case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
|
|
default:
|
|
case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
|
|
}
|
|
switch (ch->u.ofdm.constellation) {
|
|
case QPSK: value |= (0 << 3); break;
|
|
case QAM_16: value |= (1 << 3); break;
|
|
default:
|
|
case QAM_64: value |= (2 << 3); break;
|
|
}
|
|
switch (HIERARCHY_1) {
|
|
case HIERARCHY_2: value |= 2; break;
|
|
case HIERARCHY_4: value |= 4; break;
|
|
default:
|
|
case HIERARCHY_1: value |= 1; break;
|
|
}
|
|
dib7000p_write_word(state, 0, value);
|
|
dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */
|
|
|
|
/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
|
|
value = 0;
|
|
if (1 != 0)
|
|
value |= (1 << 6);
|
|
if (ch->u.ofdm.hierarchy_information == 1)
|
|
value |= (1 << 4);
|
|
if (1 == 1)
|
|
value |= 1;
|
|
switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
|
|
case FEC_2_3: value |= (2 << 1); break;
|
|
case FEC_3_4: value |= (3 << 1); break;
|
|
case FEC_5_6: value |= (5 << 1); break;
|
|
case FEC_7_8: value |= (7 << 1); break;
|
|
default:
|
|
case FEC_1_2: value |= (1 << 1); break;
|
|
}
|
|
dib7000p_write_word(state, 208, value);
|
|
|
|
/* offset loop parameters */
|
|
dib7000p_write_word(state, 26, 0x6680); // timf(6xxx)
|
|
dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3)
|
|
dib7000p_write_word(state, 29, 0x1273); // isi
|
|
dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5)
|
|
|
|
/* P_dvsy_sync_wait */
|
|
switch (ch->u.ofdm.transmission_mode) {
|
|
case TRANSMISSION_MODE_8K: value = 256; break;
|
|
case /* 4K MODE */ 255: value = 128; break;
|
|
case TRANSMISSION_MODE_2K:
|
|
default: value = 64; break;
|
|
}
|
|
switch (ch->u.ofdm.guard_interval) {
|
|
case GUARD_INTERVAL_1_16: value *= 2; break;
|
|
case GUARD_INTERVAL_1_8: value *= 4; break;
|
|
case GUARD_INTERVAL_1_4: value *= 8; break;
|
|
default:
|
|
case GUARD_INTERVAL_1_32: value *= 1; break;
|
|
}
|
|
state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO
|
|
|
|
/* deactive the possibility of diversity reception if extended interleaver */
|
|
state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
|
|
dib7000p_set_diversity_in(&state->demod, state->div_state);
|
|
|
|
/* channel estimation fine configuration */
|
|
switch (ch->u.ofdm.constellation) {
|
|
case QAM_64:
|
|
est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
|
|
est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
|
|
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
|
|
est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
|
|
break;
|
|
case QAM_16:
|
|
est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
|
|
est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
|
|
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
|
|
est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
|
|
break;
|
|
default:
|
|
est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
|
|
est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
|
|
est[2] = 0x0333; /* P_adp_regul_ext 0.1 */
|
|
est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
|
|
break;
|
|
}
|
|
for (value = 0; value < 4; value++)
|
|
dib7000p_write_word(state, 187 + value, est[value]);
|
|
}
|
|
|
|
static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
struct dvb_frontend_parameters schan;
|
|
u32 value, factor;
|
|
|
|
schan = *ch;
|
|
schan.u.ofdm.constellation = QAM_64;
|
|
schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
|
|
schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
|
|
schan.u.ofdm.code_rate_HP = FEC_2_3;
|
|
schan.u.ofdm.code_rate_LP = FEC_3_4;
|
|
schan.u.ofdm.hierarchy_information = 0;
|
|
|
|
dib7000p_set_channel(state, &schan, 7);
|
|
|
|
factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
|
|
if (factor >= 5000)
|
|
factor = 1;
|
|
else
|
|
factor = 6;
|
|
|
|
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer
|
|
value = 30 * state->cfg.bw->internal * factor;
|
|
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
|
|
dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
|
|
value = 100 * state->cfg.bw->internal * factor;
|
|
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
|
|
dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
|
|
value = 500 * state->cfg.bw->internal * factor;
|
|
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
|
|
dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
|
|
|
|
value = dib7000p_read_word(state, 0);
|
|
dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
|
|
dib7000p_read_word(state, 1284);
|
|
dib7000p_write_word(state, 0, (u16) value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
u16 irq_pending = dib7000p_read_word(state, 1284);
|
|
|
|
if (irq_pending & 0x1) // failed
|
|
return 1;
|
|
|
|
if (irq_pending & 0x2) // succeeded
|
|
return 2;
|
|
|
|
return 0; // still pending
|
|
}
|
|
|
|
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
|
|
{
|
|
static s16 notch[]={16143, 14402, 12238, 9713, 6902, 3888, 759, -2392};
|
|
static u8 sine [] ={0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
|
|
24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
|
|
53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
|
|
82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
|
|
107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
|
|
128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
|
|
147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
|
|
166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
|
|
183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
|
|
199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
|
|
213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
|
|
225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
|
|
235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
|
|
244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
|
|
250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
|
|
254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255};
|
|
|
|
u32 xtal = state->cfg.bw->xtal_hz / 1000;
|
|
int f_rel = ( (rf_khz + xtal/2) / xtal) * xtal - rf_khz;
|
|
int k;
|
|
int coef_re[8],coef_im[8];
|
|
int bw_khz = bw;
|
|
u32 pha;
|
|
|
|
dprintk( "relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
|
|
|
|
|
|
if (f_rel < -bw_khz/2 || f_rel > bw_khz/2)
|
|
return;
|
|
|
|
bw_khz /= 100;
|
|
|
|
dib7000p_write_word(state, 142 ,0x0610);
|
|
|
|
for (k = 0; k < 8; k++) {
|
|
pha = ((f_rel * (k+1) * 112 * 80/bw_khz) /1000) & 0x3ff;
|
|
|
|
if (pha==0) {
|
|
coef_re[k] = 256;
|
|
coef_im[k] = 0;
|
|
} else if(pha < 256) {
|
|
coef_re[k] = sine[256-(pha&0xff)];
|
|
coef_im[k] = sine[pha&0xff];
|
|
} else if (pha == 256) {
|
|
coef_re[k] = 0;
|
|
coef_im[k] = 256;
|
|
} else if (pha < 512) {
|
|
coef_re[k] = -sine[pha&0xff];
|
|
coef_im[k] = sine[256 - (pha&0xff)];
|
|
} else if (pha == 512) {
|
|
coef_re[k] = -256;
|
|
coef_im[k] = 0;
|
|
} else if (pha < 768) {
|
|
coef_re[k] = -sine[256-(pha&0xff)];
|
|
coef_im[k] = -sine[pha&0xff];
|
|
} else if (pha == 768) {
|
|
coef_re[k] = 0;
|
|
coef_im[k] = -256;
|
|
} else {
|
|
coef_re[k] = sine[pha&0xff];
|
|
coef_im[k] = -sine[256 - (pha&0xff)];
|
|
}
|
|
|
|
coef_re[k] *= notch[k];
|
|
coef_re[k] += (1<<14);
|
|
if (coef_re[k] >= (1<<24))
|
|
coef_re[k] = (1<<24) - 1;
|
|
coef_re[k] /= (1<<15);
|
|
|
|
coef_im[k] *= notch[k];
|
|
coef_im[k] += (1<<14);
|
|
if (coef_im[k] >= (1<<24))
|
|
coef_im[k] = (1<<24)-1;
|
|
coef_im[k] /= (1<<15);
|
|
|
|
dprintk( "PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
|
|
|
|
dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
|
|
dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
|
|
dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
|
|
}
|
|
dib7000p_write_word(state,143 ,0);
|
|
}
|
|
|
|
static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
u16 tmp = 0;
|
|
|
|
if (ch != NULL)
|
|
dib7000p_set_channel(state, ch, 0);
|
|
else
|
|
return -EINVAL;
|
|
|
|
// restart demod
|
|
dib7000p_write_word(state, 770, 0x4000);
|
|
dib7000p_write_word(state, 770, 0x0000);
|
|
msleep(45);
|
|
|
|
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
|
|
tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
|
|
if (state->sfn_workaround_active) {
|
|
dprintk( "SFN workaround is active");
|
|
tmp |= (1 << 9);
|
|
dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift
|
|
} else {
|
|
dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift
|
|
}
|
|
dib7000p_write_word(state, 29, tmp);
|
|
|
|
// never achieved a lock with that bandwidth so far - wait for osc-freq to update
|
|
if (state->timf == 0)
|
|
msleep(200);
|
|
|
|
/* offset loop parameters */
|
|
|
|
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
|
|
tmp = (6 << 8) | 0x80;
|
|
switch (ch->u.ofdm.transmission_mode) {
|
|
case TRANSMISSION_MODE_2K: tmp |= (7 << 12); break;
|
|
case /* 4K MODE */ 255: tmp |= (8 << 12); break;
|
|
default:
|
|
case TRANSMISSION_MODE_8K: tmp |= (9 << 12); break;
|
|
}
|
|
dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */
|
|
|
|
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
|
|
tmp = (0 << 4);
|
|
switch (ch->u.ofdm.transmission_mode) {
|
|
case TRANSMISSION_MODE_2K: tmp |= 0x6; break;
|
|
case /* 4K MODE */ 255: tmp |= 0x7; break;
|
|
default:
|
|
case TRANSMISSION_MODE_8K: tmp |= 0x8; break;
|
|
}
|
|
dib7000p_write_word(state, 32, tmp);
|
|
|
|
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
|
|
tmp = (0 << 4);
|
|
switch (ch->u.ofdm.transmission_mode) {
|
|
case TRANSMISSION_MODE_2K: tmp |= 0x6; break;
|
|
case /* 4K MODE */ 255: tmp |= 0x7; break;
|
|
default:
|
|
case TRANSMISSION_MODE_8K: tmp |= 0x8; break;
|
|
}
|
|
dib7000p_write_word(state, 33, tmp);
|
|
|
|
tmp = dib7000p_read_word(state,509);
|
|
if (!((tmp >> 6) & 0x1)) {
|
|
/* restart the fec */
|
|
tmp = dib7000p_read_word(state,771);
|
|
dib7000p_write_word(state, 771, tmp | (1 << 1));
|
|
dib7000p_write_word(state, 771, tmp);
|
|
msleep(10);
|
|
tmp = dib7000p_read_word(state,509);
|
|
}
|
|
|
|
// we achieved a lock - it's time to update the osc freq
|
|
if ((tmp >> 6) & 0x1)
|
|
dib7000p_update_timf(state);
|
|
|
|
if (state->cfg.spur_protect)
|
|
dib7000p_spur_protect(state, ch->frequency/1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
|
|
|
|
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_wakeup(struct dvb_frontend *demod)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
|
|
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_sleep(struct dvb_frontend *demod)
|
|
{
|
|
struct dib7000p_state *state = demod->demodulator_priv;
|
|
return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
|
|
}
|
|
|
|
static int dib7000p_identify(struct dib7000p_state *st)
|
|
{
|
|
u16 value;
|
|
dprintk( "checking demod on I2C address: %d (%x)",
|
|
st->i2c_addr, st->i2c_addr);
|
|
|
|
if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
|
|
dprintk( "wrong Vendor ID (read=0x%x)",value);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
|
|
dprintk( "wrong Device ID (%x)",value);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int dib7000p_get_frontend(struct dvb_frontend* fe,
|
|
struct dvb_frontend_parameters *fep)
|
|
{
|
|
struct dib7000p_state *state = fe->demodulator_priv;
|
|
u16 tps = dib7000p_read_word(state,463);
|
|
|
|
fep->inversion = INVERSION_AUTO;
|
|
|
|
fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth);
|
|
|
|
switch ((tps >> 8) & 0x3) {
|
|
case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
|
|
case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
|
|
/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
|
|
}
|
|
|
|
switch (tps & 0x3) {
|
|
case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
|
|
case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
|
|
case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
|
|
case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
|
|
}
|
|
|
|
switch ((tps >> 14) & 0x3) {
|
|
case 0: fep->u.ofdm.constellation = QPSK; break;
|
|
case 1: fep->u.ofdm.constellation = QAM_16; break;
|
|
case 2:
|
|
default: fep->u.ofdm.constellation = QAM_64; break;
|
|
}
|
|
|
|
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
|
|
/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
|
|
|
|
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
|
|
switch ((tps >> 5) & 0x7) {
|
|
case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
|
|
case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
|
|
case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
|
|
case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
|
|
case 7:
|
|
default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
|
|
|
|
}
|
|
|
|
switch ((tps >> 2) & 0x7) {
|
|
case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
|
|
case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
|
|
case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
|
|
case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
|
|
case 7:
|
|
default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
|
|
}
|
|
|
|
/* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_set_frontend(struct dvb_frontend* fe,
|
|
struct dvb_frontend_parameters *fep)
|
|
{
|
|
struct dib7000p_state *state = fe->demodulator_priv;
|
|
int time, ret;
|
|
|
|
dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
|
|
|
|
/* maybe the parameter has been changed */
|
|
state->sfn_workaround_active = buggy_sfn_workaround;
|
|
|
|
if (fe->ops.tuner_ops.set_params)
|
|
fe->ops.tuner_ops.set_params(fe, fep);
|
|
|
|
/* start up the AGC */
|
|
state->agc_state = 0;
|
|
do {
|
|
time = dib7000p_agc_startup(fe, fep);
|
|
if (time != -1)
|
|
msleep(time);
|
|
} while (time != -1);
|
|
|
|
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
|
|
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
|
|
fep->u.ofdm.constellation == QAM_AUTO ||
|
|
fep->u.ofdm.code_rate_HP == FEC_AUTO) {
|
|
int i = 800, found;
|
|
|
|
dib7000p_autosearch_start(fe, fep);
|
|
do {
|
|
msleep(1);
|
|
found = dib7000p_autosearch_is_irq(fe);
|
|
} while (found == 0 && i--);
|
|
|
|
dprintk("autosearch returns: %d",found);
|
|
if (found == 0 || found == 1)
|
|
return 0; // no channel found
|
|
|
|
dib7000p_get_frontend(fe, fep);
|
|
}
|
|
|
|
ret = dib7000p_tune(fe, fep);
|
|
|
|
/* make this a config parameter */
|
|
dib7000p_set_output_mode(state, state->cfg.output_mode);
|
|
return ret;
|
|
}
|
|
|
|
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat)
|
|
{
|
|
struct dib7000p_state *state = fe->demodulator_priv;
|
|
u16 lock = dib7000p_read_word(state, 509);
|
|
|
|
*stat = 0;
|
|
|
|
if (lock & 0x8000)
|
|
*stat |= FE_HAS_SIGNAL;
|
|
if (lock & 0x3000)
|
|
*stat |= FE_HAS_CARRIER;
|
|
if (lock & 0x0100)
|
|
*stat |= FE_HAS_VITERBI;
|
|
if (lock & 0x0010)
|
|
*stat |= FE_HAS_SYNC;
|
|
if (lock & 0x0008)
|
|
*stat |= FE_HAS_LOCK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber)
|
|
{
|
|
struct dib7000p_state *state = fe->demodulator_priv;
|
|
*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
|
|
{
|
|
struct dib7000p_state *state = fe->demodulator_priv;
|
|
*unc = dib7000p_read_word(state, 506);
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
|
|
{
|
|
struct dib7000p_state *state = fe->demodulator_priv;
|
|
u16 val = dib7000p_read_word(state, 394);
|
|
*strength = 65535 - val;
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr)
|
|
{
|
|
*snr = 0x0000;
|
|
return 0;
|
|
}
|
|
|
|
static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
|
|
{
|
|
tune->min_delay_ms = 1000;
|
|
return 0;
|
|
}
|
|
|
|
static void dib7000p_release(struct dvb_frontend *demod)
|
|
{
|
|
struct dib7000p_state *st = demod->demodulator_priv;
|
|
dibx000_exit_i2c_master(&st->i2c_master);
|
|
kfree(st);
|
|
}
|
|
|
|
int dib7000pc_detection(struct i2c_adapter *i2c_adap)
|
|
{
|
|
u8 tx[2], rx[2];
|
|
struct i2c_msg msg[2] = {
|
|
{ .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 },
|
|
{ .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 },
|
|
};
|
|
|
|
tx[0] = 0x03;
|
|
tx[1] = 0x00;
|
|
|
|
if (i2c_transfer(i2c_adap, msg, 2) == 2)
|
|
if (rx[0] == 0x01 && rx[1] == 0xb3) {
|
|
dprintk("-D- DiB7000PC detected");
|
|
return 1;
|
|
}
|
|
|
|
msg[0].addr = msg[1].addr = 0x40;
|
|
|
|
if (i2c_transfer(i2c_adap, msg, 2) == 2)
|
|
if (rx[0] == 0x01 && rx[1] == 0xb3) {
|
|
dprintk("-D- DiB7000PC detected");
|
|
return 1;
|
|
}
|
|
|
|
dprintk("-D- DiB7000PC not detected");
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib7000pc_detection);
|
|
|
|
struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
|
|
{
|
|
struct dib7000p_state *st = demod->demodulator_priv;
|
|
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
|
|
}
|
|
EXPORT_SYMBOL(dib7000p_get_i2c_master);
|
|
|
|
int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
|
|
{
|
|
struct dib7000p_state st = { .i2c_adap = i2c };
|
|
int k = 0;
|
|
u8 new_addr = 0;
|
|
|
|
for (k = no_of_demods-1; k >= 0; k--) {
|
|
st.cfg = cfg[k];
|
|
|
|
/* designated i2c address */
|
|
new_addr = (0x40 + k) << 1;
|
|
st.i2c_addr = new_addr;
|
|
if (dib7000p_identify(&st) != 0) {
|
|
st.i2c_addr = default_addr;
|
|
if (dib7000p_identify(&st) != 0) {
|
|
dprintk("DiB7000P #%d: not identified\n", k);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/* start diversity to pull_down div_str - just for i2c-enumeration */
|
|
dib7000p_set_output_mode(&st, OUTMODE_DIVERSITY);
|
|
|
|
/* set new i2c address and force divstart */
|
|
dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2);
|
|
|
|
dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
|
|
}
|
|
|
|
for (k = 0; k < no_of_demods; k++) {
|
|
st.cfg = cfg[k];
|
|
st.i2c_addr = (0x40 + k) << 1;
|
|
|
|
// unforce divstr
|
|
dib7000p_write_word(&st, 1285, st.i2c_addr << 2);
|
|
|
|
/* deactivate div - it was just for i2c-enumeration */
|
|
dib7000p_set_output_mode(&st, OUTMODE_HIGH_Z);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib7000p_i2c_enumeration);
|
|
|
|
static struct dvb_frontend_ops dib7000p_ops;
|
|
struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
|
|
{
|
|
struct dvb_frontend *demod;
|
|
struct dib7000p_state *st;
|
|
st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return NULL;
|
|
|
|
memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
|
|
st->i2c_adap = i2c_adap;
|
|
st->i2c_addr = i2c_addr;
|
|
st->gpio_val = cfg->gpio_val;
|
|
st->gpio_dir = cfg->gpio_dir;
|
|
|
|
/* Ensure the output mode remains at the previous default if it's
|
|
* not specifically set by the caller.
|
|
*/
|
|
if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) &&
|
|
(st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
|
|
st->cfg.output_mode = OUTMODE_MPEG2_FIFO;
|
|
|
|
demod = &st->demod;
|
|
demod->demodulator_priv = st;
|
|
memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
|
|
|
|
if (dib7000p_identify(st) != 0)
|
|
goto error;
|
|
|
|
dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
|
|
|
|
dib7000p_demod_reset(st);
|
|
|
|
return demod;
|
|
|
|
error:
|
|
kfree(st);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dib7000p_attach);
|
|
|
|
static struct dvb_frontend_ops dib7000p_ops = {
|
|
.info = {
|
|
.name = "DiBcom 7000PC",
|
|
.type = FE_OFDM,
|
|
.frequency_min = 44250000,
|
|
.frequency_max = 867250000,
|
|
.frequency_stepsize = 62500,
|
|
.caps = FE_CAN_INVERSION_AUTO |
|
|
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
|
|
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
|
|
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
|
|
FE_CAN_TRANSMISSION_MODE_AUTO |
|
|
FE_CAN_GUARD_INTERVAL_AUTO |
|
|
FE_CAN_RECOVER |
|
|
FE_CAN_HIERARCHY_AUTO,
|
|
},
|
|
|
|
.release = dib7000p_release,
|
|
|
|
.init = dib7000p_wakeup,
|
|
.sleep = dib7000p_sleep,
|
|
|
|
.set_frontend = dib7000p_set_frontend,
|
|
.get_tune_settings = dib7000p_fe_get_tune_settings,
|
|
.get_frontend = dib7000p_get_frontend,
|
|
|
|
.read_status = dib7000p_read_status,
|
|
.read_ber = dib7000p_read_ber,
|
|
.read_signal_strength = dib7000p_read_signal_strength,
|
|
.read_snr = dib7000p_read_snr,
|
|
.read_ucblocks = dib7000p_read_unc_blocks,
|
|
};
|
|
|
|
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
|
|
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
|
|
MODULE_LICENSE("GPL");
|